International Journal of Approximate Reasoning 52 (2011) 408426

Rough set based maximum relevance-maximum significance criterion
and gene selection from microarray data
Pradipta Maji *, Sushmita Paul

Muachine Intelligence Unit, Indian Statistical Instinete, 209, Barmackpore Trumk Road, Kolkata 700 108, India

ARTICLE INFO ABSTRACT

Article history: Among the large amount of genes presented in microarray gene expression data, only a small
Received 26 May 2010 fraction of them is effective for performing a certain diagnostic test. [n this regard, a new
Revised 17 August 2010 feature selection algorithm is presented based on rough set theory. It selects a set of genes

Accepted 24 September 2010

railable snline 30 Octaber 3030 from microarray data by maximizing the relevance and significance of the selected genes. A

theoretical analysis is presented to justify the use of both relevance and significance criteria

Keywards: for selecting a reduced gene set with high predictive accuracy. The importance of rough
Microarmay analysis set theory for computing both relevance and significance of the genes is also established.
Gene selection The performance of the proposed algorithm, along with a comparison with other related
Rough sets methods, is studied using the predictive accuracy of K-nearest neighbor rule and support
Feature selection vector machine on five cancer and twoarthritis microarray data sets. Among seven d ata sets,
Classification the proposed algorithm attains 100% predictive accuracy for three cancer and two arthritis

data sets, while the rough set based two existing algorithms attain this accuracy only for
one cancer data set
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recent advancement and wide use of high-throughput technology are producing an explosion in using gene expression
phenotype for identification and classificationin a variety of diagnostic areas. Animportant application of gene expression
datain functional genomics is to classify samples according to their gene expression profiles such as toclassify cancer versus
normal samples or to classify different types or subtypes of cancer [1,2].

Amicroarray gene expression data set can be represented by an expression table, T = {wyli=1... .., mf=1,..., i},
where wy € i is the measured expression level of gene .4; in the jth sample, m and n represent the total number of
genes and samples, respectively. Each row in the expression table comesponds to one particular gene and each column to
a sample [1,2]. However, for most gene expression data, the number of training samples is still very small compared to
the large number of genes involved in the experiments. The number of samples is likely to remain small for many areas of
investigation, especially for human data, due to the difficulty of collecting and processing micmoarray samples [1]. When the
number of genes is significantly greater than the number of samples, it is possible to find biologically relevant correlations
of gene behavior with the sample categories [3,4].

However, among the large amount of genes, only a small fraction of them is effective for performing a certain task. Also,
asmall subset of genes is desirable in developing gene expression based diagnostic tools for delivering precise, reliable, and
interpretable results. With the gene selection results, the cost of biological experiment and decision can be greatly reduced
by analyzing only the marker genes. Hence, identifying a reduced set of most relevant and significant genes is the goal of
gene selection. The small number of training samples and a large number of genes make gene selection a more relevant and
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challenging problem in gene expression based classification. Thisis animportant problem in machine learning and referred
to as feature selection [5-7].

Conventional methods of feature selection involve evaluating different feature subsets using some index and selecting
the best among them. Depending on the way of computing the feature evaluation index, feature selection methods are
generally divided into two broad categories: filter approach [5,6,8-11] and wrapper approach [5,7,12-14]. Unlike wrapper
approach [5,7,12-15], in filter approach, the algorithms do not perform classification of the data in the process of feature
evaluation. Before application of the actual leaming algorithm, the be st subset of features is selected in one pass by evaluating
some predefined criteria, which are independent of the actual generalization performance of the learning machine. Hence,
the filter approach is computationally less expensive and more general than that of wrapper approach. However, as the
wrapper approach uses the learning machine as a black box, it generally outperforms the filter approach in the aspect of
final predictive accuracy of the learning machine [5-15].

In feature selection process, an optimal feature subset is always relative toa certain criterion. In general, different criteria
may lead to different optimal feature subsets. However, every criterion tries to measure the discriminating ability of a
feature or a subset of features to distinguish different class labels. To measure the gene-class relevance, different statistical
and information theoretic measures such as the F-test, t-test [8,9], entropy, information gain, mutual information [8,10],
normalized mutuvalinformation [11], and f-information [16] are typically used, and the same or a different metric like mutual
information, f-information, the [y distance, Euclidean distance, and Pearson's correlation coefficient [8,10,17] is employed
to calculate the gene-gene redundancy. However, as the F-test, t-test, Euclidean distance, and Pearson's correlation depend
on the actual gene expression values of the microarray data, they are very much sensitive to noise or outlier of the data set
[810,17,18]. On the other hand, as information measures depend only on the probability distribution of a random variable
rather than on its actual values, they are more effective to evaluate both gene-class relevance and gene-gene redundancy
[10,11,19-21].

Rough set theory [22,23] 15 a new paradigm to deal with uncertainty, vagueness, and incompleteness. [t has been applied
tofuzzy rule extraction [ 24, reasoning with uncertainty, fuzzy modeling, feature selection [25-28], microarray data analysis
[20,21,29,30], and so forth. It is proposed for indiscemibility in classification according to some similarity [22,31]. The rough
set theory has been applied successfully to feature selection of discrete valued data [25,26,32]. Given a data set with dis-
cretized attribute values, itis possible to find a subset of the original attributes using rough set theory that are the most infor-
mative; all otherattributes can be removed fromthe data set with minimal information loss, From the dimensionality reduc-
tion perspective, informative features are those that are most useful in determining classifications from their values [33,34].

One ofthe popular rough set based feature selection algorithms is quick reduct algorithm [24, 35] in which the de pendency
or quality of approximation of single attribute is first calculated with respect to the class labels or decision attribute. After
selecting the best attribute, other attributes are added to it to produce better quality. Additions of attributes are stopped
when the final subset of attributes has the same guality as that of maximum possible guality of the data set or the guality of
the selected attributes remains same. Other notable algorithms include discemibility matrix based method [ 36,37], dynamic
reducts [38], and so forth. However, all these approaches are computationally very costly. The variable precision rough set
model [39-41], tolerance rough sets [42,43], and probabilistic rough sets [44-46] are the extensions of the original rough set
based knowledge representation. Different heuristic approaches based on rough set theory are also developed for feature
selection [47,48]. Combining rough sets and genetic algorthms, different algorithms have been proposed in [49-51] to
discover optimal or close to optimal subset of features.

In this paper, a new feature selection method is proposed to select a set of genes from microarray gene expression data
by maximizing both relevance and significance of the selected genes. [t employs rough set theory to compute the relevance
and significance of the genes. Hence, the only information required in the proposed feature selection method is in the form
of equivalence partitions for each gene, which can be automatically derived from the given microarray data set. This avoids
the need for domain experts to provide information on the data involved and ties in with the advantage of rough sets is
that it requires no information other than the data set itself The use of both relevance and significance criteria for selecting
genes with high predictive accuracy is theoretically justified based on the rough set theory. The importance of rough sets
over mutual information is also established. The performance of the proposed approach is compared with that of existing
approaches using the predictive accuracy of K-nearest neighbor rule and support vector machine on different microarray
data sets.

Thestructure of the rest of this paper is as follows: Section2 introduces the necessary notions of rough sets. The theoretical
analysis on the relationships of dependency, relevance, and significance is presented in Section 3 vusing rough set theory
The proposed feature selection method is described in Section 4 for selecting relevant and significant genes from microarray
data sets. Section 5 presents a methodology to compute rough set based relevance and significance criteria for continuous
valued gene expression data set. A few case studies and a comparison with other related methods are presented in Section
6. Concluding remarks are given in Section 7.

2. Rough sets

The theory of rough sets begins with the notion of an approximation space, which is a pair {II, &}, where I be a non-
empty set, the universe of discourse, 1T = {x;, ..., Xid o ay} and f is afamily of attrbutes, also called knowledge in the
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universe. V is the value domain of & and [ is an information function [ : 1 x & — V. An approximation space is also
called an information system [22], Any subset F of knowledge £ defines an equivalence, also called indiscernibility, relation
IND{IF) on T

IND{PF) = {(x;, %) € U x Uva € B, fix;, @) = fixj. a)}.

If (xi. 27) = IND(F), then x; and x; are indiscernible by attributes from P The partition of 1J generated by IND(F) is
denoted as

U/IND(P) = {[x;]e : % € U}, (1)

where [xj]z is the equivalence class containing x;. The elements in [ | are indiscemible or equivalent with respect to
knowledge [F. Equivalence classes, also termed as information granules, are used to characterize arbitrary subsets of [, The
equivalence classes of IND{[F) and the empty set i are the elementary sets in the approximation space {1, &},

Given an arbitrary set X © 1, in general it may not be possible to describe X precisely in {IJ, &). One may characterize
X by a pair of lower and upper approximations defined as follows [22]:

B(x) = | J{lxlellxle € X} and FX) = | {lxalellxle N X £ 8} (2)

Hence, the lower approximation [P{X) is the union of all the elementary sets which are subsets of X, and the upper approx-
imation [[_3{.3{} is the union of all the elementary sets which have a non-empty intersection with X. The tuple {F(X), _JIE{H}I}
is the representation of an ordinary set X in the approximation space {IIJ, &} or simply called the rough set of X, The lower
(respectively, upper) approximation F(X) (respectively, F(X)) is interpreted as the collection of those elements of [J that
definitely (respectively, possibly) belong to X. The lower approximation is also called positive region sometimes, denoted
as POSE(X). A set X is said to be definable or exact in {U, &) iff F(X) = F(X). Otherwise X is indefinable and termed as a
rough set. BNp(X) = IFT{H}I Y [F(X) is called a boundary set.

Definition 1. An information system {[J, &} is called a decision table if the attribute set & = T U [, where C is the
condition attribute set and [ is the decision attribute set. The dependency between T and [ can be defined as [22]
[POSE ()]
el = ———— 3
re() 0] (3)

where POS-([D) = UCX;, X is the ith equivalence class induced by [ and | - | denotes the cardinality of a set.

An important issue in data analysis is discovering dependency between attributes. Intuitively, a set of attributes [
depends totally on a set of attributes T, denoted as © = [ if all attribute values from [ are uniquely determined by values
of attributes from C. If there exists a functional dependency between values of [ and T, then [ depends totally on . The
dependency can be defined in the following way:

Definition 2. Given T, [ € A&, it is said that [P depends on T in adegree &, denoted as T =, [, if
|POS(I)
x:}t;:{]ﬂl}:#, where0 < x = 1. (4)
Ifx =1, depends totally on C, if 0 = x = 1, [ depends partially {in a degree x)on , and if ¥ = 0, then [ does not
depend on T [22].

To what extent an attribute is contributing to calculate the dependency on decision attribute can be calculated by the
significance of that attribute. The change in dependency when an attribute is removed from the set of condition attributes,
is a measure of the significance of the attribute. The higher the change in dependency, the more significant the attribute is.
If the significance is 0, then the attribute is dispensable.

Definition 3. Given T, [ and an attribute A4 £ T, the significance of the attribute A is defined as [22]:
ar (I, A) = pe (D) — poo g D). (5)
3. Relationships of Max-De pendency, Max-Relevance, and Max-Significance

This section establishes the relationships among Max-Dependency, Max-Relevance, and Max-Significance using the rough
set theory.
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3.1 Max-Dependency

LetC={4,..., A vy Ay A Hdenotes the set of m condition attributes or features of a given data set. In terms
of rough sets, the task of attribute or feature selection is to find a feature subset & C T withd = m features { 4;}, which
jointly have the largest dependency on the target class or decision attribute set [ This scheme, called Max-Dependency,
has the following form:

max P(E, D), P = izt afl), (6)

where y[,k,_j=1____.d;{]]3'}l re presents the dependency between the feature subset S = {4, i=1, .. ., d} and target class label
[and is given by (4).

Obviously, when d equals 1, the solution is the feature that maximizes p (II); (1 = j = m). Whend > 1, a simple
incremental search scheme is to add one feature at one time. This type of selection is called the first order incremental
search. By definition of first order search, it is assumed that 54, thatis, the setofd — 1 features, has already been obtained.
The task is to select the optimal dth feature 44 from the set {T — 554} that contributes to the largest increase of pg (1),
The quick reduct algorithm of Chouchoulas and Shen [35] is based on the principle of Max-Dependency.

The dependency T in (6) is represented by the dependency of (4), that is, D = s, (1), where 54 = {541, Agl
Hence, from the definition of dependency in rough sets, the first order incremental search algorithm optimizes the following
condition to select dth feature from the set {T — S4_1}:

AL R 41O v

which is equivalent to optimize the following condition given the set of selected features S;_:

”i}f[s;, 1) D) — g, (DY} = G ]E{ﬂ%sdﬂﬂhﬂ;}}- (8)

Max
AelC—8y
Obviously, the Max-Dependency is equivalent to either maximizing the joint dependency between selected feature set
and the target class label or maximizing the significance of the candidate feature with respect to the already-selected features.
Despite the theoretical value of Max-Dependency, it is often hard to generate the resultant equivalence classes due to
two difficulties in the high-dimensional space: the number of samples is often insufficient and the generation of resultant
equivalence classes is usually anill-posed problem. Another drawback of Max-Dependency is the slow computational speed,
These problemsare most pronounced for real life applications. Ifeach feature has c categorical ordiscrete states and nsamples,
then d features could have a maximum min{c?, n} equivalence classes, When the number of equivalence classes increases
very quickly and gets comparable to the number of samples n, the joint dependency of these features cannot be estimated
correctly. Hence, although Max-Dependency feature selection might be useful to select a very small number of features
when n is large, it is not appropriate for real life applications where the aim is to achieve high classification accuracy with a
reasonably compact set of features.

3.2, Max-Relevance and Max-Significance

As Max-Dependency criterion is hard to implement, an altemative is to select features based on maximal relevance
criterion {Max-Relevance). Max-Relevance is to search features satisfying (9), which approximates D{Z, [I) in {6) with the
mean value of all dependency values between individual feature 4; and target class label [

— 3 . (9)

IS Aief

maxR(S, [, R=

Itis likely that features selected according to Max-Relevance could have rich redundancy, that is, the dependency among
these features could be large. When two features highly depend on each other, the respective class discriminative power
would not change much if one of them were removed. Therefore, the following maximal significance ( Max-Significance)
condition can be added to select mutually exclusive features:

- y — -l .
Imax b{g, [[:::', &= mﬁ Aagﬁ:: {(T[AJ__.{I,HJE', Aid +|'T[,||,__4_I.HE', ,"1.‘]”'. (1m

The criterion combining the above two constraints is called *maximal-relevance-maximal-significance” (MRMS). The
operator @(R, 5) is defined to combine ® and &, and the following simplest form is considered to optimize ® and S
simultaneously:

max #{R, 5), & =R+ 5. (11}



412 P Maji, & Foul / Intemeational Jowmal of Appravimate Reasoning 52 (2011 ) 405126

In practice [8 10,16], incremental search methods can be used to find the near-optimal features defined by &{-). Given
the feature set 54, with d — 1 features, the task is to select the dth feature from the set {T —54_; }. This is done by selecting
the feature that maximizes < (-). The respective incremental algorithm optimizes the following condition:

1
max v )+ —— o A, A | 12
AEiC—8,1) {’“'{ 5 e Aa%ﬂ ; e ) J}:| (2
Hence, the combination of Max-Relevance and Max-Significance, that is, the MEMS criterion, is equivalent to maximizing
the dependency between the candidate feature 45 and class label [ as well as maximizing the ave rage value ofall significance
values of the candidate feature A4 with respect to the already-selected feature 4; € S4_.
The following conclusions can be drawn from the above discussions:

(i) Maximizing the frst term of (12), that is, maximizing ®{Z, [I') of (9), only leads to Max-Relevance. Clearly, the dif-
ference between Max-Relevance and Max-Dependency of (6) is rooted in the different definitions of dependency in
terms of rough set theory. Eq. (9) does not consider the joint effect of features on the target class [ On the contrary,
Max-Dependency of (6] considers the dependency between the data distribution in multi-dimensional space and the
target class [0, This difference is critical in many circumstances.

(i) Maximizing the second term of (12) only, that is, maximizing (5, [I) of (10), is equivalent to searching mutually
exclusive or independent features. This is not sufficient for selecting highly discriminative features.

(iii) The equivalence between Max-Dependency and Max-Significance indicates that Max-Significance is an optimal first
order implementation of Max-Dependency.

(iv) Compared to Max-Dependency, the MEMS criterion avoids the estimation of resultant equivalence classes for multiple
features. Instead, computing the resultant equivalence classes for two features could be much easierand more accurate.
This also leads to a more efficient feature selection algorithm.

In this regard, it should be noted that the minimum-redundancy-maximum-relevance (mRMR) based feature selection
algorithm [8,10] selects a subset of features from the whole feature set by maximizing the relevance and minimizing the
redundancy of the selected features. However, the redundancy measure of the mEMRE method does not take into account
the supervised information of class labels, while both relevance and significance criteria of the proposed MEMS method

are computed based on the class labels. Hence, the proposed MEMS method provides better performance than the existing
mREMR method.

4. Proposed feature selection algorithm

In real data analysis such as microarray data, the data set may contain a number of insignificant features. The presence
of such irrelevant and insignificant features may lead to areduction in the useful information. ldeally, the selected features
should have high relevance with the classes and high significance in the feature set. The features with high relevance are
expected tobe able to predict the classes of the samples. However, if insignificant features are present in the subset, they may
reduce the prediction capability, A feature set with high relevance and high significance enhances the predictive capability.
Accordingly, a measure is required that can enhance the effectiveness of feature set. In this paper, the rough set theory is
used to select the relevant and significant features or genes from high dimensional microarray gene expression data sets.

4.1 Maximum Relevance-Maximum Significance

Let T = {A4,..., A EEE Ao Anp} denotes the set of m features or genes of a given microarray data set and 5 is

the set of selected genes. Deﬁnef{,.d.j, [y as the relevance of the gene 4; with respect to the class labels [ whilej’{,.-!.j, Aj)
as the significance of the gene 4; with respect to the gene 4;. The total relevance of all selected genes is, therefore, given by

Trtev = 2 J(A4, D), (13)

el

while the total significance among the selected genes is

Toignf = 2 f(Ai A). (14)

A el

Therefore, the problem of selecting a set 5 of relevant and significant genes from the whole set T of m genes is equivalent
to maximize both Ty and Tigpr, that is, to maximize the objective function .7, where



P Maji, 5. Paul/ Intermational jowrnal of Approximate Reasoning 52 (2001) 408426 413

T = Jete + BFigi = 2 JCALD+8 3 FlAL A, (15)
Aes AFA S
j=i

where f is a weight parameter. To solve the above problem, the following greedy algorithm is used.

(i) Initialize T «— {4;, ..., Ao i Ant & «— .

{ii) Calculate the relevance f{.4;, [} of each feature or gene 4; € .

(iii) Select the gene 4; as the most relevant gene that has the highest relevance value f'{,.-!.j, ). In effect, 4; € S and
C=C\ AL

(iv) Repeat I:lllll:le E'ﬁllnw[ng two steps until the desired number of genes is selected.

{v) Calculate the significance of each of the remaining genes of T with respect to the selected genes of 5 and remove it
from C ifit has zero significance value with respect to any one of the selected genes.

{vi) From the remaining genes of C, select gene 4; that maximizes the following condition:

g
15|

> FlALA). (16)

el

flA;, D)+

Asaresult of that, 4 € Sand C =T A4;.

Both the relevance and significance of a gene are calculated based on the rough set theory. The relevancef{,.-!.j, Iy of a
gene 4; with respect to the class labels [ is calculated using (4), while significance f (.4;, 4;) of the gene 4; with respect to
the already-selected gene .4; is computed using (5).

4.2, Computational complexity

The rough set based proposed gene selection method has low computational complexity with respect to the number of
genes in the original microarray gene expression data set.

(i) The computation of the relevance of m genesis carried out in step 2 of the proposed algorithm, which has @(m) time
complexity.
(ii) The selection of most relevant gene from the set of m genes, which iscarred outin step 3, has also a complexity O(m).
(iii) There is only one loop in step 4 of the proposed gene selection method, which is executed {(d — 1) times, where d
represents the number of selected genes.
(a) The computation of significance of a candidate gene with respect to the already-selected genes takes only a constant
amount of time. If m represents the cardinality of the already-selected gene set, the total complexity to compute
the significance of {m — m) candidate genes, which is carred out in step 5, is 2{m — m).
{b) The selection of a gene from (m — ) candidate genes by maximizing both relevance and significance, which is
carried out instep 6, has also a complexity {m — ).
Hence, the total complexity to execute the loop {d — 1) timesis {(@{(d — 1)({m — m) + (m —m)))) = d{m —m)).

In effect, the selection of a set of d relevant and significant genes from the whole set of m genes using the proposed rough
set based first orderincremental search met hod has anoverall computational complexity of {{ m)+{m) 4+ (d{m—m))) =
Mm) asd, m <2 m.

5. Generation of equivalence classes

In microarray gene expression data, the class labels of samples are represented by discrete symbaols, while the expression
values of genes are continuous. Hence, to measure both relevance and significance of genes using mough set theory, the
continuous expression values of a gene have to be divided into several discrete partitions to generate equivalence classes

16,52,53].

: DitTerE]nL discretization methods such as discretization based on mean and standard deviation [ 16], equal frequency
binning [52], Roughfication method [21], and so forth can be employed to discretize the continuous gene expression values,
However, the inherent error that exists in discretization process is of major concem in the computation of relevance and
significance of continuous valued genes [53]. To address this problem, a fuzzy set based discretization method is presented
next togenerate equivalence classes required to compute both relevance and significance of genes using rough set theory. In
this context, it should be noted that the fuzzy-rough sets [26,54-57 ] and neighborhood rough sets [58] can handle continuous
valued attributes without any discretization.
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The family of normal fuzzy sets produced by a fuzzy partitioning of the universe of discourse can play the mole of fuzzy
equivalence classes. Given a finite set U, T is a fuzzy condition attribute set in [, which generates a fuzzy equivalence
partition on . If ¢ denotes the number of fuzzy equivalence classes generated by the fuzzy equivalence relation and n is
the number of objects in 11, then c-partitions of [IJ are sets of {cn) values {u } that can be conveniently arrayed as a{c = n)

matrix Bl = [”j,i |, which is denoted by

BT BB - B
uh 6% ...

P’ﬂ'ﬂ.:: — 21 22 2n {1?:]
Hoy B -« By

subject to 377, u'jf = 1. ¥}, and for any value of §, if k = arg maxJ{;I};‘i:}, then maxj{_uﬁ"} = mam{;;'ﬁ;} = 0, where u'jf €
[0. 1] represents the membership of object x; in the ith fuzzy equivalence partition or class F. The above axioms should hold
for every fuzzy equivalence partition, which correspond to the requirement that an equivalence class is nonempty, Obviously,
this definition degenerates to the normal definition of equivalence classes when the equivalence relation is nonfuzzy.

Each row of the matrix By is a fuzzy equivalence partition or class [32,59,60). In the proposed gene selection method,
the  function in one dimensional form is vsed to assign membership values to different fuzzy equivalence classes for the
input genes. A fuzzy set with membership function i{x; ©. o) represents a set of points clustered around £, where

2{1 M) t'ur— = |lx—¢g| =a,
mix: o) = [M) for0 = |x—¢| = 5. (1)
0 otherwise,

whereos = 0isthe radius ofthe 7 function with ¢ as the central point and || - || denotes the Evclidean norm. When the pattern

x lies at the central point © of a class, then ||x — || = 0and its membership value is maximum, that is, 7 (¢; . o) = 1. The
membership value of a point decreases as its distance from the central point £, thatis, |x —c || increases. When ||x—c|| = {%}l,
the membership value of x is 0.5 and this is called a crossover point [61]. The {c x n) matrix Iy, corresponding to the ith
gene 4, can be calculated from the c-fuzzy equivalence classes of the objects x = {xy. ..., Asaeials Xy}, where

(X5 Ty Tk

T axid.on 19
25 mixg o, o) (19)

g

In effect, each position _uﬁ* ofthe matx Iv ;, must satisfy the following conditions:

C
u]:i“ e [0, 1]; ZMQ' =1, ¥jand for any value ofk, if

§=arg max{_u;-"}, then max{_u;"} = mjax{_u]:"} = 0.
i) 1

After the generation of the matrix [y, corresponding to the gene 4;, the object x; is assigned to one of the ¢ equivalence
classes based on the maximum value of memberships of the object in different equivalence classes that follows next:

f]
xcF,, wherep= argmfx{ukj 1

Each input real valued gene in guantitative form can be assigned to different fuzzy equivalence classes in terms of
membership values using the m fuzzy set with appropriate © and . The centers and radii ofthe 7 functions along each gene
axis are determined automatically from the distribution of the training patterns. Inthe proposed gene selection algorithm,
three fuzzy equivalence classes (¢ = 3), namely, low, medium, and high are considered. These three equivalence classes
correspond to under-ex pression, hase-line, and ove r-expression of continuous valued genes, res pectively. Corresponding to
three fuzzy sets low, medium, and high, the following relations hold:

€ =CpwlAi): © = (medium(Ai): €3 = ChighlAi): 01 = GowlAi) 02 = Omedium(Ai ) T3 = Thigh(Ai).

The parametersc and o ofeach m fuzzy set are computed according to the following procedure [61]. Let m; be the mean
of the objects x = {xy,.... oo, x5} along the ith gene 4. Then m;, and m;, are defined as the mean along the ith gene of
the objects having co-ordinate values in the range [.4;__ . m;) and (m;. A4 |, re_l.pectwely where 4;_and 4; _ denote the
upper and lower bounds of the dynamic range of gene 4; for the trining set. For three fuzzy sets low, med[um and high,
the centers and corresponding radii are computed as follows:
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CowlAi) = My, Cmedium (i) = Mj;  Chigh{Ai) = my,;
B N B B A
TigwlAi) = 2(Cmadium (Ai) — Cow(Ai)):  Ohigh{Ai) = 2(Chigh (A} — Cmedium (Ai )} Tmedium{Ai) = 7 % It
where A = {mgw{Ai A, — Cmediem (Ai)) + Thigh (AN Cmadium (A} — Ai 1 B = {Aige — A |-

where i is a multiplicative parameter controlling the extent of the overlapping. The distribution of the patterns or objects
along each gene axis is taken into account, while computing the corresponding centers and radii of the fuzzy sets. Also, the
amount of overlap between the three fuzzy sets can be different along the different axis, depending on the distribution of
the objects or pattems.

6. Experimental results

The performance of the proposed rough set based maximum relevance-maximum significance (MEMS) method is ex-
tensively studied and compared with that of some existing algorithms, namely, minimum redundancy-maximum relevance
(mREMR) framework [8], Quick Reduct algorithm [35], Discemibility Matrix based approach [37], Roughfication [21], the
methods proposed by Valdes and Barton [30] and Fang and Busse [29]. The performance of the MREMS method is also
compared with that of Max-Dependency and Max-Relevance criteria, along with the comparison between fuzzy and crisp
equivalence classes [16,52]. The proposed MEMS algorithm is implemented in C language and run in LINUX environment
having machine configuration Pentium [V, 2.8 CHz, 1 MB cache, and 1 GB RAM.

To analyze the perfformance of different algorithms, the experimentation is done on five cancer and two arthritis microar-
ray data sets. Foreach data set, 50 top-ranked genes is selected for analysis, and each data set is pre-proce ssed by standarizing
each sample to zero mean and unit variance. The major metrics for evaluating the performance of different algorithms are
the classification accuracy of K-nearest neighbor (K-NN) rule and support vector machine (SVM). To compute the prediction
accuracy of both SVM and K -NM rule, both leave-one-out cross-validation (LOOCV) and 10-fold cross-validation (10-fold CV)
are performed on each gene expression data set.

6.1 Gene expression data sets

In this paper, publicly available five cancer and two arthritis data sets are used. Since binary classification is a typical
and fundamental issue indiagnostic and prognostic prediction of both cancer and arthritis, different methods are compared
using the following binary class data sets.

(1) Breast Cancer: The breast cancer data set contains expression levels of 7129 genes in 49 breast tumor samples [62].
The samples are classified according to their estrogen receptor (ER) status: 25 samples are ER positive while other 24
samples are ER negative.

(i) Leukernia: It is an affymetriz high density oligonucleotide array that contains 7070 genes and 72 samples from two
classes of leukemia [1]: 47 acute lymphoblastic leukemia and 25 acute myeloid leukemia.

(iii) Colon Cancer: The colon cancer data set contains expression levels of 2000 genes and 62 samples from bwo classes
[63]: 40 tumor and 22 normal colon tissues.

(iv) Lung Cancer: This data set contains 181 tissue samples: among them 31 are malignant pleural mesothelioma and rest
150 adenocarcinoma of the lung [64]. Each sample is described by the expression levels of 12,533 genes.

(v) Prostate Cancer: [n this data set, 136 samples are grouped into bwo classes: 77 prostate tumor and 59 prostate normal
samples [65]. Each sample contains 12,600 genes.

(vi) Rheumnatoid Arthritis versus Osteoarthritis (RADA): The RADA data set consists of gene expression profiles of thirty
patients: 21 with RA and 9 with OA [66]. The Cy5-labeled experimental cDNA and the Cy3 labeled common refer-
ence sample were pooled and hybridized to the lymphochips containing ~ 18,000 cDNA spots representing genes of
relevance inimmunology [66].

(vii) Rheumatoid Arthritis versus Healthy Controls (RAHC): The RAHC data set consists of gene expression profiling of pe-
ripheral blood cells from 32 patients with RA, three patients with probable RA and 15 age and sex matched healthy
controls performed on microarrays with a complexity of ~26K unique genes (43K elements) [67].

6.2, Class prediction methods

Following two quantitative indices are used to evaluate the performance of different methods with respect to seven
microarray data sets.

6.2.1. Support vector machine
The support vector machine (SVM) [G8] is a margin classifier that draws an optimal hyperplane in the feature vector
space; this defines a boundary that maximizes the margin between data samples in different classes, therefore leading to
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Tahle 1
Comparative periormance of rough sets and mutual information wsing LODCW
Micmarmy  Quantitative  Roughsets + D1 Mutual information + D1 Rough sets + D2 Mutual information + D2
data set measunes Accuracy  Gene  Accuracy  Gene Accuracy  Gene  Accuracy  Gene
Breast VM 100 18 9796 1 100 ] 979 10
K-MN 100 45 9388 [ 980 27 959 [
Leukemia VM 972 2 98 .61 19 100 14 986 24
K-MN 986 47 95.83 25 100 7 986 42
Colon VM 871 5 871 5 B55 13 BOG 15
K-MN 839 3 BT 40 T4 23 9.0 46
Lung VM 100 34 9945 2 100 B 95 25
K-HNN 100 I8 9945 2 95 ] w5 0
Prostate VM 897 44 96.32 47 9 48 949 12
K-HNN B2 7 92 .65 ) 49 23 949 18
RADA VM 100 5 100 7 100 ] 100 [
K-HNMN 100 3 100 1 100 12 96.7 7
RAHC VM a0 20 98 0 100 13 96 13
K-MN 100 1 100 16 100 21 a8 49

good generalization properties. A key factor in the SVM is to use kernels to construct nonlinear decision boundary. In the
present work, linear kernels are used.

6.2.2 K-nearest neighbor rule

The K-nearest neighbor ( K-MN) rule [69] is used for evaluating the effectiveness of the reduced gene set for classification.
It classifies samples based on closest training samples in the feature space. A sample is classified by a majority vote of its
K-neighbors, with the sample being assigned to the class most common amongst its K-nearest neighbors. The value of K,
chosen for the K-NN, is the square root of the number of samples in training set

6.3. Importance of rough sets

In the proposed MEMS method, both the relevance and significance of a gene are calculated based on the rough set
theory. The relevance of a gene with respect to the class labels is calculated vsing (4), while significance of a gene with
respect to the already-selected gene is computed using (5). However, other measures such as mutual information can also
beused to compute both relevance and significance of a gene. In order to establish the importance of rough sets over mutual
information, extensive experimental results are reported in Table 1 for seven microarray data sets. Subsequent discussions
analyze the results with respect to the classification aceuracy of both SVM and K-MN rule. The value of g is set to 1.0 for the
MEMS criterion and the equivalence classes are generated by two discretization methods: using mean-standard deviation
(D17 [16] and equal frequency binning (D2 [52].

From the results reported in Table 1,itis seen that the peformance of rough sets is better than that of mutual information
in most of the cases. Out of total 28 cases, the MEMS criterion achieves significantly better results for rough sets in 19 cases.
However, the mutual information provides better accuracy of the SVM for leukemia, prostate cancer, and RAHC data sets
and that of the K-MN for colon and prostate cancer data sets using the method D1. On the other hand, the rough set based
appmach provides same accuracy of the SYM and K-NN with higher number of genes for prostate cancer data set, same
accuracy of the SVM with higher number of genes for RADA data set, and lower accuracy of the K-NN for colon cancer data
set using the method D2,

6.4, Effectiveness of MRMS criterion

To establish the effectiveness of the proposed MEMS criterion based gene selection method over Max-Dependency and
Max-Relevance criteria, extensive experimental results are reported in Table 2 for seven microarray data sets. Subsequent
discussions analyze the results with respect to the classification accuracy of both SVM and K-MN rule. The best results
obtained using Max-Dependency and Max-Relevance criteria on these data sets are also presented in this table for the sake
of comparison. The value of f# varies from 0.0 to 1.0 for the MEMS criterion and the equivalence classes are generated by two
discretization methods: using mean-standard deviation (D1) [16] and equal frequency binning (D2 [52]. In this context, it
should be noted that the Max-Relevance criterion is equivalent to the proposed MREMS criterion with § = 0.0, while the
quick reduct algorithm of Chouchoulas and Shen [35] follows the Max-Dependency criterion.

6.4.1 Optimum value of

The parameter f regulates the relative importance of the significance of the candidate gene with respect to the already-
selected genes and the relevance with the output class. If f is zero, only the relevance with the output class is considered
for each gene selection. If f increases, this measure is incremented by a quantity proportional to the total significance with
respect to the already-selected genes. The presence of a A value larger than zer is crucial in order to obtain good results. [T
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Table 2
Com parative performance of Max-De pendency, Max-Relevance, and proposed algorithm wsing LODCY.
Microarmy  Quantitative Discretization Max- De pendency Max-Relevance MEMS (# = 1.0) MEMS (0.0 < 8 = 1.0)
data set measures procedure Accuracy  Gene Accuracy  Gene Accuracy  Gene Accuracy  Geme Value of 8
Breast M Method: D1 B5.7 3 o980 1 100 18 100 18 0609
Method: D2 878 3 100 ] 100 ] 100 ] 01-09
K-NN Method: D1 837 2 a8.0 17 100 45 100 45 0809
Method: D2 a8 3 918 ] 980 ) 980 27 01-09
Leukemia M Method: D1 100 3 912 32 972 2 986 36 o1
Method: D2 875 2 986 43 100 14 100 14 01-08
K-MN Method: D1 a86 2 986 43 986 47 100 50 01-03
Method: D2 a03 3 912 25 100 £l 100 37 01-09
Colon oM Method: D1 807 2 BO.T 23 871 5 871 5 09
Method: D2 629 1 742 4 855 13 B55 13 01-09
K-MN Method: D1 807 3 823 50 B39 3 B55 ] 09
Method: D2 645 1 (= 7 T4 23 74 23 01-09
Lung oM Method: D1 995 3 9.5 7 100 34 100 34 06-09
Method: D2 983 3 9.5 N 100 ] 100 8 01-09
K-NN Method: D1 995 3 9.5 42 100 38 100 39 09
Method: D2 978 3 9.5 2 95 ] w5 ] 01-09
Prostate oM Method: D1 Bl6 4 816 47 897 A4 897 A 09
Method: D2 56.6 1 615 ] a9 48 949 48 01-09
K-MN Method: D1 882 A 912 5 882 7 882 7 01-09
Method: D2 558 1 63.9 25 a9 3 949 3 01-09
RADA M Method: D1 86T 1 Q0.0 50 100 5 100 3 0.5-06
Method: D2 n3 2 96.7 16 100 ] 100 4 02
K-MN Method: D1 Q0.0 2 Q0.0 2 100 3 100 3 0.7-09
Method: D2 700 2 Q0.0 6 100 12 100 12 0.8-09
RAHC M Method: D1 T0.0 1 0 16 Q0.0 20 Q40 36 01—
Method: D2 T0.0 1 Q6.0 48 100 33 100 12 06
K-NM Method: D1 B0 3 Q0.0 1 100 1 100 1 0.5-09
Method: D2 820 3 BE.0 11 100 21 100 12 0.8-09

the significance between genes is not taken into account, selecting the genes with the highest relevance with respect to the
output class may tend to produce a set of redundant genes that may leave out useful complementary information.

The values of g for which the proposed MEMS criterion based gene selection algorithm achieves its best performance are
reported in Table 2 From the results reported in this table, it is seen that the MREMS criterion attains its best performance at
f = 0.9for breast, colon, lung, and prostate cancer data sets using both SVM and K-NN rule, and for RAOA and RAHC data
sets using only K-NM rule. On the other hand, the proposed algorithm provides its best results at § = 0.1 for leukemia data
set using both SVM and K-NN rule and for RAHC data set using only the SVM. Hence, the MRMS criterion achieves its best
performance for0.1 = # < 0.9imespective of the data sets and classifiers used.

6.4.2 Comparative performance analysis

From the results reported in Table 2, it is seen that the performance of proposed MEMS criterion is better than that
of Max-Dependency and Max-Relevance criteria in most of the cases. Out of total 28 cases, the MEMS criterion achieves
significantly better results than Max-Dependency or Max-Relevance in 25 cases. However, the Max-Dependency criterion
provides better accuracy of the SWM for leukemia data set and same accuracy of the K-NN rule with lower number of genes
for prostate cancer data set than the MEMS criterion. Also, the Max-Relevance criterion achieves better accuracy of the K-NMN
rule for prostate cancerdata set and same accuracy of the SVM with lower number of genes for RAHC data set than the MEMS
criterion. That is, both Max-Dependency and Max-Relevance criteria are useful to select a very small number of genes, but
not appropriate to achieve high classification accuracy. Hence, the combination of Max-Relevance and Max-Significance,
that is, the MEMS criterion, must be used to get a reduced set of genes with high classification accuracy.

6.5, Effectiveness of fuzzy equivalence classes

In order to improve the performance of proposed MRMS criterion based gene selection method, three m functions in
one dimensional form are used to generate three equivalence classes, namely, low, medium, and high. The multiplicative
parameterycontrols the overlapping between three fuzzy equivalence classes lowand mediumormedium and high. Keeping
the values of @)y and apig, fixed, the amount of overdapping among three  functions can be altered varying omadium. AS 1
is decreased, the radius omedipm decreases around Cpedium Such that ultimately there is insignificant overlapping between
three 7 functions low and medium or medium and high. This implies that certain regions along the ith gene axis .4; go
under-represented such that three membership values corresponding to three fuzzy sets low, medium, and high attain
small values. Mote that the particular choice of the values of o5 and s ensure that for any pattern x; along the ith gene axis
Aj, at least one of membership values should be greater than 0.5. On the other hand, as » is increased the radius omediom
increases around Cmedium Such that the amount of overlapping between the three 7 functions increases.
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Table 3
Best performance of proposed algorithm on seven data sets using LODCW.
Micmamray  5WVM K-MN
dataset Valueof #  Accuracy  Geme  Value ofp Valweof 8 Accuracy Gene  Valueofp
Ereast 0.3-08 100 [ 08 06-07 100 ] 12
oo 100 7 08 ] 100 10 1.4
Leukemia 01 100 4 15-16 01-02 100 3 1.7
oo 100 4 14-16 ] 100 3 1.7
Colon 01-10 Q03 35 08 0i-06 903 35 09
oo 887 21 06 ] B87 20 06
Lung 07 100 ] 13 10 100 4 09
oo 100 14 11 ] 100 10 05-06
Prostate 09 963 43 13 09-10 956 ] 20
oo 934 50 05 ] 919 2 13
RADA 06~ 10 100 4 08,10 0F-10 100 B 09
oo 100 30 05 oo 933 2 o7
RAHC 10 100 18 06 10 100 5 05
oo 100 28 06 [HT] 980 22 06

To establish the effectiveness of fuzzy equivalence classes over the crisp equivalence classes and to find out the corre-
sponding optimum values of both i and f, the extensive experimentation is caried out on seven microarray data sets. The
value of # ranges from 0.0 to 1.0, while the value of  varies from 0.5 to 2.0,

6.5.1. Variahle number of selected genes

Table 3 presents the best performance of the proposed MEMS based gene selection algorithm for different data sets using
fuzzy equivalence classes. The results and subsequent discussions are presented in this table with respect to the predictive
accuracy of both SVM and K-NN rule. The values of # and » for which the best perfformance of the proposed algorithm is
achieved are also reported in this table, along with the number of selected genes. From the results reported in Table 3, it is
seen that the proposed algorithm with # = 0.0 provides better or comparable classification accuracy with lower number
of selected genes than that of # = 0.0 in most of the cases. Only for leukemia, the performance of the proposed algorithm
with # = 0.1is same as that of § = 0.0. The corresponding values of i indicate that very large or very small amounts of
overlapping among the three equivalence classes of input gene are found to be undesirable for § = 0.0,

6.5.2. Fixed number of selected penes

Figs. 1-7 present the performance of the proposed gene selection algorithm on five cancer and two arthritis microarray
data sets for fixed numberof genes. The results and subsequent discussions are presented in these figures for different values
of f and i with respect to the predictive accuracy of both SVM and K-NN rule. For each data set, the number of selected
genes is fixed through extensive experimentation in such a way that the classification accuracy of both SVM and K-NN rule
attains its highest value,

From the results reported in Figs. 1-7, it is seen that as the value of {# increases, the classificationaccuracy of both SV and
K-MM rule increases. On the other hand, the performance decreases for very high or very low values of 5. The proposed rough
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(a) SVM withd =6 (b} K-NN with d =6

Fig. 1. Variation of classification accuracy with respect to multiplicative parameter iy and weight parameter & forbreast cancer.
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Fig. 3. Variation of clasification accuracy with respect to multiplicative parameter n and weight parameter # for colon cancer.

set based gene selection algorithm achieves its best performance for § > 0.0 with respect to the classification accuracy of
both SVM and K-NN rule. The MEMS criterion achieves 100% accuracy for leukemia and 90.3% accuracy for colon at f = 0.1,
100% accuracy for breast and 90.3% accuracy for colon at § = 0.6, 100% accuracy for breast, lung, and RADA dataat f = 0.7,
and 100% accuracy for BAOA and RAHC data at i = 0.9, irrespective of the classifiers used. For prostate cancer data, it
attaing 96.3% and 95.6% accuracy at # = 0.9 using the SVM and K-NN rule, respectively. All these results are obtained for
0.7 = 5 = 1.7, In other wornds, the best performance of proposed method is achieved when the relevance of each gene is
incremented by at least 10% of the total significance with respect to the already-selected genes. However, the performance
of the proposed method at § = 0.0 is same as thatof # = 0.1 for leukemia data set using both SVM and K-NN rule. The
important results corresponding to Figs. 1-7 are also summarized in Table 4.

From the results reported in Tables 3 and 4 and Figs. 1-7, it is seen that, for a particular number of selected genes, the
predictive accuracy of both SVM and K-MNN rule for # = 0.0 is higher compared to that of § = 0.0, irrespective of the
microarray gene expression data sets used. Moreover, it is seen that very large or very small amounts of overlapping among
the three m fuzzy equivalence classes of the input genes lead to undesirable results for § = 0.0,

6.5.3. Performance of fuzzy equivalence classes

Finally, Table 5 reports the comparative performance of crisp and fuzzy equivalence classes with respect to the classifica-
tion accuracy of both SVM and K-NN rule. The crisp equivalence classes are generated by two discretization methods: using
mean-standard deviation (D1) [16] and equal frequency binning {D2) [52]. From the results reported in Table 5, it is seen
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Fig. 5. Variation of classification accuracy with respect to multiplicative parameter i and weight parameter # for prostate.

that the proposed gene selection algorithm with fuzzy equivalence classes performs better than that with crisp equivalence
classes in most ofthe cases. However, only for RAOA data set, the proposed algorithm with crisp equivalence classes produced
by the method D1 attaing same accuracy as that with fuzzy equivalence classes with lower number of genes. On the other
hand, the discretization method D2 achieves same accuracy as that of fuzzy equivale nce classes with lower number of genes
for lung and RAHC data sets using the SVM.

GG Comparative performance analysis of different algorithms

Finally, the best results of different algorithms on seven microarray data sets are presented in Tables 7-9, while Table &
reports the results considering the whole gene set. Subsequent discussions analyze the results with respect to the prediction
accuracy of the SVM and K-NNM rule. The best perfformance of some existing algorithms such as mEMR [ 8], Quick Reduct
algorithm [35], Discemibility Matrix based approach [37], Roughfication [21], the methods proposed by Valdes and Barton
[30] and Fang and Busse [29], is provided on same data sets for the sake of comparison.

Both LOOCY and 10-fold CV are performed on each data set. In case of 10-fold CV, the means and standard deviations
of the classification accuracy of the SVM and K-NN rule are computed for all data sets. Tests of significance are performed
for the inequality of means (of the classification accuracy of both SVM and K-NN rule) obtained using the proposed MREMS
method and the other related algorithms compared. Since both mean pairs and the variance pairs are unknown and different,
ageneralized version of t-testis used here. The above problem is the classical Behrens-Fisher problem in hypothesis testing.
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The test statistic, which is described and tabled in [70], is of the form

L] — L
= i i 5 ':213\'
o S,
Wik + oo
where [y, o are the means, oy, o2 the standard deviations, and Ay = 1/ny, A2 = 1/n2, ny, mp are the number of

observations. Tables 7 and 9 report the individual means and standard deviations, and the value of test statistic computed,

The corresponding tabled value is 1.81 at an error probability level of 0.05. Ifthe computed value is greater than the tabled
value, the means are significantly different.

GG Results on full gene set

The classification accuracy of both SVM and K-NMN rule is reported in Table 6 considering the whole gene set. That is, the
K-MM rule and SVM are used to classify the samples of each microarray data set considering all genes of the data setand the
performance is compared with that of different feature selection algorithms, which are reported in Tables 7-9. The results
reported in Table 6 indicate that if all genes are considered for sample classification, the samples from different classes may
not be well separated with respect to the K -MNrule and VM. However, from the results reported in Tables 7-9, it can be seen
that when a gene or feature selection algorithm selects a set of genes from the whole gene set considering the relevance,
redundancy, or significance criteria, the genes those have high relevance with respect to the class labels are only selected. In
effect, the samples from different classes with reduced gene set become well separated, which leads to higher classification
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Table 4
Optimum values of # and n fordifferent data sets using LODCWV
Microarmy  §WM K-NN
data set Accuracy  Valuesof (8. n) Accuracy  Valuesof (8. n)
Breast 100 ([03-08). 08) 100 ([0.6-0.7),1.2)
d==6 980 (0.0, {0.8-0.9]) 959 (0.0, {0.8-0.9])
Leukemia 100 (01, [1L5-16]) 100 (01, {1L5-1.6])
d=4 100 (0.0, {L4-16]) 100 (00, { L4 -16])
Colon 903 ([01-1.00, 0.8) 90.3 ({0.1-006),0.9)
d=135 871 (0.0,0.7) 823 (0.0,0.8)
Lung 100 (0.7, 13) 100 (0.3, 1.7), ({0.4-006), [ L6-1. 7] L([0.7-0.8]. 1L3),
d=19 ([0.7-08], [ L6-1.7] L (0.9, [ 12-1.3]),
(0.9, [ L6-1T)L( L0, [L2-14]L (10, [1.6-17))
w5 (0.0, 0.8) o5 (0.0, {06-1.0) 1 (0.0, {12-1.3]). (0.0, L8)
Prost ate 963 (09, 13) 956 ([0.9-1.0), 2.0)
d=43/8 919 (00, [O.T-08]) o919 (0.0, {1L.8-2.0])
RADA 100 ([0.5-1.0), 0.9), { [0L6- 1L0). LO) 100 ([0.7-1.0),09)
d==8 96.7 (0.0,0.8) 867 (0.0, {0.7-0.97), (00, {11-1.5))
RAHC 100 ([0.4-0.5), 0.8), ([0U6-1.0), 0L6], (0.9, O.T) 100 (09,1.4)
=36 980 (0.0,0.5) a0 (0.0,0.9)
Table 5
Comparative Performance Analysis of Crisp and Fuzzy Equivalence Classes Using LOOCV.
Microarmy  Quantitative  Crisp classes: D1 Crisp classes: D2 Fuzzy classes
data set measures Accuracy Genes Accuracy  Genes Aocuracy Genes
Breast VM 100 18 100 ] 100 [
K-MN 100 45 98.0 7 100 [
Leukemia VM 986 36 100 14 100 4
K-MN 100 50 100 37 100 3
Colon VM 871 5 B55 13 Q03 35
K-MN B55 ] TT4 23 a03 35
Lung VM 100 34 100 B 100 9
K-MN 100 38 995 ] 100 4
Prostate VM 897 A4 .9 48 963 43
K-MN a2 5 9 23 956 ]
RADA VM 100 3 100 4 100 4
K-NN 100 3 100 12 100 ]
RAHC VM LT 36 100 12 100 18
K-NN 100 1 100 12 100 5

Table &
Classification accuracy of SWM and K -MMN rule on full gene set.

Experimental Methods|  Statistical — Microamay gene expression data sets

setup measures  values Breast Leukemia Colon Lung  Prostate  RADA RAHC
LOOCY SM Accuracy 918 98.6 823 919 99 0.0 96.0
K-HNN Accuracy T35 TaA 742 819 M2 787 0
10-fiold CV SM Mean 804 988 855 989 927 783 942
Std Dev. 103 38 133 22 73 183 92
K-NN Mean 763 75.0 716 go4 TU 750 7
Std Dev. 104 8 14.3 63 19 227 176

accuracy. That is, the genes for which the samples from different classes are not well separated will not be selected in the
reduced set. On the other hand, the presence of irrelevant, redundant, and insignificant genes in the reduced gene set may
degrade the quality of the solution.

From the results re ported in Tables 6-9,itis seen that the classification accuracy of the K-MN rule and SVM obtained using
the mEMRE method and proposed algorithm is always higher than that achieved by the whole gene set for all microarray data
sets. On the other hand, out of 28 cases, the Quick Reduct algorithm [35], Roughfication [21], and Discemibility Matrix based
approach [37] perform better than the whole gene set in 20, 14, and 15 cases, respectively, while the methods proposed by
Valdes and Barton [30] and Fang and Busse [29] achieve in 18 and 12 cases, respectively.
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Table 7
Comparative performance analysis of mRMR and MRMS algorithms.

Experimental setup LODCY 10-fold OV

Micmamay  Methods]  mRME MRS mRME MRS Computed

data set measunes Accuracy  Gemes  Accuracy  Genes Mean  StdDev. Mean StdDev. walue

Breast oM 100 [ 100 [ 100 [iT1] 100 [iTi] -

m=T129 K-NN 100 4 100 ] 100 oo 100 oo -

Leukemia oM 100 32 100 4 R EF] 100 oo 100

m = T070 K-NN 986 18 100 3 ane £ 100 oo 100

Caolon oM 887 L] 903 35 LT A 1148 @07 949 0r4

m = 2000 K-NN 203 11 a3 5 a5 146 a2 1 029

Lung oM 995 4 100 a 100 [ELH] 100 L4 -

m=12,533 K-NN 983 ] 100 4 o83 6 100 oo 149

Prostate oM 941 20 963 43 935 59 963 L) 10

m=12,600 K-NN 934 El| 956 ] a8 56 957 48 16

RADA oM 100 4 100 4 100 o 100 L4 -

m=18432 K-NN 100 3 100 ] 100 oo 100 oo -

RAHC oM 100 29 100 18 100 [ELH] 100 14 -

m=41,056 K-NN 100 11 100 5 100 oo 100 oo -

Tahle &
Comparative performance analysis of different mugh set based algorithms using LOOCV.

Micraarray Methads [ Fang and Bisse Feughfication Vakles-Rartan Cruick rechict Discern. matrix MREMS
clata et measuTes Accuracy Cenes Accuracy Cenes Acouracy Genes Accuracy Genes Accuracy Cenes Accuracy Cenes
Breast VM EER 7 716 7 1.7 1 57 3 714 5 100 ]
m= 71 K-NN 714 ] TS L) = 1 Bi7 2 T35 3 100 ]
Leukemia VM 6.1 ] 847 16 a3 1 100 3 958 4 100 4
m = 7070 K-NN ™2 [ 206 7 LEN] 1 GHE 2 a1.7 1 100 3
Calan M 645 1 Bi5 241 855 1 7 2 L) 4 a0 £<)
m = 00 K-NN G613 2 807 ] 85 1 807 3 =503 5 a0 £=)
Lung VM 95 4 973 1 F5 3 H5 5 100 ]
m = 12,533 K-NN 989 3 a2 1 95 3 934 5 100 4
Prostate SV 56.6 3 743 7 346 4 75.0 10 963 43
m = 12,600 K-NN Ta7 4 846 1 BH2 4 750 10 956 ]
RAOA VM a0 1 BLT 1 q33 1 BT 1 7 4 100 4
m= 18,452 K-NN 733 1 933 3 a0 1 900 2 86.7 3 100 ]
RAHC VM a0 1 220 & a6 1 L] 1 100 ]
m = 41,056 K-NN 0.0 1 340 ] 340 1 340 3 100 5

662 Comparative performance of mRME and MEMS

To compare the performance of the proposed MEMS method with that of the mEMR method [8], extensive experimen-
tation is carried out on seven microaray data sets. Both LOOCY and 10-fold CV are performed on each gene expression data
sets.

Table 7 presents the classification accuracy of both VM and K-NM rule for the MEMS and mEMR methods, along with
the computed test statistic values for 10-fold CV. From the results reported in Table 7, it is seen that the proposed MEMS
algorithm selects a set of relevant and significant genes from the whole gene set having highest classification accuracy of
both SVM and K-MN rule in all the cases, Out of total 28 cases, the proposed method achieves 100% classification accuracy
in 20 cases, while the mRMR method attains this accuracy in 14 cases. However, the mEMR method attains same K-NMN
accuracy for breast cancer, colon cancer, and RADA data set as that of the proposed MRMS method with lesser number of
genes, Also, the computed test statistic values indicate that although the MEMS method performs better than the mRME
method, the results are not significantly better as all the computed values are less than 181, which is the tabled value at an
error probability level of 005,

663, Performance of different rough set based algorithms

Finally, Tables 8 and 9 compare the best perfformance of different existing rough set based feature selection algorithms
with that of the proposed MRMS algorithm, While Table 8 presents the classification aceuracy of both SVM and K-MNN rule
using the LOOCY, Table 9 depicts that using 10-fold CV.

From the results reported in Table 8, it is seen that the proposed MEMS algorithm achieves highe st classification accuracy
of both SVMand K-NN rule in all the cases, Out oftotal 14 cases, the proposed method achieves 100% classification accuracy in
10 cases, while the Quick Reduct algorithm [35] attains this accuracy inonly one case, However, the Quick Reduct algorithm
attains same SVM accuracy for leukemia data set as that of the proposed MRMS method with lesser number of genes.
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Table &
Com parative test statistic analysis of different rough set based algorithms using 10-fold OV,

Data Statistical MEMS Famg and Busse Roughfication Valdes-Barton  Quick Reduct Discern matrix

sets values VM K-NN  SWVM K-MN  SWVM K-MN  SWVM K-NN  SVM K-NN  SWM  K-NN

Breast Mean 1000 1000 T [ 758 TO2 853 898 B58 B42 T30 ™2
Std Dev. ] oo 142 163 03 112 184 137 13.0 142 188 21
Computed 497 524 77 384 253 235 J44 352 453 387

Leukemia  Mean 1000 1000 8491 802 855 113 934 934 won 973 963 917
Std Diev. ] oo 119 00 122 100 (1] 6.6 0o 54 8.0 89
Computed 288 626 1% T13 315 315 - 158 148 296

Colon Mean a0.7 ar1 (53 631 859  #12 874  B57 826 B0 843 8286
Std Dev. 99 102 18 9.4 121 7 139 133 144 13.8 139 129
Computed 170 a63 096 213 ez 122 146 207 119 183

Lung Mean 1000 1000 w000 989 . i 972 972 0.4 994 972 945
Std Diev. oo L] ] 22 : 5 37 28 17 17 45 (]
Computed - 158 . i 236 316 106 106 196 287

Prostate Mean 963 957 559 802 : 5 736 845 837 a1 751 1
Std Dev. 67 4.8 24 81 . i 133 589 103 82 101 63
Computed 1807 521 . 5 484 463 £ 318 557 BG5S

RADA Mean 1000 1000 T0.8 75.0 883 933 867 900 Q08 933 BOO  BGT
Std Diev. ] 1] 00 171 183 241 163 153 1.2 13.3 163 163
Computed 920 463 2m 088 258 207 205 158 387 2158

RAHC Mean 1000 1000 708 TI5 833 B42 B850 842 08 875 ’ ’
Std Diev. ] oo 42 179 1.8 15.6 128 115 42 13.0 ’ !
Computed 2212 398 447 £ T 437 212z 33 : :

Similarly, the results using 10-fold CV reported in Table 9 show that the proposed MEMS methods attains 100% clas-
sification accuracy in 10 cases, while both Quick Reduct algorithm [35] and the method proposed by Fang and Busse [29]
attains this accuracy inonly one case. Also, the performance of the MREMS method is always better than that of any existing
rough set based algorithms. Out of 70 comparisons, the proposed method is found to provide significantly better results in
56 comparisons. Other 14 cases, the performance of the MEMS method is found to be better, but not significantly. The better
performance of the proposed gene selection algorithm is achieved due to the fact that it can identify relevant and significant
genes from microarray data sets more accurately than the existing rough set based algorithms.

7. Condusion and future works
The main contribution of this paper is threefold, namely,

(1) development of a new feature selection method based on the rough set theory;

(2) application of the proposed method in identifying discriminative and significant genes from high-dimensional mi-
croarray gene expression data sets; and

(3) compare the pefformance of the proposed method and some existing methods vusing the predictive accuracy of K-
nearest neighbor rule and support vector machine.

For five cancer and two arthritis microarray data sets, significantly better results are found for the proposed method
compared to existing rough set based methods. All the results reported in this paper demonstrate the feasibility and effec-
tiveness of the proposed feature selection method. It is capable of identifying discriminative and significant genes that may
contribute to revealing underying class structures, providing a use ful tool for the exploratory analysis of biological data.

The results obtained on different microarray data sets demonstrate that the proposed method can bring a remarkable
improverment on gene selection problem. The proposed method is only vsed for selection of genes from high dimensional
microarray data sets. In future, this method will be extended to other feature selection tasks and further its merits and
limitations will be evaluated. It will also be combined with fuzzy-rough sets [26,32,54-57] and neighborhood rough sets
[58] in near future to deal with numerical features directly without discretization. A method will be developed based on
some guantitative measures to find out the optimum values of different parameters. In order to address the problem of
multiplicity of marker genes, a detailed analysis of the biological relevance of the selected genes will be conducted in future.
The gene interactions will be studied in detail to see whether incorporation of gene interaction information can improve the
diagnostic test.
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