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Fuzzy Cellular Automata for Modeling Pattern Classifier

SUMMARY  This paper investigales the application of the computa-
tioni | model of Cellular Auomata (CA) for pattern classification of real
vilved data. A special class of CA mefemed to as Fuzey CA (FCA) is em-
ployed to design the pattem classifier. It is 2 notuml extension of con-
vemtionul CA, which operates on binary sting employing boolean logic as
next state function of a cell. By contmst, FCA employs furzy logic suit-
shle for modeling real valved functions. A matrix algebraic formulation
has been proposed for analysis and synthesis of FCA. An efficient formu-
lation of Genetic Algonthm (GA) is reported for evolution of desired FCA
to be employed as a classifier of datisets having attributes expressed as real
mumbers, Extensive experimental results confinm the scalability of the pro-
posed FCA hased classifier to handle large volume of datasets irmespective
of the number of classes, tuples, and attributes. Excellent classification ac-
cuney has established the FCA hased pattem classifier as an efficient and
oost-effective solutions for the classitication problem.

key words: cellidar antomara (CAJ, fuzzy cellular antamata {FCA) clas-
sifier, penetic algorithm (GA L decision tree

1. Introduction

Ower the years, the computational model of CA has been
proposed to study the general phenomenological aspects, in-
cluding commumnication, computation, construction, growth,
reproduction, competition, and evolution [1].[2]. CA also
provides an excellent ool for modeling physical phenomena
by reducing them o their basic, elemental laws (rules) [3],
[4]. From the days of Von Neumann [5] to the recent days
of Wolfram's recent book *A New Kind of Science’ [6]. CA
has atiracted researchers from diverse disciplines.

Interesting computational properties of CA model has
mspired vs o investigate new application avenues.  Patl-
tem classification is an imporant and interdisciplinary re-
search area spanning several disciplines such as database
systems [7], machine learning [8]-[10], intelligent informa-
ton systems, statisties [ 11]-[13], and expert systems. Many
new approaches are being introduced [14], [15], as well as
existing ones getting refined [16]-[21]. However, the search
for new and better solutions continues, specifically o clas-
sify large volume of dataset generated in the internet-worked
sociely of cyber-age.

In the above background scenario, design of patlern
classifier based on CA has been explored in a number of
papers[22]-[24]. However, the classifier proposed in [22]-
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[24] can handle attributes expressed as binary patlerns even
though real life applications demand classification of data
involving real numbers. For the classifiers designed to han-
dle binary data, an explicit or implicit discretization proce-
dureis applied to cluster the continuous data of real numbers
Lo a set of subintervals, - that s, o ransform the continu-
ous attributes 1o discrete ones. Such a discretization may
degrade the gquality of solution. In fact, most discretization
procedures suffer from user’s bias in generating the subinter-
vals [25], [26]. Also, since discretization is performed on a
finite training sel, it is doubtful whether the clustered subin-
tervals encapsulate the real distribution. Momeover, since de-
sign of information-lossless discretization procedure is not
available for real life problems, some information may be
lost in the transformation from continuous domain to finite
subintervals and that will invadably degrade the quality of
solution.

In this paper, we present the computational model of
FCA 1o address the problem of classification of pattems of
real valued data. FCA is a conventional CA with fuzzy
logic applied as next state function of a cell. The concept
of fuzzy logic in automata theory was introduced more than
thirty years ago[27]. FCA have been considered by sev-
eral researchers in both theory and applications [28]-[31].
The evaluation of the global function of such FCA involves
complex computation. One of the major motivations of the
present research 1s o reduce such computational complex-
ity of FCA. In this context, we make the following departure
from the traditional FCA model.

e The evaluation of global transition function has been
realized with matrix algebraic formulation.

e Smce all the FCA rules are not amenable o such ma-
trix algebraic formulation, we consider only a subset of
FCA rules.

However, we have tried to keep as close as possible to the in-
trinsic charctenstces (neighborhood dependency and local
transition function) of the FCA model [28].

The proposed pattern classifier is built around a spe-
cial class of FCA termed as Fuzzy Multiple Attractor CA
(FMACA). It is a natural extension of boolean Multiple
Attractor CA {MACA) based patern classifier proposed in
[22 - 24] o handle real valued patlems.

In order to realize the specified objectives, the paper in-
trodvces CA prelimmaries including FCA fundamentals in
Sect. 2. The matrix algebraic formulation for analysis and
synthesis of FCA is proposed in Sect. 3. Section 4 cov-
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ers a special class of FCA termed as FMACA. Design of
FMACA based classifier is presented in Sects. 4.1 and 4.2
followed by its evolution with GA formulation in Sect 5.
Finally, the performance of the FMACA based classifier is
reported in Sect. 6.

2. Cellular Automata (CA)

A CA[5],[32] consists of a number of cells organized in the
form of a lattice. It evolves in discrete space and time. The
nexl state of a cell depends on its own state and the states
of its neighbormg cells. In a 3-neighborhood dependency,
the next state g;(f + 1) of a cell is assumed to be dependent
only on itself and on its two neighbors (left and right), and
15 denoted as

gt + 1) = flg (. gilth.qis (1)) (1)

where g,(1) represents the state of the i cell at 1 instant of
time, j is the next state function and referred o as the rule
of the automata. The decimal equivalent of the next state
function, as introduced by Wolfram [32], is the rule number
of the CA cell. In a 2-state 3-neighborhood CA, there are
wtal 2% - that 15, 256 distincl next state functons (rules).
Out of 256 rules, two rules 85 and 238 are illustrated below:

Rule 85 : gilt + 1) = g, (1)
Rule 238 : giir+ 1) = gidt) + gy (1)

where + indicates OR operation. An n-cell CA is configured
with therule vector B= < Ry, - -, R, -+, R, = where @ cell
is configured with rule ®;; cach ®; being one of the possible
256 rules.

Fueey Cellular Automata (FCA)

Anelementary FCA [28],[29] is a linear array of cells which
evolves in time. Each cell of the amray assumes a stale g, a
rational value in the interval [0, 1] (fuzzy states) and changes
its state according to a local evolution function on is own
state and the states of its two neighbors. The global evo-
lution results from the synchronous application of the local
rule w all cells of the array. The degree to which a cell is in
fuzzy states 1 and 0 can be calculated with the membership
functions

i) = qi; polgi) = 1 — g, (2)
respectively.
Deefinition 1: A FCA is obtained by fuzzification of the lo-
cal function of a boolean CA as defined below. In a FCA,

the conventional boolean functions, as reported in [ 28], [29],
are evaluated as noted in Table 1. Here a and b are two states

Table 1  Evaluation of Boolean function in FCA cell.
Boolean Function | Operation | FCA Operation
OR a+ b nin| 1, a + b}
AND alb a-h
MNOT 7] {1 =a)
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having rational values in the unit interval [0, 1]. The result-
ing local rule of FCA is a real valued function simulating
the original function.

3. Matrix Algebraic Formulation for FCA

In this section, a matrix algebraic formulation has been pro-
posed o completely chametenze FCAL The state transition
behavior of FCA has been investigated with the help of this
formulation. The imporant aspects dealt with includes the
topological characterization of FCA, its basins of attraction,
ete. The approach can be found to be more general in na-
ture than that could be achieved with the help of traditional
treatment of FCA rules reported in [28],[29]. The concepls
developed i this section have been used to evolve a special
class of FCA in Sect.4 to design FCA based pattem classi-
fier handling real valued attributes.

In the present work we consider the following FCA
rules, as noted in Table 2 which employ only OR and NOR
logic, where .1, g; and g represent the state of (i + 1),
i and (i — 10" cells at " Gme instance. A few definitions
are introduced which are used in the rest of this paper.

Definition 2: If all the cells of & FCA obey the same rule,
then the FCA 1s said o be a unifonm FCA; otherwise, il is a
hybrid/non-uniform FCA.

Definition 3: A FCA is said to be a null boundary FCA if
the left (right) neighbor of the lefimost (rightmost) cell is
connected Lo logic 0-state.

Definition 4: A FCA involving rules with NOR logic is re-
ferred 1o as Complemented FCA.

3.1 Dependency Matrix for FCA

The rule as defined eadier, represents the local transition
function of a FCA cell. For an n-cell FCA, the global
transition function is represented by an m-tuple R =<
Ry, R, Ry > where R, is a FCA ruke applied on the
i"" cell. For the class of FCA that employs the rules noted in
Table 2, the linear opemtor expressing the global transition
function can be unigquely represented by nx n square matrix,
n being the number of cells in the FCA. The next state of
the FCA can be obtained by premulliplying the vector rep-
resentation of the present state by this matrix. The addition

Table 2 FCA rules (complemented and non-complemented).
Mon-oomplemented Rules Complemented Rules
Rule Mext State Rule Mext State

i i} 255 |

170 el 85 dii
204 i 51 a_.
L] g +4gin 7 i+ 4in1
241) g1 15 -
250 -1+ giel ) qi-1 + it
252 i1+ 3 i1 +4,
24 | g 4+qi+qin L | g0 ¥qi g1
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(OR) operation implies that {a + b) = min{ 1, (a + &)} [28].
Let the FCA global transition function, represented by
the n x n (for n-cells) matrix, be referred to as the depen-
dency matrix of the FCA. The i row designates a rule be-
ing applied on the @ cell. For a 3-neighborhood FCA there
are atmost 3 non-zero entries in any row of the matrix. The
following example illustrates the above discussion.

Example 1: A 4-cell null boundary (Definition 3) hy-
brid FCA (Definiion 2) with the following rule vector
< 238,254,238, 252 = (thatis, < (g + g ). (g + g +gis1 ),
(g + gzt b (gisy + g;) =) applied from left to right, may be
characterized by the following dependency matrix

1 0 0
110

=l 001 A
001 1

The first row represents the rule (g; + g2 ), ete. Presence
{absence) of dependency is denoted as 1 () in the binary
Mmalrix.

The following subsection highlights the elegance of
such a matrix representation.

32 Characterization of the State Transition Behavior

The following theorem formalizes the proof of comrectness
of matrix algebraic formulation for FCA configured with the
rules enlisted in Table 2.

Theorem 1: If 7(r) represents the state assignment of the
cells at the " instant of time, then the state at the next instant
can be represented by the state transition equation:

Pir+1)=T-F(n (3)

where the state of the ™ cell at (r + 1™ instant of time is
given by

Pyt + 1) = min|], Z Ty - P}
i=1

¥l

and

1, if mext state of i cell depends on

T - present state of ' cell
= i, j=1,2+-n
(), otherwise
Proof: In the dependency matdx T, the i row desig-
nates a rule being applied on i cell.  As we consider 3-
neighborhood dependency, there are atmost 3 non-zero ¢n-
tries in any row of the matrix. That is, T;; has non-zero
valuesonly for j=i— 1, j=iand j = i+ 1. 50, as per the
evolution noted in Table 1,

Pt + 1) =min{l (Typ - Pioilt) +
?-J'J'-?Jlf'r} +T.I:H-|:l 'l:p*.lff}}l'

where 7401) and 7t + 1) are the states of the @ cell at
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and (¢ + 1™ instant of time. So,
Pii+ 1)y =min{l Ty - Pty +---+
T,:,_” ":p,_|ff::| + Tﬂ ":p,ff::l +
THJI:J'*“I -'?'-‘H|fr}| & e Tm -'?'J‘“f_r::l::l}
Hence,
Pilt+ 1) = min{l, T+ Pi(1) (4)
=
Thus, we get
P+ 1) =T -Fn
where
1, if mext state of i cell depends on
T = el i, j =1,2,---,n
(), otherwise
Hence, the proof. m|

Example 2: A 4-cell null boundary hybrid FCA with rule
veclor 238254 238 252 (that is < (g; + g1 ) (g + gi+
gist b (g + gisi ) (gioy + g) =) being applied from left o
right, may be represented as follows:

Pilt+ 1) = min{l, T+ Pi(1)
=1
where T cormesponds o the FCA  with rule vector
<238 254 238 252 - that is < (g + g ) (gio) + g0 + gisq ),
(g + gzt ) (gioy + go) = applied from left to right. So,

1100
1110
F=lg o 1 1
001 1

I P0=(0.580 0.20 0.20 0.00) is the initial state of the
FCA with rule vector < 238, 254, 238, 252 =, then the four
slales in nest 4 consecutive Lme mslants are given by

Py = (100 1.000.200.20),
P2y = (100 1.000.40 0.40),
P3) = (1.00 1.000.80 0.80),
P4y = (100 1.00 100 1.00).

If we apply corresponding T for the above rule vector, we
et similar state transition diagram.

3.3 Complemented FCA

It 15 interesting to note that the complemented FCA rules
can also be represented conveniently in matrix notation. The
rule 17, represented by (g, + g2 ). is the complement of rule
238 mepresented as (g; + g ). However, since the NOR
function cannot be represented in the multiplicative nota-
tion, let us symbolically represent it as T, Thus T represents
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the FCA with OR rules only and T the FCA with NOR rules.
In a complemented FCA the next state of a cell is obtained
first by obtaining the OR output according to Eq.(4) and
then by complementing this state, - that 1s

Pilt+ 1) =| Fi=min{l, > T;;- P (0} | (5)

i=l

where P,(1) is the present state of ™ cell, P+ 1) is the next
state of # cell, and F is an n-dimensional binary vector (n
is the number of cells), responsible for complement opera-
tion after addition. F has got non-zero value (that is, 1) for
the cell positions where complementation 1s required. The
global state at the next instant be represented by the state
ransilion equation:

Pi+1)=|F-T-P@® |

Example 3: A 4-cell null boundary hybrid FCA with rule
veclor <238 1,238 3= (that is < (g +g 1 ). (g ) + g; F gz )

(gi+qia1 ) (g + g;) =) being applied from left toright, may
be represented as follows:

Pilt+ 1) =| F;—min{l, » T, -P 0} |
i=l
where T cormesponds o the FCA  with rule veclor
< 238,254,238,252 > - that 1§ < (g + g M0gio) + g0 +
Gt 1 + s, gy + i) = applied from left to right. So,

1 100
1 110
i R
001 1

In this example, the second and fourth cells require NOR
operaton. Hence

If P)=(0.80 0.20 0.20 000) is the initial state,
then for the FCA configured with the rule vector
< 238,1,238,3 =,

P1) = (1.00 0.00 0.20 0.80),
P2) = (1.00 000 100 0.00).

1f we apply comresponding T and F for above rle vector, we
et similar state ransiion diagram.

Next section introduces a special class of FCA termed
as FMACA. The pattem classifier proposed in Sect. 4.1 is
built around this FMACA.

4. Fuzzy Multiple Attractor CA (FMACA)

A FMACA is a special class of FCA that can efficiently
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model an associative memory to perform pattem recogni-
ton/classification task [33]. 1s state transition behavior con-
sists of multiple components - each component, as noted in
Fig. 1, 15 an mverted tree, each rooted on a cyclic state. A
cycle in a component is referred to as an attractor. 1o the
rest of the paper we consider only the FMACA having the
node with self loop as an attractor state. The states in the
tree rooted on an attractor form an atiractor basin.

Figure | illustrates the state space of a 3-cell 5-siate
hybrid FMACA with rule vector < 170,238, 0 = - that is,
rule 17015 applied on left most cell, followed by rule 238 on
next one and so on. The nodes with the pattems (0,00 0.00
0.00), (0.25 0.25 0.00), (0.50 0.50 0.00), (0.75 0.75 0.00),
and (1.00 1.000.00) are the attractors of the five components
in the FMACA of Fig.1. The state space of this FCA is
divided into five attractor basins built around attractors a, b,
¢, d, and ¢. The states in a basin other than the attractor
are referred Lo as transient states in the sense that a FMACA
finally settles down inone of its attractor cycles afler passing
through such transient states.

Characterization of FMACA (both complemented and
non-complemented), as reported in [33], establishes the fact
that FMACA provides both equal and unequal size of basins.
Vanations in the state transition behavior make the FMACA
as a polential candidate for pattern classifier. In order to
establish FMACA as a pattem classifier, we present some
interesting properties of FMACA.

e Delinition 5: The depth d of 2 FMACA is defined as
the number of clock cycles required w reach the at-
tractor stale from any nonreachable state in the state
transition diagram of the FMACA.

e Property 1: If 4 is the depth of a FMACA with de-
pendency matrix T, then

bl (6)
Example 4: The example FMACA of Fig. 1 is used to il-
lustrate the above results.

e Irisa 3-cell 5-state FMACA having 5-attraclor basins.

e The depth (o) of the FMACA 15 2.

e The rule vector of the FMACA of Fig. 1 is <170, 238,
0=, S0, the dependency matrix is

0O 1 0 0
r=|0 1 1F=}0
0O 0 0 0
In this case,
0 1 1
=01 1}|=71?
00 0

e For the rule vector < 238, 1,238, 3 =,

11 00 0
1 1 10 ]
T=too 1 1{F7]o
e S |
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4.1  FMACA Based Patlemn Classifier

An n-cell FMACA with £-attractor basing can be viewed as
a natural classifier. It classifies a given set of patterns into &
distinet classes, each class contmning the set of states in the
attractor basin. The following example illustrates a FMACA
based two class classifier

Example 5: Let us have two pattern sets 8 (Class 1) and
& (Class 1) with three attributes as noted in Table 3. In or-
der o classily these two pattern sets into two distine L e lasses

| (100, 100, 0*07'
/
|

10U 100,073

State space of a 3-cell S-state FMACA divided into five attractor hasins,
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- Class I and 11 respectively, we have to design a FMACA
such that the pattems of each class falls in distinet attractor
basins of 4 FMACA.

The FMACA of Fig. 1 1s able to classify them mto dis-
tnct attractor basins where Class 1 (5 ) 15 epresented by
one set of attractor basins (say [1]= {000 0,00 0,007, (0.25
0.25 (L0, (075 0075 0000) and (050 0,50 0,000} in Fig. 1)
while Class 110520 15 represented by rest of the basins (say
[11] = {( 1O 1O 0000 1. The attractor will identily the class
of the patterns uniquely. The attrmctor yields the address of
the memaory that stores the class imformation.  Therefore,
Class 1 attractors point to the memory address {a, b, ¢, d}
storing Class [ imformation, while Class 11 information 1s
stored in the memory address pointed by the attractor {e}
(Fig. 2).

When the FMACA 15 loaded with an input pattem say
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Table 3 Example dataset.
Attibute | | Atribute 2 | Atribute 3 | Class |
(1 (.00 (.50 I
075 100 LKLY i1
1400 .75 .50 I
1400 | 100 1.0 I
LEALY] .25 LKLY I
025 (.25 LKLY I
075 100 1.0 i1
100 100 0.75 Il
1400 .75 1.0 I
100 (.50 LKLY I
0150 .75 1.0 I
DALY (L0 LKLY I
025 (.00 LIELY I
0150 .00 LKLY I
1400 .75 .75 I
100 (.00 .25 I
075 100 0.75 Il
075 .75 1.0 I
1400 (.00 .75 I
(10 1.50 .25 I
- -, o S " Ia' - .-"'\I & P £
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Fig.2  FMACA based classification strategy with 5 attractor hasins clas-
sifying the elements into tao classes. Mote: (i) An attractor basin covers
the elements belonging to one class only, (i) Each attractor points to the
memory location that stores the class information.

P =(0.75 .75 0.50) and s allowed 1o run in autonomous
mode for a number of cycles equal to the depth of the
FMACA, it travels through a number of states and ultimately
reaches an attractor state (1.0 1.0 0000 - the attractor mepre-
senting Class 11,

Based upon the above discussion, we next proceed o
design 8 FMAC A based pattemn classifier classifying a given
set of patterns into K classes.

42  Design of FMACA Based Pattern Classifier

The tree-structured pattern classifiers are used successfully
in many diverse applicaton areas. The most important fea-
ture of tree-structured classifiers is their capability 1o break
down a complex decision-making process into a collection
of simpler decisions, thus providing a solution which is of-
ten easier o interpret. This subsection presents o FMACA
based tree-structured pattern classifier to classify a given set
of data.
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Fig.3 FMACA hosed tree-stroctured pattern classifier.

Like decision tree classifiers, FMACA based tree-
structured classifiers recursively partition the training set o
zel nodes (attractor basins of 8 FMACA) covering patlems
of only one class. Figure 3 shows a FMACA based tree-
structured classifier. Each node of the tree is either a leafl
or an intermediate node. A leaf node represents an attractor
basin of the FMACA designated as a specific class - that is,
the basin of the attractor covers the elements belonging o a
single class. On the other hand, an intermediate node repre-
sents the instance o design another FMACA 1o classify the
setof elements covered by the basin of the atlractor covering
elements from more than one class.

Suppose, we want to design a FMACA based classifier
to classify a training set 8§ = {§,---, 85, ---. .8y} into K
classes, where 5; 1s the set of elements of class i. Firsl, a
FMACA with & attractor basins 15 generated. The elements
of the training set § get distributed into & attractor basins
(nodes). Let, S be the set of elements in an attractor basin,
If § belongs o only one particular class, then mark it as a
leaf node and label that atractor basin as that class. Oth-
erwise, this process is repeated recursively for each inter-
mediate node until all the elements in each attractor basin
represented by a leaf node belong o only one class. Fig-
ure 3 represents a graphical overview of the process. The
above discussion is formalized in the following algorithm.

Algorithm 1: FMACA Tree Building

Input: Traming set 8 = {5 - -, 8.---. 8¢l

Output: FMACA Tree.

Partition (5, K);

Partition (5. K)

Step 1: Generate a FMACA with k attractor basins.

Step 2: Distribule § into £ attractor basing (nodes).

Step 3: Evaluate the distribution of patterns in
cach atractor basin (node).

Step 4: If all the pattemns 8§ covered by an attractor
basin (node) belong to only one particular
class, then label the attractor basin (keal node)
as that class.

Step 5: If § of an attractor basin belong to K
(.‘:f = 1) classes, then
Partition(s. K).

Step 6: Stop.



MAJL and CHAUDHURL FUZEY CELLULAR AUTOMATA FOR MODELING PATTERN CLASSIFIER

In designing a FMACA based tree-siructured classifier,
it must be ensured that the tree designed is as small as pos-
sible. Because, trees with lesser number of nodes are more
efficient both in terms of storage requirements and associ-
ated test tme. So, the basie eritena for FMACA tree design
are:

1. low error rate leading 1o maximum classification accu-
racy;

2. less number of nodes leading to low memory overhead;
and

3. small tree height leading to low retneval time.

Since, some of these requirements are conflicting in na-
wre, we develop a heurstic solution minimizing memory
overhead and retrieval time while maximizing classification
accuracy. The solution mainly concentrates on following
two operations at each node, other than the leal node, for
building FMACA tree.

1. Evaluation of FMACA - that is, evaluation of distn-
bution of the elements of different classes in different
attractor basins of a FMACA and the selection of the
best distribution; and

2. selection of FMACA using the best distribution in the
intermediate nodes.

Selectuon of FMACA at a node of the FMACA tree is next
elaborated.

43 FMACA Selection o0 Build FMACA Trec

Splitting an intermediate node involves the design of 8 new
FMACA to classify the subset of input elements of differ-
ent classes covered by the basin of the FMACA of earhier
kevel of the wee. An attractor basin s conswdered as a leal
node if all the training examples falling into the current at-
tractor basin belong to the same class. In other words, a
node (attractor basing 1s split as long as there are class ele-
ments that belong to different classes. To avoid overditting,
aprepruning strategy 15 necded. When current node (attrac-
tor basin) is to split, its diversity is measured and compared
with a threshold value. If its diversity is lesser than the
threshold, then current node is split. Otherwise the leam-
ing process lerminates and future class elements falling into
current node (attractor basin) are classified 1o the most prob-
able class of current node - that s, the class that has the
maxmmum number of muning examples in current attracor
basin.

Crteria for selection of FMACA

For ease of subsequent discussions we inroduce the follow-
mng lerminologies.

e K denotes number of classes in the dataset 5.

e & denotes number of attractor basins (of a FMACA) of
an intermediate node in which the dataset 5 15 o be
distributed.

o7

s N, represents the number of elements of class j cov-
ered by i attractor basin, where i = 1,2,3.4, .-k
and j=1,23.4,--- K.

o M, indicates the distribution of class elements in the @
attractor basin,

The diversity of i node (attractor basin) is given by

max{ N, |
TN, )
F=14Yij

If M; = 1. then i attractor basin indicates the class j for
which N 1s maximum. Otherwise, partilion the examples
of i attractor basins,

Suppose, after evaluating the distribution of patterns of
each class, the pattern set § 15 partiioned mnto 5, and S5,
where 5, and 5, represent the pattern set belonging to keal
nodes and mtermediate nodes respectvely. The goodness
of the spliting or partition is given by the Figure of Merit
(FM), wherne

FM = [Sal (5)

|5 |

where | § | represents the cardinality of the set §. The value
of FM indicates the accuracy of classification or partition
of a particular node. To determing the overall best distribu-
tion, classification can be done by a simple application of
the FMACA 1o the tranimg sel. The complexity lies in de-
termining the best distrbution for each attractor basin. Two
associated problems in this evaluation are next reported.

1. Suppose, the ™ node of the tree (an altraclor basin)
contains a large number of training examples and the
diversity M; of that node is less than the threshold
valve. In some cases, there exists a possibility where
desired 3-neighborhood FMACA 15 not available. This
is likely to occur when the training examples of dif-
ferent classes are highly correlated. In that case, we
distribute the training examples into & atiractor basins,
where k > k.

2. In each level of the keaming process, the original train-
ing s¢l has been partitoned into oo many subsets, each
belonging o an attractor basin of a FMACA. In that
case, FMACA cannotl generate perfect rule doe to the
lack of enough training examples. This may lead to
lower classification accuracy. To alleviate this problem,
all the training examples falling into different interme-
diate nodes are collected together to train a FMACA
instead of training multiple individual FMACASs, each
corresponding 1o an mtermediate node. Such an ap-
proach s similar in nature to decision graph [34].

The optimal FMACA wee 1s constructed through the appli-
cation of GA recursively at each intermediate node.

5. GA Formulation for Evolution of FMACA

The basic structure of GA revolves sround the concept of
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Fig. 4  Anexample chromosome for GA formulation.

encoding a solution in bit string format referred o as chro-
mosome and evolving successive solutions according 1o ils
fitness. Three major funcions of GA, modom generation of
mitial population (IP), crossover and mutation, as developed
m the current GA formulation, are next discussed.

3.1 Chromosome

Rather than the conventional bit string format, the proposed
scheme employs a chromosome consisting of

e 4 symbol string of numerical digits in between 0o 7
representing n o n dependency mamx T and
e an n-dimensional binary string representing F-vector,

S0, the length of the chromosome 15 2n where nois
the number of cells in & FCA. Fgure 4 represents a 14-
bit chromosome corresponding 1o the rule vector <238, 1,
238, 3, 238, 250, 204 = While Fig. 4(a) mepresents the 8
OR rules along with their dependencies and forms of rep-
resentation; Fig. 4(b) represents dependency matrix T and
n-dimensional vector Focorresponding o the rule vectlor
< 238, 1,238, 3, 238, 2500, 204 = Figure 4 (c) represents the
chromosome formal of FMACA (T and F).

5.2  Random Generation of Initial Population

To form the initial population, it must be ensured that each
solution randomly generated 15 an p-cell FMACA with £ at-
tractor basing. The chromosomes are rmandomly synthesized
according o the following steps.

¢ Randomly partition n mto montegers such that ny+n2 +
etk My =nand ko Kk Kk, =k

¢ Foreachn;, randomly generate a valid FMACA (T, and
Fiywith & attractor basins.,
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e Synthesize n-cell FMACA (T and F) with & attractor
basins from

1. m dependency matrices 75 (f = 1,2,---,m) ar-
ranged in Block Diagonal Form [35], where each
T, represents an np-cell FMACA with k) attractor
basins; and

2. concatenation of m F;s;

where ny +na+ -+ n,=n.and k) = -2k, =k

e Synthesize an 2n-bil chromosome comesponding o the
dependency matnx T and an p-dimenswonal vector F
through associated representaton.

Figure 4(c) represents a randomly geperated 14-bit chro-
mosome comesponding o the dependency matrix T and the
complemented vector F. The 7 = 7 dependency matnix T s
obtained from two matrices (T} and Ta) of length 4 and 3
respectively by Block Diagonal Form, where

A {1} g 1 10
H=lw o a 1 [525 {1} g }
001 1

The 7-bit complemented vector F s produced through the
concatenation of two complemented vectors (Fy and Fa) of
length 4 and 3 respectively, where

0
1 0
Fi= Fr=|0
0
: 0

5.3 Crossover Algorithm

The crossover algorithm takes two chromosomes from the
present population (PP) and forms the mesultant chromao-
some. Like a single poinl crossover, 1L seLs a crossover point
and each half about the crossover point is selected from the
Lwo respective chromosomes.

Figure 5 illustrates the crossover process employed in
the GA evolution with two chromosomes (FMACA, and
FMACA,) with Ty, Fy and Ty, Fy mespectively. The single
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crossover pomnt 1§ selected randomly which 1s 4 in this case.
The first 4 symbols of first part are aken from FMACA,,
while the rest 3 symbols are wken from FMACA: 1o form
dependency matrix T3, Similady, in the second part, first
4 symbols of FMACA, and rest 3 symbols of FMACA,
are merged together to form the n-dimensional vector Fy.
The resultant chromosome with Ty and F5 after crossover s
shown in Fig. 5.

54 Mutation Algonthm

The mutation algorithm makes some minimal change m the
existing chromosome of PP (present population) to form a
new chromosome for NP (next population). Similar 1o con-
ventional single point mutation, the chromosome 15 mutated
ata single poinl.

Figure 6 represents an example of mutation technigue
on a randomly selected chromosome (FMACA ). A single
mutation point (4th position) 15 modomly selected from the
second part of the chromosome. The FMACA is the mu-
tated version of FMACA | where T3 15 equal to Ty,

The complete algorithm for evolving FMACA through
GA next follows.

Algorithm 2: Evolving FMACA
Input: Traming set S =5, -, 8., 5¢}
Maximum Generation { (.. ).
Output: Dependency matrix (77, n-dimensional vector
F, and class imformation.
begin
Step L Generate 530 new chromosomes for initial
population (1P).
Step 20 Inmtahee generation counter GC=2zero;
PP« IF.
Step 3: Compute fitness value FM for each
chromosome of PP according 1o Eq. (8).
Step 4: Rank chromosomes in order of fitness.

Lt

Step 5: Store T, F, and comresponding class
information for which fitness value FM = 1.
Step 6: If FM = 1 for at least one chromosome
of PP, then go o Step 12,
Step 7: Increment generation counter (GO,
Step 8: If GO = (7 then goto Step 11,
Step 9: Form NP by selection, crmossover and
muLation.
Step 10: PP+ NF; go 1o Step 3.
Step 11: Store T, F, and corresponding class
information for which the fitness value
15 MAXimum.
Step 12: Stop.

The experimental results reported in Sect.6 confirm
that the GA evolution provides the desired direction Lo armve
at the best FMACA for classifying a given set of patterns.

6. Experimenial Resulis

We report the experimental results o analyee the perfor-
mance of the FMACA as a pattern classifier.  The major
metric for evaluating classifier performance is classification
accuracy. We also report the genermtion and retrieval time,
and the memory overhead required o store FMACA tree as
secondary melnes.

6.1 Expenmental Setup

To analyze the performance of FMACA based classifier,
the expenmentation has been done on randomly generated
datasets. We first randomly generate K centroids which are
separated by a fixed euclidean distance (say D). Then
around each centroid, we randomly generate a set of pal-
terns within d,,,, distance (maximum euchdean distance be-
tween a centroid and an element in the associated set); wherne
s < 252,

For different values of n (dimension/number of at-
tributes) and K (number of classes), ¢ patterns are taken for
each dataset. Out of this, 50% patiems are taken from each
datasel 1o build up the classification model. The rest 50%
patterns are used to test the classification accuracy of the
model. For each value of n and K, results are based on 10
different pattern sets.

All the attnbutes in a datasel are nommalized o Facil-
itate FMACA learning.  Suppose, the possible value mnge
of an attribute attry is (attrval; gy, atrval g, ), and the real
value that class element j takes al attry s attrvalyg, then the
normalized value of attrvalyj s

attrvalyy — attrval; i

Nomalize(attrval;) =
; attrval; gy — attrval; i

All the experments are performed in SUN with Solaris 5.6,
350 MHz clock.

6.2 GA Evolution

The time required 1o find out desired FMACA at each in-
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Table 4  Generalization of FMACA hased classifier.
| Dataset Classification Accuracy | Breadth
n K.t of Tree | Trining Testing of Tree
n=5 | 169 15.6 |
K=2 2 RLE B4 21
£ = 4000 3 97.7 916 a5
4 984 924 a9
n= I | 53 5.25 |
K=5 2 243 232 13
£ =100 3 65.7 634 53
4 B5.5 824 0
=] Db 939 3

termediate node increases with the value of Gy, - the max-
imum number of generations of the GA. Our objective is
o identify the optimum value of G, while achieving high
classification accuracy.

To identify the minimum value of G, we camy oul
exlensive experiments to evolve desired FMACA for a par-
tcular value of r (dimension/number of attributes), & (num-
ber of classes), and ¢ (size of dataset). For a specific value
of n, K, and r, 10 different sets of data o be trained are gen-
erated randomly.

Figure 7 depicts the percentage of classification accu-
racy forn = 10, K = 6, and ¢ = 5000 at different values
of generation number (7). As the generation number ((7)
of the GA increases upto 50, the classification accuracy also
increases. But, it improves at a very slow gradient on further
mcrease of (7. S0, the GA s allowed 1o evolve for maximum
50 (= (7 ) generations.

6.3  Generalization of FMACA Tree as a Classifier

The aim of the proposed GA evolution s 10 generale a
FMACA tree that is good at classifying patterns similar w,
but not identical to, pattemns in the training sel. That is, a
FMACA tree that has the ability 1o act as a general paltern
classifier.

Table 4 represents the generalization capability of the
FMACA tee. While Column I depicts the depth of the
tree which is the number of layers from the root to the leaf

Table 5 Classification accuracy of FMACA and C4.5.
Mo of Size of Noof | Classification Accuracy

Attributes | Dataset | Classes | FMACA 4.5
5 5000 2 9.6 g8.al
4 g7 .80 9 X0

6 a4 80 86.20

B 95.30 BR.01

1 93 50 £2.50

[ 0 2 g7.90) FERE]
4 g7.10 93,10

f @ 70 RS540

B 93.00 F1.60

1 93,30 B340

7 1K) 2 LN 99 )
4 95 .4 BE. 10

6 kS | 8450

B 9289 R1.0X)

10 91.20 72,70

B 104K 2 97.30 91.21
4 94 Q) K36l

[+ 92 80 79,60

B Q.10 7241

10 91,70 7393

9 1K) 2 g7.10 89 .50
4 92 70 7687

6 9160 72.19

8 91.80 7400

10 8970 6698

10 1K) 2 Q6.6 BR.O0
4 93,30 7710

6 91.%) 9.3

8 Q.4 6.}

1 89,10 6270

nodes, Column 111 represents the classification accuracy of
both training and testing datasets respectively. Column 1V
represents the breadth of the wee which is the number of
intermediate nodes in each level of the tree. The classi-
fication accuracy of training and testing confirm that the
evolved FMACA ree can generalize a datasel irrespective
of the number of attributes (n), classes (K) and tuples (1)

6.4  Performance Analysis

In this subsection, we compare the classification accu-
racy, generation and retneval tme, and memory over-
head of the proposed classifier with these arrived with
C4.5[19]. The source code of C4.5 is oblained from
hitp:/fwww cse. unswedu.an/~quinlan/.

6.4.1 Classification Accuracy

Classification accuracy is defined as the percentage of test
samples that are correctly classified.  Table 5 compares
the classification accuracy of FMACA based tree-structured
classifier with that of C4.5[19].

Columns [ and I of Table 5 represent the number of at-
tributes/dimension (n) and size () of the dataset, while Col-
umn 11 depicts the number of classes (K) in the dataset.
In Column IV, we provide the classification accuracy of
FMACA based classifier and C4.5 for both training and west-
ing datasets respectively.
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01
Table 6 Classification efficiency and memaory overhead of FMACA and C4 5.
No of Mo af Efficiency {ms) Memaory

Atri. | Tuples Cieneration Time Retneval Time Owerhead (byte)
n) {1 FMACA 45 FMACA | 4.5 FMACA 4.5
5 2% 1F 241 43 o 1071 4335
2% 1P 14215 273 3 6 171 39519

2w 52557 T56 80 812 1078 336815

2 % 1P 18151 2782 286 2054 1261 3200687
f 2x1F 2276 » 3 | 51 1274 4839
2% 1 T2X725 162 4 259 11 46319

2w 252458 T91 35 574 1239 07727

| 2x HF | 1301428 | 36033 Rk 35008 1452 3979847

All the results reported in Table 5 confirm higher clas-

sification accuracy of FMACA than that of C4.5.

6.4.2  Generation and Retrieval Time

The performance of a classifier depends on how efficient is
the classifier generation process. The algorithm for generat-
ing the classification functions should be efficient. But, the
generation efficiency has not been an important design con-
sideration because usually the classifier is generated once
and then is used over and over again. Thus the performance
of aclassifier mainly depends on how efficient is the classi-
fier in retrieving all instances of a specified class.

Table 6 represents the generation and retreval time of
the proposed FMACA based tree classifier. Columns [ and 11
of Table 6 represent the number of attributes (n) and number
of tples of the dataset (1) respectively. Column 111 depicts
the generation and retrieval time. The results of C4.5 on
the same dataset are provided for the sake of comparison.
All the results reported in Table 6 establish that though the
generation time of FMACA is higher than that of C4.5, the
retrieval time is much lesser than C4.5,

The result on the first row of the table involves compar-
atively lesser number of training elements in a class - 100
for training and 100 for testing (total of 2 x 107 elements).
Quality of the design of FMACA tree, as explained in the
last section, suffers due w insufficient/inadequate number of
data elements in the training sel. Such a situation is likely
o lead to larger height of the FMACA tree and so higher
retrieval time.

643 Memory Overhead

The memory overhead of the proposed tree-structured clas-
sifier is the memory required to store the r-cell FMACA
in * n dependency matrix T and n-dimensional vector F)
at each intermediate node and the corresponding attractors
information. As we restrict o 3-neighborhood dependency,
the dependency matrix T becomes a tri-diagonal matrix. So,
the number of bits required to store each n-cell FMACA is
equal to [(3n - 23 + n]. Thus, the memory overhead at each
intermediate node of the tree, MOy, is given by

MOy, = sizeofl(FMACA) +

sizeoffassociated attractors information)

Hence, total memory overhead 1o implement FMACA based
tree-structured pattern classifier, MO, ., is

M(-}I-:m| = NIUim x
total_number_of intermediate_nodes

Table 6 represents the memory overhead required o
implement the FMACA wee.  Column IV of Table 6
represents the comparison of memory overhead between
FMACA and C4.5. All the resulis reported in Column 1V of
Table 6 confirm the low memory overhead of the proposed
pattern classifier.

7. Conclusion

This paper deals with FCA configured with rules supporting
OR and NOR function as next state logic. The characteriza-
tion of FCA based on the dependency matrix and the fuzzy
states of its cells have been reported. The analysis of FCA
based on the matrix algebraic formulation provides the nec-
essary foundation for analysis of 3-neighborhood FMACA
as a classifier. Theoretical formulation coupled with exten-
sive experimental results have established the scope of the
FMACA in pattern recognition/classification problem.
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