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Abstract

This paper presents the synthesis and analysis of a special class of non-uniform cellular automata (CAs) based associa-
tive memory, termed as generalized multiple attractor CAs (GMACAs). A reverse engineering technique is presented for
synthesis of the GMACAs. The desired CAs are evolved through an efficient formulation of genetic algorithm coupled with
the reverse engineering technigque. This has resulted in significant reduction of the search space of the desired GMACAs.
Characterization of the basins of attraction of the proposed model establishes the sparse network of GMACASs as a pow-
erful pattern recognizer for memorizing unbiased patterns. Theoretical analysis also provides an estimate of the noise
accommodating capability of the proposed GMACA based associative memory. An in-depth analysis of the GMACA rule
space establishes the fact that more heterogeneous CA rules are capable of executing complex computation like pattern
recognition.
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1. Introduc ion

Cellular automata (CAs) provide new means for doing computation more efficiently — in terms of speed,
cost, power dissipation, information storage, and solution quality [33]. They have been proposed to smudy
the general phenomenological aspects, including communication, computation, construction, growth, repro-
duction, competition, and evolution [14,15,.24,30] CAs also provide an excellent tool for modeling physical
phenomena by reducing them to their basic, elemental laws [21,2932].

Interesting computational properties of the CA model have inspired us to investigate new research area
such as pattern recognition. The associative memory model provides a solution to the problem of pattern
recognition, where time to recognize a patiern is independent of the number of patterns learnt (stored) [1]. This
model divides the entire state space into some pivotal points that represent the patterns learnt. The pivotal
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points can be viewed as stable states or attractors. The states close to a pivotal point get associated with the
corresponding learnt pattern and are referred to as transient states. Identification of an input pattern amounts
to traversing the transient path from the given input pattern to the closest pivotal point. As a result, the pro-
cess of recognition associates a set of transient states with a learnt pattern and the process becomes indepen-
dent of the number of patterns learnt. A logical evolution is to build the associative memory model for pattern
recognition.

The design of CA based associative memory has so far mostly concentrated around uniform CAs [2,13,18]
with same rule applied to each of the CA cells. The structure of uniform rule restricts the CAs to evolve as a
general purpose pattern recognizer although they have been able to memorize some specific patterns [2,18].
Some works on non-uniform CAs have also been reported in [26,27]. However, none of the works reported
the evolution of CAs as a general purpose patiern recognizer [2,18,26,27). The design of CA based model
for pattern recognition is reported in [3,19,20,22,25]. The search for associative memory model for pattern rec-
ognition around simple structure of CAs has been reported in [9,10,17]. The results reported in [9,10,17] have
explored the potential application of 3-neighborhood non-uniform CAs, referred to as generalized multiple
attractor CAs (GMACASs), as an efficient pattern recognizer. In [17], the error correcting capability of the
GMACASs at single bit noise has been reported considering the attractor cycle of the GMACAs with single
or multiple nodes. Also, the simulated annealing program has been used to synthesize the desired GMACA
based associative memory [17]. However, these preliminary works have not addressed the following aspects:

(i) exponential growth of the search space of the desired CAs;
(i1} theoretical analysis of the basins of attraction of the GMACAs; and
(iii) theoretical analysis of the desired GMACA rule space.

One of the major impediments of the CA hased computing model stems from the difficulty of utilizing its
complex behavior to perform useful computations. The search for appropriate CAs displaying a specific
behavior or performing a particular computation is a challenging task. This problem has severely restricted
CA applications for real life problems. Automated search for the desired CAs performing a specific task would
greatly enhance the viability of CA applications. Thus, one of the major challenges in the CA research is to
develop a synthesis methodology to find out acceptable solution that will enable researchers to explore new
application areas. The genetic algorithm (GA) [11,12] provides a useful framework to arrive at the desired
CA rule structures appropriate to model a physical system. The GA has been successfully applied to search
for the desired CAs performing a specific task such as density classification [4,6,18.26], sequence generation
[28], cryptography [31], modeling recrystallization process [7,23), pattern recognition [9,10], and so on.

In this paper, we develop the GMACA based associative memory model around single cycle attractor. An
efficient formulation of the GA is coupled with a reverse engineering technique to synthesize the desired
GMACA configurations. The basins of attraction of the GMACAs, that is, the error correcting capability
at multiple bit noise, is also analyzed. Theoretical formulation of the GMACA rule space establishes the fact
that the CAs with more heterogeneous rules are capable of executing complex computation like pattern
recognition.

The structure of the rest of this paper is as follows. Section 2 briefly introduces necessary notions of CA,
GMACA, and GMACA based associative memory model. In Section 3, a reverse engineering technique is
reported for synthesis of the desired GMACAs. A GA based evolutionary synthesis scheme is next presented
in Section 4 employing the proposed reverse engineering technique. Section 5 reporis the theoretical analysis
of the basins of attraction of the GMACA based associative memory and the associated rule space, while a few
case studies and a comparison with [9.10] are presented in Section 6. Finally, concluding remarks are given in
Section 7.

2. Cellular automata

A cellular automaton (CA) [33] consists of a number of cells organized in the form of a lattice. It evolves in
discrete space and time. The next state of a cell depends on its own state and the states of its neighboring cells.
In a 2-state 3-neighborhood CA, there can be a total of 2* |, that is, 256 distinct next state functions. If the next
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state function of a cell is expressed in the form of a truth table, then the decimal equivalent of the output is
conventionally called the rule number for the cell [33] Out of 256 rules, two rules 120 and 232 are illustrated
below:

MNeighborhood : 111 110 101 1000 011 010 001 000 Rule
(1) Next State: 0 1 l 1 1 0 0 0 120
(ii) Next State : 1 1 l 0 1 0 0 0 232

The first row lists the possible 27, that is, & combinations of the present states (left, self, and right) for a 3-
neighborhood CA cell at time ¢. The next two rows list the next states for the ith cell at time instant (¢ + 1) for
two different rules. An n-cell CA is configured with the rule vector 5 = {9, . ... #;, ..., 3#,), where the ith cell
is configured with the rule #;, each #; being one of the possible 256 rules. The complete set of rules is referred
to as the CA rule space. A few fundamental terminologies are introduced next that are referred to different
sections of this paper:

— If all the CA cells obey the same rule, then the CA is said to be a uniform CA; otherwise it is a non-uniform
{hybrid) CA.

— A CA is said to be a null boundary CA, if the left (right) neighbor of the leftmost (rightmost) cell is con-
nected to logic (-state.

— A CA is said to be a periodic boundary CA, if the left (right) neighbor of the leftmost (rightmaost) cell is the
rightmost (leftmost) cell.

In this paper, we use null boundary, non-uniform {(hybrid) CA based associative memory for pattern
recognition.

2.1, Generalized multiple attractor CA

A GMACA is a non-uniform (hybrid) CA (different rules applied to different cells) and can efficiently model
an associative memory [9.10,17] to perform pattern recognition task. Fig. 1 illustrates the state space of a 4-cell
GMACA with the rule vector (202,168,218, 42), that is, the rule 202 is applied on leftmost cell, followed by the
rule 168 on next one, and so on. The state space of this CA is divided into two attractor basins, basin-1 and
basin-2, built around attractor-1 and attractor-2. A GMACA has attractors of cycle length greater than or
equal to 1. For the GMACA of Fig. 1, the attractor-1 and attractor-2 have cycle length 1 and 2, respectively.
The states in a basin not covered by the attractor cycles are referred to as transient states in the sense that a CA
finally settles down in one of its attractor cycles after passing through such transient states.

rule vector : <202, 168, 215, 42

Fig. 1. State space of a GMACA divided into 2-attractor basins.
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2.2 GMACA modeling an associative memory

A GMACA having its state space distributed into disjoint basins (Fig. 1) with transient and attractor states,
models an associative memory [9,10,17]. The patterns to be learnt, are modeled as pivotal points/stable states.
The entire state space built around the given set of pivotal points is the state space generated by a GMACA
with its attractors and transient states. Memorizing the set of pivotal points # = {#,,... . 2#,,... . # ] s
equivalent to design of a GMACA with the pivotal points as the states in different attractor cycles. Any tran-
sient point #,, with limited distance from a pivotal point #,, can be considered as a pattern with some noise.
The correct output #, can be produced in time proportionate to the traversal of the GMACA from the state
.. In the present work we assume hamming distance (HD) as the similarity metric. A GMACA satisfying the
following two relations models an associative memory storing the set 2 = {20, . . &, . | #F 1

— R1: Each attractor basin of the GMACASs should contain one and only one pattern 22, to be learnt in its
attractor cycle; the corresponding basin is referred to as the #,-basin. )
— R2: The HD of each state 5, £ 22 -basin with 3, is lesser than the HD of 2¢, with any other s, that is,

HD(#,,#,) < HD(#,,#,), #, € #and P, # P,. (1)

While the relation R1 ensures uniqueness of the stored patterns in an attractor cycle, the relation R2 ensures
recognition of patterns with distortion due to noise.

Example 1. The example GMACA of Fig. 1 is used to illustrate the above two relations. To recognize two
patterns 2| = (000 and #; = 1111 of length 4, we first synthesize a CA rule vector # = {9, 9., #5, ) for
which the state transition behavior of the GMACA is similar to that of Fig. 1, that maintains both R1 and R2.
It learns two patterns, 2 = 0000 and 3 = 1111. The state 4 — (0001 has the HD 1 and 3 with 2 and P,
respectively. Let 5 be given as the input and its closest match is to be identified with one of the learnt patterns.
The recognizer designed with the GMACA of Fig. 1 is loaded with # = 0001. The GMACA returns the
desired pattern 2#) after two time steps.

2.3, Existing method o synthesize GMACAs

In [9.107, a GA based searching scheme has been employed to evolve the GMACAS tuned for a set of pat-
terns to be recognized. The search is made to arrive at a rule vector of the GMACA that satisfies both the
relations R1 and R2. All possible combinations of the non-uniform {hybrid) CA rules (256") are the candidates
for initial population. Since the search space is exponentially large, the GA has been employed and appropri-
ately tuned to arrive at the desired GMACAs.

The GA starts with an initial population of 50 chromosomes, each chromosome being a CA rule vector
[9.10]. So, the kength of each chromosome is n, n being the number of CA cells. Each cell of the CA can be
configured with any one of the 256 rules. Fig. 2 represents an example of a chromosome format for the
GA formulation employed in [9,10] with 3#; as the CA rule applied on the ith cell. The initial population of
the GA has been generated based on the CA rule configuration [10]. The fitness of a particular chromosome
in a population is determined by the HD between the attractor #,, evolved for a state from the run (gener-
ation), and the desired attractor ##,. The chromosome is run with 300 randomly chosen initial configurations
and the fitness of the CA is determined by averaging the fitness for each individual initial configuration. Each
chromosome evolves over several generations under selection, crossover (single point), and mutation (single

&0 | 100 | 175 | 90 | 232 | 212] 192

R, | R, R, | R

a | Hs Ry &

Fig. 2. An example chromosome [ormat where ), represents the CA rule applied on the ith cell.



P Maji, P. Pal Chawdhuri! Information Sciences 178 { X008 ) 23152336 Ly L]

point). The selection is done by the elitist model proposed by De Jong [3] to preserve the best chromosome. If
the best chromosome of the current generation is not present in the next generation, it is included as the new
member of the next generation. In effect, the overall performance is improved significantly.

3. Synthesis of GMACAS using reverse engineering technigque

The synthesis algorithm of the GMACASs can be viewed as the training phase of the CA based pattern rec-
ognizer to recognize a given pattern set. The synthesis of the GMACAs is presented using a reverse engineer-
ing technique supported with the GA evolution.

3.1 Reverse engineering fechnigue

The algorithm accepts the pattern set 2 = {#;,...,2,,..., % to be learnt as the input, each #, (x =1,
2 ..., k) being an n-bit pattern. The output is the GMACA rule vector # = {#,, ... 3, ... #,) specifying
the rule number applied for each of the cells. The following three phases illustrate the synthesis scheme.

Phase 1. The state transition diagram of a GMACA can be conceived as a graph consisting of multiple sub-
eraphs (Fig. 1). Each node of a sub-graph is represented as a state of n-bit string. The direction of edges
connecting the nodes flow inward from the transient states to the attractor, and then clockwise around the
attractor cycle. So, an attractor basin can be portrayed as a sub-graph.

In Phase I, we randomly generate k (1 < k& < 2") number of sub-graphs, each representing an attractor basin
of the candidate GMACA to be synthesized. The cycle length of each sub-graph is considered as 1. That is, we
consider single cycle { point) attractor, where the space—time pattern has completely stabilized. Analogous to a
GMACA basin (marked asthe # -hasin) a sub-graph g _has a unique pattern 2, in itscyclic node, while the noisy
patterns of 4, are considered as the transient states of the # -basin. The number of nodes p ofeach sub-graph is
equal to the number of states in the atiractor basin, that is, the patterns without or with specified noise. So

=3 (0): @)

where r 5 the number of noisy bits and r, (0 £ rae £ n) is the maximum permissible noise, that is, a noisy
patiern say . (where HD {.?,,.yxj = Fuws | Should be correctly recognized as #, by the GMACA based mod-
el. In other words, #, must be a transient state of the #,-basin. As we consider single cycle attractor, the total
number of possible distinct sub-graphs & with p number of nodes is given by [16]

o= (71), ()

hi=1

where h is the height of the sub-graph and f.. (1 € hu < p—1) is the maximum permissible height.
After mapping a pattern #°, (#, £ #) to the cyclic node of a sub-graph g,, we randomly map noisy patterns
of #, (transient states of the #° -basin) to different nodes of the same sub-graph. Note that the #° -basin covers
the transient states with permissible noise of r bits (v = 0 to r,,,, ) added to #__1f a noisy pattern is equally apart
from more than one patterns to be learnt, then the desired attractor basin of the noisy pattern should be selected
randomly. The following example illustrates the underlying principle of Phase 1 of the synthesis scheme.

Example 2. Consider two pattern to be lkearnt # = 0000 and #°; = 1111 of length 4. Thatis,n =4 and & = 2.
If we set the maximum permissible noise ry,, = 1, then the number of nodes p of each sub-graph will be 5 and
the height /i of each sub-graph may vary from 1 to 4. Hence, the total possible distinct sub-graphs ¢ ~ 8. Each
attractor basin of the GMACA, which can be considered as a sub-graph, may be any one of the eight possible
sub-graphs. Out of eight possible sub-graphs, two sub-graphs with heights | and 2 are presented in Fig. 3(a) as
an example. The patterns to be learnt 1 and #*; are mapped to the cyclic nodes of two sub-graphs considering
them as the attractors of two attractor basins. The noisy patterns corresponding to 9 and 25, 0001, 0010,
0100, 1000 and 1110, 1101, 1011, 0111, respectively, are considered as the transient states of the #| and #»-
basins. These are mapped to two attractor basins as shown in Fig. 3(a).
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Fig. 3. Randomly penerated graph with siate transition table and rules for 4-bit patterns.

Phase Il. From the & sub-graphs (state transition graph) generated in Phase 1, a state transition table is
derived. Fig. 3(b) represents a state transition table which is derived from the two sub-graphs of Fig. 3{a).
If the number of nodes of a sub-graph is p, then the total number of entries in the state transition table is
(k- p). For example, as in case of Fig. 3(a), the number of attractors & = 2 and the number of states in each
attractor basin p = 5, the total number entries in the state transition table of Fig. 3(b) is 10.

Phase IIl. Generate the rule vector # = {#,, ... #;, ..., 3, of the GMACA cells from the state transition
table. Consider the ith cell whose rule #; is to be identified. As we consider 3-neighborhood dependency,
to identify the rule #;, we concentrate only on 3 columns, (i — 1jth, ih and (¢ + 1)th of all the (k- p) entries
of the state transition table. Suppose, for a present state configuration of the ith cell, the next state is 0 for ny
times and 1 for ny times, then state 0 and 1 collides with each other to become the next state of the ith cell for
that configuration.

Example 3. Fig. 3{c) represents the neighborhood configurations along with the next state of second and third
cells of the patterns (states) of two attractor basins. For the third cell, there is no collision between state 0 and
1 for any 2° configurations; whereas for 111 configuration, the next state of the second cell is 0 in one case and
| in the next case, that is, ny = 1 and n; = 1. So, for 111 configuration, the next state may be () or | generating
an instance of collision.

3.2, Resolution of collision

In order to resolve the conflict, the following heuristics is introduced. If ny =~ n,, the collision between state
0 and 1 is high. In that case, we randomly decide the next state of a cell. If ny = n; or ny < 5y, the collision
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between them is minimum. In that case, the next state of a cell is 0 if ny > n;, and 1 otherwise. The algorithm
for synthesis of the GMACASs through the reverse engineering technique follows next.

Algorithm 1

GMACA_Synthesis
— Input: Pattern size (n), pattern set 2 = {3, ..., R
— Output: Value of ny and n; for the ith cell (i =1,2,... n), rule vector # = {#, ... @&, ..., %)
(i) Generate a directed single cycle sub-graph g_with p number of nodes (Eq. (2)).
(ii) Map a pattern #, (attractor) to the cyclic node of g,.
{iii) Also, map noisy patterns . (transients) of 2, to the other nodes of g,.
(iv) Repeat Step (i) to (iii) for & number of attractors.
(v) Generate state transition table from all the sub-graphs.
(vi) Calculate ny and n, for each ith (i = 1,2,. ..,n) cell.
(vii) Generate rule vector # = {3, ... 4, .. 3, while resolving collision instances.
(viii) Stop.

The resolution of collision gives a measure of the efficiency of the reverse engineering technique. The effi-
ciency can be enhanced through appropriate mapping of noisy patterns to the graph. All possible combina-
tions of the sub-graphs for & number of patterns to be learnt {*) are the candidate solutions. As the
search space is exponentially large, we fall back on the evolutionary algorithm of the GA [11,12] to address
this problem. The GA is employed to evolve the appropriate mapping function.

4. Genetic algorithm for GMACA evolution

Genetic algorithm (GA) [11.12] is a stochastic search and optimization technique designed as per the
mechanics of natural selection and genetics. In order to apply a GA effectively, two types of decisions must
be made. The first is the choice of representation — solutions to the problem must be represented as strings
and genetic search operators (e.g. crossover, mutation, selection) must be chosen appropriately. The solutions
of the search space, encoded in string like structures, are referred to as chromosomes. The chromosomes
undergo evolution for a number of generations. The reproductive plan essentially consists of tuning the three
genetic operators for a specific application domain. In order to employ this evolution methodology for the
GMACASs synthesis, the essential prerequisite is to encode the solution (GMACAS) in a higher level of rep-
resentation, defined by a series of sub-graphs, each one representing a gene in the chromosome. The encoding
scheme is illusirated next.

4.1, Encoding scheme

Let the input be & number of n-bit patterns to be learnt # = {#, ..., #,.....#}. The output, as formu-
lated earlier, is an n-cell GMACA with & number of attractor basins. In a population, a chromosome consists
of k number of genes, each gene is a single cycle sub-graph with p number of nodes, where p is given by Eq. (2).
That is, the number of nodes of each sub-graph is a function of # (number of CA cells). Hence, in the current
GA formulation the chromosome depends on both the parameters n and &, while the chromosome for the GA
employed in [9,10] depends only on » and is independent of the value of k.

Fig. 4 illustrates the encoding scheme. Each gene g, of the chromosome represents a basin of a pattern #, to
be learnt and consequently mapped to an atiractor. Therefore, each gene g, besides keeping the information of
the attractor 22, also stores that of other noisy patierns (transient states) to be covered by the # -basin at

Fig. 4. An example of a chromosome, each g, represents a basin {sub-graph) of an attractor #,
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different nodes of the same sub-graph. The fitness of any graph is evaluated with the help of the following
fitness function employed for the GA evolution.

4.2, Fitness function and selection

The fitness of any GMACA rule vector synthesized through Phase [ 11111 is evaluated through the fitness
function F as defined below:

1 L
F=;Z

i=1

{ﬂ:u - th‘ ;
e L 4
{na + n1i)| 4

where n represents the number of CA cells, ny; and ny; are the occurrence of state (0 and | for a particular con-
figuration of the ith cell, respectively. If ny =~ ny; Vi, the value of Fis close to zero; whereas if ny 3 ny; or
ny; <& ny; Wi, the value of F becomes 1 and we get GMACA configurations with high degree of precision.

Selection is done by the standard ranking approach, which is a proportionate method like roulette wheel.
The probabilities are calculated on the basis of ranking of the individuals in terms of the fitness function,
instead of the fitness function itself. Elitism is incorporated in the selection process to prevent oscillation of
the fitness function with generation. The fitness of the best individual of a new generation is compared with
that of the current generation. If the later has a higher value the corresponding individual replaces a randomly
selected individual in the new population.

4.3, Crossover

The crossover implemented is the conventional single point technique normally used in evolutionary algo-
rithms, as Fig. 5 illustrates. The algorithm takes two chromosomes from the present population {PP) and
forms the resultant chromosomes, by setting a crossover point randomly. The sequence of sub-graphs from
beginning of chromosome to the crossover point is copied from one parent while the rest is copied from
the second parent resulting in two offsprings (new chromosomes) for the next population {NP).

4.4, Mutation

The mutation algorithm emulates the normal mutation scheme. It makes some minimal change in the exist-
ing chromosome of the PP o form a new chromosome for the NP. Similar to conventional single point muta-
tion, the chromosome in the current GA formulation is mutated at a single point. In this case, one sub-graph
of a chromosome is randomly selected and replaced by a new sub-graph producing a new chromosome as a

. |
; 4 5 ] J : tl
By | B | &5 | By | & £, L g, paren
By | 85| B3| BY| 85 g B F parent2
» " » » y i o Frapring |
£ By | 85| By | B4 8 g g offspring
8 |82 |85 |8 | &5 £4 Eq £5 | offspring2

Fig. 5. Hlustration of the crossover operator,
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Fig. 6. Example of the mutation operator.
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solution. The new sub-graph consists of same number of nodes, as that of original sub-graph, with different
edges. Fig. 6 represents an example of mutation on a randomly selected sub-graph (g.) of a chromosome along
with the new sub-graph (g<).

In the proposed method, the GA parameters used are as follows:

Maximum generation: 1000; Population size: 50;
Chromosome length: k, where & is the number of patterns to be learnt;
Mumber of elite chromosomes: 5; Probability of crossover: (1.8; Probability of mutation: (LO01.

The parameters are held constant across all runs. Unbiased initial population is generated randomly

spreading over entire variable space in consideration. The complete algorithm for evolving GMACASs through
the GA follows next.

Algorithm 2

Evolving_ GMACA

— Input: Pattern size (n), pattern set 2 = {#,...,#,, ..., %}, Maximum Generation (G ).
— Qutpui: GMACA rule vector 3 = {#, ... @&, ..., #,).

(i) Generate 50 new chromosomes for initial population (IP).

(i) Initialize generation counter GC = (; PP — [P,

(ifi) Calculate ny, and n, foreachcelli (i=1,2,... n) according to Algorithm 1 and penerate rule vector.

(iv) Compute fitness value F according to Eq. (4).

{v) Repeat Steps (iii) and (iv) for each chromosome of PP.

(vi) Rank chromosomes in order of fitness.

{vii) Store rule and corresponding generation number for which the value of £ =1.
(viii) If ¥ =1 for at least one chromosome, then go to Step (xiv).

(ix) Increment generation counter {GC).

(x) If GC > Gy, then go to Step (xiii).

(xi) Form NP by selection, crossover, and mutation.

(xii) PP — NP; Go to Step (iii).
{xiii) Store rule and corresponding generation number for which F is maximum.
(xiv) Stop.

4.5, Convergence rate

The time required to arrive at the desired n-cell GMACAs with k-attractor basins increases with the values
of the maximum permissible noise v, and the maximum permissible height of each sub-graph h,.,.. While the
number of nodes in a sub-graph increases with the value of #,.,, the number of possible sub-graphs increases
with fi,,.. S0, the search space for the GMACA evolution goes up. The objective here is to identify the opti-
mum values of r,., and h,., while reducing this search space.
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4 5.1 Minimum value of maximum permissible noise

The parameter r., specifies the permissible noise level at training (synthesis) phase of the GMACAs. To
identify the minimum value of r,.., extensive experiments are performed to evolve patiern recognizable n-cell
GMACAs for different values of n. For each n, 15 different sets of patterns to be trained are selected randomly.
The value of k (number of patterns to be learnt) is set in the range of 4-10 for different values of n. Fig. 7{a){f)
demonstrates the percentage of convergence (recognition) for different noise levels. The percentage of conver-
gence (recognition) at a particular noise level r is defined as the ratio of the number of noisy patterns correctly
recognized and the total number of noisy patterns with noise level r.

Fig. 7 represents the percentage of recognition for different noise levels (#,.) of 1-5 allowed in training
{synthesis) phase. The experimental results of Fig. 7(a)—(f) lead to the fact that the GMACAs synthesized with
single bit noisy patterns result better convergence at recognition phase irrespective of the noise level r. In the
training phase, if we consider patterns with only one bit noise, then the total number of patterns in the state
transition table is £(1 + n). In this case the collision of state 0 and 1, as explained in Section 3.2, will be lesser.
This leads to higher probability of generation of best fit GMACAs. On the other hand, if we consider noise in
more than one bits, then the total number entries in the state transition table is higher. This leads to more
collisions. As a result, the evolutionary algorithm of GA fails to arrive at the GMACAs with desired patiern
recognition capability. So, the minimum value of r,,, is set to 1 at the synthesis (training) phase for which the
GMACA based associative memory displays better performance. So, Eq. (2) of Section 3.1 reduces to

pti (9

where n represents the number of bits in the patterns to be learnt and p denotes the number of nodes in each
sub-graph generated in Phase | of Section 3.1.

4.53.2 Minimum value of maximum permissible height
The parameter h,,, specifies the maximum permissible height of each sub-graph at synthesis (training)
phase of the GMACAs. To find out the minimum value of f,.,,, we plot the distribution of single bit noisy

(¥ = 1) patterns as a function of height & for different values of n and & as the minimum value of ., 5 con-
cluded to be 1 at the synthesis phase.
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Fig. 8 represents the probahility of occurrence of single bit noisy (v = 1) patterns as a function of transient
lengih of the single bit noisy patterns, that is, height of the synthesized graph. The results are reported on a set
of values of & for a fixed value of n, a set of values of n for a fixed value of &, and a set of n—& pairs. For each
case, the result is calculated based on 135 independent runs. From Fig. 8 it is seen that for a fixed value of n, as
the value of k increases the probahility of occurrence of single hit noisy patterns decreases at height # = 1| and
increases at A = 2. On the other hand, for a fixed value of &, the probability of occurrence increases at i = |
and decreases at # = 2 with the increase in n. Also, as the height of the graph (transient length of the noisy
patterns corrupied with single bit noise) increases, the probability of occurrence of single bit noisy patterns
decreases for a particular value of n and &. The probability of occurrence becomes zero as the height of the
graph becomes 3. So. the minimum value of A, = 2, at synthesis phase, for which GMACA behaves as
an efficient pattern recognizer. Hence, Eq. (3) of Section 3.1 reduces to

Gel4(p-2)=p-—1, (6]
where p is the number of nodes in each sub-graph and & denotes the total possible sub-graphs with A, = 2.

4.6, Reduction of search space

This subsection analytically establishes that the proposed GMACA synthesis scheme (Algorithm 2) reduces
the search space of the method reported in [9,10] while memorizing a set of n-bit patterns 2 with cardinality k.
Ina 2-state 3-neighborhood CA, all possible CA rules is 256. Hence, for an n-cell non-uniform CA, to mem-
orize a set of n-bit patterns # = {#,,...,#,..... %}, the total possible search space (55¢) is

S8 = 256" =2, (1)
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The following theorem formalizes the fact that the search space explored by Algorithm 2 { Evolving GM AC-
A) is insignificant compared to computation of 85; (Eq. (7))

Theorem 1. The search space exploved by Algovithm 2 for the GMACA synthesis scheme is insignificant
compared to exhaustive search over the CA rule space.

Proof. To memorize the pattern set #, we synthesize & number of directed sub-graphs. The number of nodes p
in each sub-graph is given by Eq. (2), while Eq. (3) represents the total possible sub-graphs G with p number of
nodes. According to Sections 4.5.1 and 4.5.2, the GMACAs behave as efficient pattern recognizer if we con-
sider p= ({1 +n) and &G = {(p— 1) in the synthesis (training) phase. Hence, as per the GA evolution {Algo-
rithm 2), the total search space to memorize the n-bit pattern set # with cardinality & is given by

88 = Gt = . (8)

In general, the GMACASs perform well when the number of patterns to be learnt k is equal to 20% of the num-
ber of bits n, that is, & = 0.2n [9,10] Hence, according to Eqgs. (7) and (8), the value of 55; is being insignificant
compared to 85¢ even for large value of n. Hence, the result follows. O

To compare the search space explored by the method reported in [9,10] and Algorithm 2, the term search
space ratio (SS5R) is introduced next.

Definition 1. The search space ratio (S5R) is defined as the ratio of the search space explored by the algorithm
proposed in [9,10] and that of Algorithm 2. That is

= SSP . Hi
788y 256"

where #n is the number of bits in a pattern and & is the number of patterns learnt (stored).

SSR (9)

The value of S5R is significantly lesser than 1 for a particular value of n and k. Forn = 10 and & = 4, the
value of S5R is 827 x 107", Also, as the value of n and k increases, the value of SSR decreases with a very
high gradient.

5. Analysis of basins of atiraction and GMACA rule space

This section provides the characterization of the attractor basins of the desired GMACAs displaying pat-
tern recognition capability and the evolved GMACA rule space. Such characterization is based on the error
correcting capability or the basins of attraction of the evolved GMACAs.

31 Error correcting capability of GMACAs

In the state space of the GMACA based associative memory, each of the patterns learnt (stored) act as an
attractor. A set of GMACA states form the basins of attraction of an attractor. Each state in the basin con-
verges to its attractor. The radius of the basins of attraction is defined as the largest HD within which all pat-
terns converge to the attractor. This gives a measure of the pattern recognition capabhility for a given
associative memory. The theoretical analysis of the basins of attraction proceeds under the following
assumptions:

(i) The attractor cycles of the GMACAs are of length 1, that is, we consider only point attractor.
(ii) The GMACAs are designed to recognize noisy patterns within single time step. We have made this
assumption for simplification of the theoretical analysis.

According to the above assumptions, if a GMACA is designed to recognize & number of n-bit patterns
P={P,...,.F @} oeach 2, (x=1,2,... k) must be the single cycle attractor of different attractor

basins and a noisy pattern 5, should be correctly recognized as #, in single time step. The GMACA is built
around 3-neighborhood CA. The single bit noise at the ith position of a noisy pattern 2, derived out of error



P Maji, P. Pal Chawdhuri! Information Sciences 178 { X008 ) 23152336 2327

free pattern #, (where HD(#,, .559*.] = 1) affects only another two positions, ({ — 1)th and (i + 1)jth of #_in
single time step. Hence, to ensure the error correcting capability of the ith cell, its rule should be so designed
that the ith cell recovers the correct bit irrespective of the noise on the (i — 1)th, ith, or (i + 1)th bit positions.
That is, the total number of noisy patterns with single bit noise to be recovered by the rule of the ith cell is 3&.

Definition 2. The error correcting capability of the ith cell is defined as the ratio of the number of noisy
patterns N (0 < N < 3k) with single bit noise correctly recognized and the total number of noisy patterns with
single bit noise. So, the error correcting capability of the ith cell is given by
N
ECC = % {107
In order to analyze the error correcting capability of the GMACAs, we first calculate it for single bit noise,
that is, for ]]D{.aﬂ.,:ﬁ;ﬂ.j = 1. The error correcting capability for multiple bit noise can be derived from the
analysis of single bit noise. The following theorem establishes this fact.

Theorem 2. The errvor correcting capability of the GMACAs af multiple bit noive occwrving at a minimum of 2-hit
distance can be derived from that of single bit noise.

Proof. Aswe consider only 3-neighborhood dependency, the noise at the ith bit of the noisy pattern #, cannot
affect the noise of the (i + .é’]lth bit of #,, where d is an integer and d = 2. That s, if the multiple bit noise are
separated from each other by two or more than two bits, the GMACA based associative memory can recover
all these noise at single time step. Each consecutive 3-bits (i — 1,7,/ + 1) recover single bit noise in single time
step. In effect, muliiple bit noise are recovered in single time step. So, the error correcting capability of the
GMACAs at multiple bit noise can be derived from that of single bit noise. O

311 Ervor correcting capability with single bit noise
Let the number of distinet 3-neighborhood configurations of the ith cell is m for & number of attractors
(patterns to be learnt) 2 = {2*,.... 2, ..., #]. Then, m must satisfy the relation

1 <mg2. (11)

Let P{m) denotes the probability of occurrence of m number of distinct configurations at the ith cell of all
attractors # = {#,,...,2,,..., %} and E(m) denotes the error correcting capability of the ith cell with m
number of distinct neighborhood configurations. Then, the error correcting capability of &-attractor basins
GMACA to recover single bit noise (r = 1) in single time step is given by
(-2 <&

> P(m)E(m), (12)

1 -2

BCC(k, 1) = o o S
where y = min(k, 2" ). The detailed explanation and computation of ECC(k, 1) of the GMACAs are reported
in [17]. Fig. 9 represents the error correcting capability of k-attractor basins GMACA at single bit noise, that
is ECC{k, 1) (Eq. (12)). It depicts that as the value of & (number of attractors) increases, the error correcting
capahility of the GMACAs decreases. Ultimately, it saturates to 67% for &k = 8.

However, as per Theorem 2 if the multiple bit noise are separated by two or more hits distance, the GMAC-
A based associative memory can accommaodate all these noisy bits in single time step. If a noisy pattern cor-
rupted with multiple bit noise satisfies above condition of separation by two or more hit distance, the
GMACASs can recognize it correctly. Let the total number of n-hit patterns with r bit noise is Nin,r) where
each and every two noisy bits are separated by d-bit {.é’ =z 2) distance. The error correcting capability of n-
bit GMACAs with k-attractor basins at multiple bit noise is then given by

Nin, ¥

ECC(n.k.r) = =

ECC(k, 1) and "C, = (':) (13)

where r is the number of noisy bits. The detailed explanation and computation of ECC(n, k,r) of the GMA-
CAs are reported next.
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312 Error correcting capability with multiple bit noise

This subsection reports the error correcting capability of the GMACA based associative memory to accoms-
modate multiple bit noise, which gives the measure of the basins of attraction. While the first theorem gives the
number of pattern satisfy the desired condition of Theorem 2, the next theorem establishes the error correcting
capability at multiple bit noise or the basins of attraction of the GMACAs.

Theorem 3. The total number of n-hit paiterns with r-hit noise, that can be accommodated by the GMACA based
associative memory in single time step, is given by

v = () + S ()2 ()G

=0

Proof. According to Theorem 2, if the multiple bit noise are separated by two or more than two bit distance,
the GMACA based associative memory can accommodate all these noisy bits in single time step. So, if a noisy
pattern corrupted with multiple bit noise satisfies above condition, the GMACAS can recognize it correctly.
Mow

N{n,13|=n=(1): N{n,zj=”{”—;13'—r;zn—3j=(;) (::i) (::;)
v = (3)-2{(22) + G-} H{(23) (20 - (9}

Hence, N{n,r) = ( ) 2—1 ( );C)(::;:i)

Thus, the value of N(n,r) represents the total number of n-bit patterns with r bit noise where each and every
two noisy bits are separated by d-bit (d = 2) distance. Hence, the result follows. [

Theorem 4. The ervor correcting capability or the basing of attraction of n=-bit GMACAs with k-attractor hasins
is given by
Nin,r)

ECC(n,k,r) = =2

ECClk, 1) and "C, = (n ) . (15
¥
where v is the number of noisy bits.

Proof. The total number of »-bit patterns with r-bit noise is given by "C,. So, according to Eq. (12) and The-
orem 3, the error correcting capability or the basins of attraction of the GMACAs is given by
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L
L

ECC(n,k,7) = YU ") ECC(k, 1) and *C, = (” ) _
r I

Hence, the proof follows. O

Figs. 10 and 11 represent the basins of attraction in terms of the error correcting capability of the GMA-
CAs recognizing & number of n-bit patterns. The graphs plot the error correcting capahility ECCin, k, 7
denoted by Eq. (13) in the y-axis, while the number of noisy bits r is plotted on the x-axis. From Figs. 10
and 11, it is seen that, for a fixed value of n (number of bits in a pattern) and & (number of attractors), as
the value of r (noisy bits) is increased, the error correcting capability of the GMACAs monotonically
decreases. For a fixed values of n and r, the function ECC{n. £, r), as shown in Fig. 10, decreases as the num-
ber of attractors (k) increases. Fig. 11 shows that as the number of bits (x) increases, the error correcting capa-
bility of the GMACASs also increases for a fived value of &.

3.2 CA rule analysis

The analysis of the error correcting capability or the basins of attraction of the GMACAS (as detailed in
Section 5.1) shows that the CA rules that are effective to design the GMACA based associative memory for

Error Comecting Capability (% )

Neise(r)

Fig. 10, Error correcting capability of the GMACAs at multiple bit noise for n = 50

Errer Cormrecting Capability [ % )
DS e e i os

Noise(r)

Fig. 11, Errorcorrecting capability of the GMACAs at multiple bit noise for £ = 0.
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pattern recognition must satisfy the following conditions. If out of the total eight possible neighborhood con-
figurations of a CA rule, for two configurations ¢ and Cs, the present state of the ith cell is 1, then

(i) HD(C,,C) = 1;
(i) the next state for both C; and > must be 1; and
(iii) the next state for ¢} and > must be 0, where HD(C\, ;) = 3 and HD{C,, () = 3.

So, the GMACA rules that are effective for pattern recognition must contain 7 number of ones as the next
state, where 2 < ¥ < 6 (except Rule 0 and Rule 255). If ¥ (F) denotes the number of rules with ¥ number of ones
as the next state which satisfy the above conditions, then

- 5{(0) =L () EC ()

Hence, the probability P; of a CA rule (with 7 number of 1's as the next state) to be effective to design the
GMACA based associative memory for pattern recognition is given by

Prmill ety (E) (17)
r r
and T'(F) represents the total number of rules with ¥ number of 1's.

As the value of 7 (number of ones in a rule) is increased from 1 to 4, the value of P increases, while 7 is
shifted from 4 to 7, the value of P; decreases. So, the value of £; attains its maximum value at 7 = 4.
Fig. 12 represents the probability of being an effective CA rule with 7 number of ones as a next state with
respect to F (number of ones in a rule). To analyze the GMACA rules in terms of number of ones and zeros
as the next state, we introduce the term homogeneity (/) of the CA rule, which is defined next.

Definition 3. If 7 is the number of ones of a CA rule, the rule must contain (8 — 7) number of zeros as the next
state. Then, the homogeneity ff of that rule is given by

r
1 ——|.

4
According to Eq. (18), if the value of 7 of a rule is either 0 or 8, the value of / of that rule is 1 (maximum);

whereas if # = 4, the value of H of the corresponding rule is 0 {minimum). Thus, if most of the neighborhood
configurations of a CA rule map to same next state, either () or 1, the rule becomes more homogeneous.

H= (18]

Theorem 5. The probability of a CA rule to be effective for patiern recognition decreases with the increase in its
homaogeneity value.

3 4

0,25 4

- I I I I I
a d
1 2 2 4 § ] ¥

Number of 15 in a rule

=
ks

Probability
=
@

=
=

Fig. 12, Probability of being an effective CA rule for patiern recognition with respect to number of ones,
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Proof. Asper Egs. (17) and (18), as the value of r is increased from 1 to 4, the probability P; of being an effec-
tive CA rule (with 7 number of ones) increases, while its homogeneity /f decreases. When the value of 7 is
shifted from 4 to 7, the value of P; decreases, whilke the value of H of the CA ruk increases. So, the value
of P; of a CA rule decreases with the increase in its homogeneity . O

Fig. 13 represents the probability P of the CA rules with respect to their homogeneity . It depicts that as
the homogeneity increases, the value of P; of a CA rule decreases. That is, the CA rules having close to an
equal number of (s and 1's as the next state tend to be much better pattern recognizers than the CA rules
having a relatively high degree of homogeneity. In CA with more homogeneous rules, the states of too many
cells freeze early in the dynamics. The tendency of freezing increases as the rule becomes more and more
homogeneous. Hence, the CAs formed with such rules don't acquire the capacity to accommodate noise.

6. Performance analysis

In this section, extensive experiments are performed based on randomly generated pattern set for different
values of n (number of bits in a pattern) and & (number of patterns to be learnt) to analyze the performance of
the GMACA based associative memory model. The detailed experimental results reported next validate the
analytical framework of the CA based associative memory discussed in Section 5 as well as the GA framework
that is set to arrive at the desired GMACAs with feasible computation. Also, the quality of the desired solu-
tion can be gauged from the basins of attraction of the evolved GMACAs, evolution time to synthesize the
desired GMACASs, recognition complexity, and the distribution of the CA rules.

6.1, Basing of attraction

To measure the size and shape of the basins of attraction of the evolved GMACAs, a process is chosen
similar to that used in [8], which is outlined next:

(i} Choose a stable state or attractor 2, (x =1,2,... k).
{ii) Choose some initial noise value r = #y.
(iil) Let the set 4 be all states of HD r from the attractor 2,.
{iv) Sample 100 states from 4.
{v) Calculate how many of these states are attracted to the attractor 4. Denote this number ¢, (r).
{vi) Increment the noise value r by a suitable amount and repeat from (iii).
(vii) Repeat for each stored pattern x, where x = 1,2,... k.
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The value of ¢,(r) gives an estimate for the percentage of patterns or states distance r from the attractor 22,
which are attracted to the fixed point #°,. It also gives a measure of the skew of the basins of attraction. Fig. 14
represents the performance of recognition or convergence at different noise values per bit. All these figures
show the percentage of convergence as a function of noise with respect to stored patterns (&) and the number
of bits of input patterns (n). Computation shown is for a fixed HD between patterns stored. It is seen that the
convergence rate drops almost linearly with the amount of noise in stored pattern. In first two graphs of
Fig. 14, it is seen that the convergence rate also reduces as the value of k increases for a fixed noise value. From
the results reported in last two graphs of Fig. 14, it is seen that for a fixed value of £, the convergence rate
increases as the value of n increases. The recognizer performs very well at n = 100, but accommodates noise
rather poorly at n = 30 for & = 5 and 15. All the results reported in Fig. 14 closely match with that of theo-
retical formulation noted in Section 5.1.

Fig. 15 presents the percentage of recognition or convergence at different noise levels both for the method
reported in [9,10] and the proposed method. The results are reported for different values of » and k. All the
results reported in Fig. 15 establish the fact that the performance of the proposed method at a particular noise
level is significantly higher compared to that of the method reported in [9,10].

6.2, Evolution time

The evolution time of the desired GMACASs are reported here for different values of n and £, both for the
method reported in [9,10]and Algorithm 2 for the GMACA evolution. All the algorithms are implemented in

C language and run in Linux {version 2.2.6) emvironment having machine configuration Pentium 11 (i686),
400 MHz, 512 KB cache, and 132 MB RAM.

Table 1 represents the evolution time and the number of generations required to converge the GA to syn-
thesize the desired GMACAS in both cases. Columns I and 11 of Table 1 represent the different CA size (n) and
the number of patterns to be learnt (&), respectively. While Column 111 depicts the maximum number of gen-
erations required to find out the best possible GMACA configuration by the GA and evolution time, respec-

tively for the method reported in [9,10], Column IV shows that of the proposed scheme. The entries * in
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Table 1
Evolution tme Lo synthesize the GMACAS of the method in [910] and proposed scheme
CA size (n) Value of & Method in [9,10] Proposed scheme

# Gene” Time (s) # Gene” Time (s)
I 4 102 18.18 15 12 98
15 4 13 2137 42 16.20
i) 5 132 2487 53 21.73
25 6 171 317 6l 2691
30 7 193 37127 74 202
a5 8 2R 4273 749 2R
40 10 263 5547 92 41 .91
45 10 7 ER.ﬁT 94 4405
50 12 . : 98 46,79
55 2 . . g LM
6l 13 : - 103 5600
i 15 3 * 17 8203
70 15 * 122 97 .16
75 I " 137 128,29
&0 I8 - : 145 161 38
B5 13 5 A 61 1 78.63
an | . 172 21201
93 0 : : 179 265 64

[0 23 187 3689

Column 111 of Table | signify that the GA in [9,10]does not converge within 1000 generations. All the results
reported in Table 1 proves the superiority of the proposed scheme over the scheme of [9,10].

6.3, Recognition complexity

In the recognition phase, when a pattern comes as an input (without or with distortion due to noise), the
GMACA is run with the pattern for a number of cycles equal to the transient length of the CA and finally
settles down to the correct attractor of the incoming pattern. So, the process of identification is independent
of the number of patterns learnt (£); it depends on the transient length of the given input pattern to the correct
attractor. Hence, the cost of computation for entire recognition or identification process is constant.

Fig. 16 represents the time taken to recognize a noisy pattern for different values of n and k in terms of the
transient kength or the number of iterations. The results are reported for both the method reported in [9,10]
and the proposed algorithm. All the results reported in Fig. 16 ensure that the time taken to recognize a noisy
pattern is lesser in the proposed scheme compared to that of method reported in [9.10].
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6.4, Disiribuation of CA rule

The probability of being an effective CA rule is studied extensively in terms of the number of 1's in a rule.
The probability distribution of different CA rules derived from evolutionary algorithm of the GA is shown in
Fig. 17. The distributions reported in Figs. 12 and 17 confirm that the rule space theoretically derived is a sub-
set of the CA rules arrived at through the GMACA evolution with the GA.

7. Conclusion

The paper contributes to the research in both the area of CAs and that of pattern recognition. One of the
major objectives of the current research is to explore the computational capability of the non-uniform CAs in
the field of pattern recognition. The pattern recognizer is designed with a special class of non-uniform CAs,
termed as the GMACAs. The exponential growth of the search space of the non-uniform CAs is addressed
through a reverse engineering technique. The GA based evolutionary algorithm is coupled with this reverse
engineering technique to synthesize the desired GMACA configurations. The scheme allows the user to per-
form directed search for the desired GMACAs. Also, it significantly reduces the search space of the GMACA
based associative memory.

Moreover, the characterization of the basins of attraction of the GMACA based associative memory is
introduced. A number of fundamental results are reported to characterize the state transition behavior of
the GMACAs. Such resulis enable visualization of non-uniform CA evolution. Using the concept of homo-



P Maji, P. Pal Chawdhuri! Information Sciences 178 { X008 ) 23152336 2335

geneity introduced in this paper the desired CA rules are analyzed. Theoretical formulation supported with
extensive experimental results reported in this paper confirms that the GMACA based associative memory
can be employed as an excellent pattern recognizer. Hence, the major contributions of this paper can be sum-
marized as follows:

— the evolved GMACASs have attractor cycle of length 1, each attractor signifying a single cycle attractor;

— an efficient formulation of the GA is coupled with a reverse engineering technique to synthesize the desired
GMACA configurations;

— the proposed design significantly reduces the search space of the GMACA based associative memory
reported in [9,10];

— theoretical formulation of the basins of attraction of the GMACAs, as well as extensive experimental
results reported in this paper, establish the GMACA as an efficient and cost-effective solution for pattern
recognition problem; and

— the characterization of the GMACA rule space validates the experimental observations reported in [9).

Thus, applying a non-uniform CA based model to pattern recognition task and designing a GA based
reverse engineering technique for this architecture, the application areas of this powerful computational model
are extended as well as contributed to the research on learning with the CAs.
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