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f-Information Measures for Efficient Selection
of Discriminative Genes From Microarray Data

Pradipta Maji

Abstracti—Among the great amount of genes presented in mi-
croarray gene expression data, only a small fraction is effective
for performing a certain diagnostic test. In this regard, mutual
information has been shown to be successful for selecting a set
of relevant and nonredundant genes from microarray data. How-
ever, information theory offers many more measures such as the
f-information measures that may be suitable for selection of genes
from microarray gene expression data. This paper presents dif-
ferent f-information measures as the evaluation criteria for gene
selection problem. To compute the gene—gene redundancy (respec-
tively, gene-class relevance), these information measures calculate
the divergence of the joint distribution of two genes’ expression
values (respectively, the expression values of a gene and the class
labels of samples) from the joint distribution when two genes (re-
spectively, the gene and class label) are considered to be com-
pletely independent. The performance of different f-information
measures is compared with that of the mutual information based
on the predictive accuracy of naive Bayes classifier, K -nearest
neighbor rule, and support vector machine. An important find-
ing is that some f-information measures are shown to be effective
for selecting relevant and nonredundant genes from microarray
data. The effectiveness of different f-information measures, along
with a comparison with mutual information, is demonstrated on
hreast cancer, leukemia, and colon cancer datasets. While some
f-information measures provide 100% prediction accuracy for all
three microarray datasets, mutual information attains this accu-
racy only for breast cancer dataset, and 98.6% and 93.6% for
leukemia and colon cancer datasets, respectively.

Index Terms—Classification, feature selection, gene selection,
microarray analysis, mutual information.

[. INTRODUCTION

ECENT advancement and wide use of high-throughput
Rlu: hnology are producing an explosion in using gene ex-
pression phenotype for identification and classification in a vari-
ety of diagnostic areas. Animportant application of gene expres-
stom datain functional genomicsis toclassily samples according
o their gene expression profiles, such as to classify cancer ver-
sus normal samples or o classify different types or subtypes of
cancer [1].

A micmarry gene expression dataset can be represented
by an expression table, T = {uwy i = 1,..., mj=1,..., n},
where w;; € R is the measured expression level of gene G, in
the jthsample, and m and n represent the total number of genes
and samples, respectively. Each row m the expression table cor-
responds to one particular gene and each column o asample [1].
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However, for most gene expression data, the number of raining
samples isstill very small compared to the large number of genes
mvolved m the expenments [1]. When the number of genes 1s
significantly greater than the number of samples, it is possible
to find biologically relevant comrelations of gene behavior with
the sample categones [2].

However, among the large amount of genes, only a small frac-
tion are effective for performing acertain task. Also, a small sub-
set of genes is desirable in developing gene-expression-based
diagnostic tools for delivenng precise, reliable, and mierpretable
results. With the gene selection results, the cost of biological ex-
permment and decision can be greatly redoced by analyzing only
the marker genes. Hence, identfying a reduced set of most rel-
evanl genes 15 the goal of gene selection. The small number
of training samples and a large number of genes make gene
selection a more relevant and challenging problem in gene-
expression-based classification. This is an important problem in
machine learning and referred o as feature selecuon [3], [4].

Conventional methods of gene (feature) selection involve
evaluating different gene subsels vsing some index and select-
ing the best among them. Depending on the way of comput-
ing the gene (feature) evaluation index, gene selection meth-
ods are generally divided into two broad categories: filter
approach [3], [5-[8] and wrapper approach [3]. [4]. [9]. In
filler approach, the algorithms do not perform classification of
the data in the process of gene evaluation. Before application
of the actual learning algorithm, the best subsetl of genes 1s se-
lected in one pass by evaluating some predefined criterda, which
are independent of the actual generalization perfformance of the
learning machine. Hence, the filter approach is computationally
less expensive and more general [3], [5]-[8]. On the other hand,
in s most general fomulation, the wrapper approach consists
of using the prediction pedormance of a given learning ma-
chine to assess the relative usefulness of different subsets of
genes. Since the wrapper approach uses the learmng machine
as a black box, it generally outperforms the filter approach in
the aspect of final predictive accuracy of the learning machine.
However, it is computationally more expensive than that of filter
approach [3], [4]. [9].

In a gene selection process, an oplimal gene subsel 1s always
relative 1o a certain criterion. In general, different criteria may
lead to different optimal gene subsets. Howewver, every criterion
tries Lo measure the discriminating ability of a gene or a subset of
genes o distinguish different class labels. To measure the gene-
class relevance, different statstical and information theoretic
measures such as the F-test, f-lest [3], [6], entropy, informa-
tion gain, mutual information [5], [7], and normalized mutual
information [8] are typically used, and the same or a different
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metric like mutoal information, the L distance, Euclidean dis-
tance, Pearson’s correlation coefficient, ete., [5], [7]. [10] are
employed o caleulate the gene—gene redundancy. However, as
the F-test, #-1est, Euclidean distance, Pearson’s correlation, ele.,
depend on the actual gene expression values of the microar-
ray data, they are very sensitive o noise or an outlier of the
dataset [3]. [7] [10], [11]. On the other hand, as information
measures depend only on the probability distribution of a ran-
dom wvariable rather than on its actual values, they are more
effective to evaluate both gene-class relevance and gene—gene
redundancy [7], [8].

However, measures of the distance between a joint probability
distribution and product of the marginal distributions are infor-
mation measures [12], [13]. Information measures consttule a
subclass of the divergence measures, which are measures of the
distance between two arbitrary distributions. A specific class of
information {divergence) measures, of which mutual informa-
tion is & member, is formed by f-information ( f-divergence)
measures [12], [13]. In this paper, several f-information mea-
sures are compared with the mutual information by applying
them o the selection of genes from microarray data. The per-
formance of different information measures is studied vsing the
predictive accuracy of naive Bayes (NB) classifier, K-nearest
neighbor (K-NN) rule, and support vector machine (SVM). The
effectiveness of different f-information measures, along with a
comparison with mutal information, is demonstrated on breast
cancer, leukemia, and colon cancer datasets.

1. GENE SELECTION USING f-INFORMATION MEASURES

In a micmarray data analysis, the datasel may contain a num-
ber of redundant genes with low relevance 1o the classes. The
presence of such redundant and nonrelevant genes leads to a
reduction in the useful information. Ideally, the selected genes
should have high melevance with the classes while the redun-
dancy among them would be as low as possible. The genes with
high relevance are expected to be able w predict the classes of
the samples. However, the prediction capability is reduced if
many redundant genes are selected. In contrast, a dataset that
contains genes not only with high relevance with respect o the
classes but also with low mutual redundancy is more effective
in its prediction capability. Hence, 1o assess the effectiveness of
the genes, both relevance and redundancy need o be measured
quantitatively. In this paper, the maximum relevance-minimum
redundancy framework of [3] and [7] is used w select aset of rel-
evant and nonredundant genes from microarray gene expression
datasets.

A, Macimum Relevance-Minimum Redundancy Framework

Letz = {,..., iy G4, ..., G, } denote the set of m
genes of a given microarray dataset and 5 is the set of selected
genes. Define f(G,,C) as the relevance of the gene G, with
respect to the class label C, while f(G, Lz is the redundancy
between two genes Gz, and G2 The otal relevance of all selected
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zenes is, therefore, given by

Ll-:|-.-. Zfl:,ﬂl f]-::'
while the total redundancy among the selected genes 1s
L |-:-: un = Z f':,"-'*f 'ﬂ'_r fz}

Therefore, the problem of selecting a set S of relevant and
nonredundant genes from the whole set 2 of m genes is equiva-
lent to maximize Jope, and minimize o, 16, 0 Maximize
the objective function 7, where

quﬂ )= flG,Gy). (3

To solve the previous problem, a greedy algorithm, as follows,
is widely used [5],[7].

1) Initialize G — {Gy,....G,,....G 3 1,8 — @,

2) Calculate the relevance f(G,,C) of each gene G, € .

3) Select gene &, as the most relevant gene that has highest
relevance f{G,, C). In effect, G; € Sand G = G\ G,

4) Repeat the following two steps until the desired number
of genes are selected.

5) Calculate the redundancy between selected genes of 2
and each of the remaining genes of .

6) From the remaining genes of G, select gene G that

MMAXITIACS
5 2 F@.6)

'|l':|

Ll.-'r — L'?;x'h“. =

I l:"(‘ i

f(G;,C) (4)

Asaresult of that, G, € S and G =G4 Gy,

B f-Information Measures for Gene Selection

In this paper, different f-information measures are reported
o compute both gene-class melevance and gene—gene redun-
dancy for selection of genes from microarray data. The f-
information measures caleulate the distance between a given
joint probability p:; and the joint probability when the vari-
ables are independent pip;. In the following analysis, it is
assumed that all probability distnbutions are complete, 1.e
PP =2 pi =2 imi=1

The extent o which two probability distributions differ can be
expressed by a so-called measure of divergence. Such a measure
will reach a minimum value when the two probability distnbu-
tions are identical and the value mereases with increasing dispar-
ity between the two distributions. A specific class of divergence
measures is the set of f-divergence measures [12], [ 13]. For two
discrete pmb.ihlllLy distributions P = {p i = 1,2,.. ., n} and
n}, the f-divergence is defined as

F(PIQ) = qu(qu

The demands on the function f are that: 1) f: [0, 2¢) —
{—o0,2c); 2) f is continuous and convex on [0, 20 ); 3) finite on
(0, 20); and 4) strictly convex at some point ¢ € ([, 00, The

(5)
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following definition completes the definition of f-divergence
for the two cases for which (3) 15 not defined:

o 0, ifp, =g =0
af (—') = £ (6)
i i Ii_n_l fii:l ifp; = 0.q =00

A special case of f-divergence measures is the f-information
measures. These are defined similady to f-divergence measures,
but apply only w specific probability distributions, namely, the
joint probability of two variables P and their marginal proba-
bilities” product Py = Py Thus, the f-informaton is a measure
of dependence: it measures the distance between a given joint
probability and the joint probability when the variables are in-
dependent [12], [13]. The frequently used functions that can be
used to form f-information measures include V-information,
I, -information, M, -information, and " -information. On the
other hand, the Renyi’s distance measure does not fall in the
class of f-divergence measures as it does not satisfy the defini-
tion of f-divergence. However, it is divergence measure in the
sense that it measures the distance between two distributions,
and it is directly related 1o f-divergence.

1) Velnformation: One of the simplest measures of depen-
dence can be obtained using the function V' = |z — 1], which
results in the V-mfomation [12], [13]

ijﬂ.j — | (7

where P ={p;|i=1,2,..., n},
and P={p,li=12..., =12, n} represent two
marginal probability distmbuotions and their joint probability dis-
ribution, respectively. That is, the V-information calculates the
ahsolute distance between joint probability of two vardables and
their marginal probabilities” product.

2) I, -Information: The I -information is defined as

V(PP <= B =

1 (pi)"
cefee — 1) =~ (pip )

L(P||A x B)= 229 (8)

for oo % 0, % 1. The class of 1, -information includes mutal
information, which equals I, for the limit oo — 1, i.e.,

L(P||P x Py) Zp,_l lng,( )furn—>1 (9)

3) M, -Information: The M, -information,
Matusita [12], [13], 15 as follows:

M.{x)=

defined by

b ile, el (10)

When applying this function in the definition of an f-
information measure, the resulting M, -information measures

[
= Ipu)°

for (0 < o << 1. These constitute a generalized version of
Vanformation, i.e.,

M, (PP x Bs)

— (g )| (113

the M, -informaton is identical o V-
information for e = 1.
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d) " -Information: The class of " -information measures,
proposed by Liese and Vajda [ 12], is as follows:

_ 1L — |,
ewr-{

1 —z"

for ()< o =1

(12)
for o = 1.
For () < o < 1, this function equals w the M, function. The
y= and M, -information measures are, therefore, also identical
for 0 < o << 1. For « > 1, " -information can be writlen as

Zh

3) Renvi Distance: The Renyi distance, a measure of infor-
mation of order o [12], [13]. can be defined as

— pipsl*

x*(PllA x B)
(pip; )~

(13}

o 1 (i )°
Ru(P|P, x Py) = logy " —Ei
i e ~ (mpy )

for o 75 0, # 1. 1t reaches its minimum value when p;; and
ey are identical, in which case, the summation reduces to
5 . As a complete probability distribution is assumed, the
sum 1% 1 and the minimum value of the measure 15, therelore,
equal to 0. The limit of Renyi’s measure for o approaching 1
equals 1y (P|| Py = Py, which is the mutual information.

&) Discretization: In microamay gene expression datasets,
the class labels of samples are represented by discrete sym-
bols, while the expression values of genes are continuous.
Hence, o measure both gene-class relevance of a gene with
respect to class labels and gene—gene redundancy between two
zenes using information theoretic measures such as mutual in-
formation [5], [7], normalized mutual information [8], and f-
information measures, the continuous expression values of a
gene are divided into several diserete partitions. The a prior
(marginal) probabilities and their joint probabilities are then
calculated to compute both gene-class relevance and gene—gene
redundancy using the definitions for discrete cases. In this paper,
the discretization method eported in [5] and [7] 15 employed o
discretize the continuous gene expression values. The expres-
sion values of a gene are discretized using mean g and standard
deviation o computed over n expression values of that gene:
any valve larger than (g 4 o/2) is transformed Lo state 1; any
value between (p — /2] and (p 4 /2] 15 ransformed to state
0; any value smaller than (@ — /2] is tansformed to state —1.
These three states correspond 0 the overexpression, baseling,
and underexpression of genes.

1I. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of different f-information measures is ex-
tensively compared with that of mutual information and nor-
malized mutual information. Based on the argumentation given
in Section 11-B, the following information measures are chosen
to include in the study:

1y 1,- and R, -information measures for o ¢ 0 and o # 1;

2y mutoal information ({ - and By g-information);

3 M, -imformation measure for ) < o < 1;

4) " -information measure for o > 1;

5) nomahized mutual information 0,



10y

A. Gene Expression Datasets

In this paper, three public datasets of cancer microarrays are
used. Since binary classification is a typical and fundamental
ssue in diagnostic and prognostic prediction of cancer, differ-
ent f-information measures are compared using the following
binary-class datasets.

1) Breast Cancer Dataset; The breast cancer dataset con-
tains expression levels of 7129 genes in 49 breast tumor sam-
ples [14]. The samples are classified according to their estrogen
receptor (ER) status: 25 samples are ER positive while the other
24 samples are ER negative.

2) Leukemia Dataset: It 15 an affymetnx  high-density
oligonucleotide array that contains 70N genes and 72 samples
from two classes of leukemia: 47 acute lymphoblastic keukemia
and 25 acute myeloid leukerma [1].

F) Cedon Cancer Dataset: The colon cancer dataset contains
expression levels of 40 twmor and 22 normal colon tissues. Only
the 2000 genes with the highest mimimal intensity were selected
by [15].

B. Class Prediciion Methods

The following three classifiers are used o evaluate the per-
formance of different f-information measures.

1) NB Classifier: The NB classifier [16] is one of the oldest
classifiers. It is obtained by using the Bayes rule and assum-
ing that features (variables) are independent of each other given
its class. For the jth sample 5; with m gene expression levels
Twige e Whiiie a5 ;i + for the m genes, the posteror proba-
bility that 5; belongs 1o class ¢ 15

o

ple| s;) o Hp{u.‘,_l. ] (14}
=1

where plar; | o) are conditional tables (or conditional density)

estimated from training examples.

2) SVM: The SVM [17] s a margin classifier that draws
an optimal hyperplane in the feature vector space; this defines
a boundary that maximizes the margin between data samples
in different classes, therefore leading o good generalization
properies. A key factorin the SV M s 1o vse kemels o construct
nonlinear decision boundary. In this paper, linear kernels are
used.

3) K-NN Rule: The K-NN rule [16] 15 used for evaluating
the effectiveness of the reduced gene set for classification. It
classifies samples based on closest training samples in the fea-
wre space. A sample is classified by a majority vole of its
K-neighbors, with the sample being assigned o the class most
common among its K-NNs. The value of K| chosen for the
K-NN, is the square root of the number of samples in training
scl.

C. Performance Analysis

The expenmental results on three microarmy datasels are
presented in Tables 1-1X. Subsequent discussions analyze the
results with respect wo the prediction accuracy of the NB, SVM,
and K-NN classifiers. Tables LIV, VIland Tables 11, V', VI pro-
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TABLE 1

PERFORMARCE ON BREAST CANCER DATASET UsinG NB CLASSIFIER

T ~ Number of Selected Genes
? 5 b 1m0 15 20 23 3t
HANO| HEAL D YR 8E0 (L] [IH [IH JIH
950 | R0 0RO 980 140 100 e 980
5.4 HID U3 AE R D ues wEy
gs0 | OO 9549 a0 980 939 939 BRE
UEMO UEAL MR RS 30 Wk 91k KUE
Y50 | 950 8se 939 491E 41E 9LE O ETE
B0 | 0580 0 0Rs a3 918 U1 BRSO RTa
557 | 950 458 QR0 AN 100 100 100
B0 | 084 | =g 98 140 100 0 980
WEN UL | uRL L LED w39 9 E 9K KE
578 | B4R RAY BRY BRLR BTE  BTE RIY
o500 | OB 0549 4980 939 BDE BORE BAY
Os0 | 050 0849 49349 49lE 9lE 915 BIA
Q50 | 050 0849 49349 939 939 939 BO&
YEM MR | HEA W0 1 1003 100k 1004
R0 | R BED 980 140 100 e 980
5.4 HIO | Uz A5 A0 UH0 U5 aEe
Gs0 | OB 9549 a0 980 9389 939 BRE
B0 | 084 x4 a3 8 AUl dls R
YW | YLe 8938 4939 d91LE 0 Y1E 9LE B4
DRV S RS B RS SV I S Y] - TN .
950 BEL ) BEY I 859 939 939 Y1E

TABLEIL
PERFORMANCE ON BREAST CANCER DATASET USING SVM

E Mumhber of Seleced (renes
2 3 3 1] 1= A a5 31
i Hl.o o | asa 980 980 e 93%  953%
forn A1.A i 110 W 5s 5w R 95m
iis Lo 954 100 lan 80 839 939 980
M. ALA | ORA 110 1IN Y- B IR T B
iy 357 ) 9La 0 8B4 lan -8R0 e 939 939
oo 57 050 0 A8d) 140 140 G 955 95%
WY 3T MER O UEY 14101 Tary 958 938 939
A TiE 050 | o8 | 8GR BYE 4939 4939 9%
Ados | WA Hi i T 39 U5 LU
M. | BT | 8RB | 039 BOE 9395 89539 939 939
Afpn | HAT D HLR O HTR O U1K HTK O WAT WAT HAT
¥ HE.T O OHTE O UMLK HRK o wEs ulE o wss 95y
e HE.T 0 URY L uMdl 1410 140 o w5s 95y
D HRT | MUK MID U5e UMD 9580 9d0 95y
M2 LN M es8 450 980 480 9359 959
My s A1.A 110 1101 (LW E ALY B B L ERT S R
Ho .z 5L | S84 1402 g 820 959 939 980
Iy ALA | ORA 1101 I ARE A dag Ay
His HET MK uEA I A0 0 958 959
Tt 357 | RAR 054 AR 980 G 935 9539
oo HT.H | HT.H HIN W) | 439 A58 9389 959
L7 3l.a | 9EA 100 0 880 93% 420 4939

vide the performance of different f~information measures using
the NB and SVM, respectively, while Tables U1, VI, IX, show
the resulis using the K-NN. The values of o for f-information
measures mvestgated are 0.2, 005, 0.8, 1.5, 2.0, and 3.0, Some
measures resemble mutoal infommation for o = 1.0 (0, and 8,
and some resemble another measure (M and ' equal V).
To compute the prediction accuracy of the NB, SVYM, and
K-NN, the leave-one-oul cross validation is performed on each
gene expression dataset. The number of genes selected ranges
from 2 o 30.

Tables 1, 1V, and VI show that, for three microarmy datasets,
genes selected by Iy o-, My o-, and Ky s-information measures
lead to higher classification accuracy than those selected by
mutual infomation and other f-information measures. With
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TABLE L1 TABLE V
PERFORMANCE ON BREAST CANCER DATASET UsinG K-NN RULE PERFORMANCE ON LEUKEMIA DATASET Using SVM

F Mumber of Selecled Crenes f Mumber ol Selecled Gienes
2 5 [ 10 13 n 25 an 2 3 [ 1 15 20 25 atl
Inz OB G390 039 | B9 | 940 | 950 | 939 | OEY foz [ 94 WS W4 [ vdd [ u31 [ 944 [ 972 49772
Ta 30R  0X0 | 089 | 050 | 980 | 980 [ 950 | 950 Jorn | D44 [ OSK | O58 | 058 | 972 | 958 | 958 972
fna OB QA | U39 | 959 | 940 | 950 [ 939 | 9HD fog | b | S | USH | MR [ MRE | UAEL | 972 A
Iy A0R 0RO [OD QR0 | 1Ok | 950 | 930 | ORD0 Dy | B4 | fds [ 03] ) OS2 [ 958 | ORG | 958 084
13 BT Uiw 160 160} R S T L T L 1.5 EXA| 12 2| uRy 1K) yra |yt g
Ian 857 QLB 0D 10D | 930 | 939 | 939 | 930 Ton | 931 [ 258 | 953 | 944 [ DES | D72 | 972 472
Fag  RITOOULE W | Ty | UR0 | 934 | 954 | SH.D Fyn | wa1 | uss 2k | ur2 | uTe | uTe uay
Moy 837 919 | BT | BALT | BYE | BOE | BAT | EATY Az | 230 | 972 ) 972 [ 958 | DEB | 944 [ 031 044
Mys ROk O30 0 039 | 030 | 980 | 980 [ 950 | 050 Afar | 4 [ 0S8 | 058 [ 058 | 072 | 058 [ 058 072
AMas  WET O BRE O BRT | QLE | 459 | 959 [ 950 | 959 Aag | 903 | 972 [ W4 | UsE | MK | Y86 | BELH 458
Mie T4 FRRR | RDOR | RDR | RDR | 018 [ 913 | 014 Afyp | W3 | 972 | ORG [ D6 | DRA | 1D [ 972 072
Wi RET O ORDR O3S AR 050 | 930 | G50 | 9hD wiFol e | o5k | 972 | 0as [ 072 [ 072 | 058 072
32 RET 01K 10D | 100 | 0RO | 950 [ 950 | ORD w30l | osR | 05R | 044 | DRe | 072 | 072 072
31 RET  O1R 059 ) QR0 | 980 | 9.0 [ 100 | 9RD w0l | a7 | o072 | 058 | Das | 044 | RS DR
Hiz HOLE W39 W39 W59 | Ad | SR | 954 | 9EY Hia 12 4] LA ] k.4 44,4 ual 4.4 urzoo oz
Ry, 8B 939 059 | 459 | 980 | 980 [ 950 | 950 Thys | W4 | 053 | 055 | 058 T2 | O5B | 05B 972
Hos ROV WEO W39 WR9 | AdD | 9ag | 954 | 9K Hia 124 L] L] Ya N WS E | WEA | UTZ O WG
Ao 89B QED O LOD ) 9RO 10D | 939 | 939 | 950 My | 4 A | 931 | 9sE | DRE [ DES | DEA DES
-3 AT Uia 1610 L H] US| a5 | 95 | way H15 i [ s | URA | T2 UTa [ uEA [ uTE o
Hen 857 OLE | D80 | 939 | 939 | 959 [ 959 | 930 o | M4 [ 921 ) 958 [ 044 | D72 | 985 [ O72 4732
Fsq ult.s  UEd 1410 Yig | e | 95y | ok TiHl Rao Bad [ Ui 5K ur.2 UT2 [ UEA [ U3 uaK
L HOE O BEO QRO GE0 | g0 | 939 | 934 | 954 {: Odd | BAM | USH [ MR | DEE | UIE [ QEL 472

TABLE IV TABLE VI
PERFORMANCE ON LEUKEMIA DATASETT USING NB CLASSIFIER PERFORMANCE ON LEUKEMIA DATASET Using K-NN RULE

5 Mumber of Selecred Gengs I Muctiber ol Selaited Genes
il 3 E] 0 15 20 23 30 2 B H 11 15 200 L] a
T G2 %A Ty Ty gy | ur2 [ usa G54 fon 1.7 ML 5K u4.4 LUr R U SR I PO e
T | SBG [ 972 | 977 [ 938 | 938 [ 958 | D44 | 951 doen | B [ W2 | DSE ) 055 [ 958 | DEB | UTZ2 472
Lo | D86 | OR6 [ 972 | 958 | M4 [ O3] | 903 [ &73 Joow | Db | D42 | 044 | 044 | OF2 | Oy2 | Ov2 T2
P | owws | use | 958 | 05 | o4 | O3 | E7S | #600 Pl | wdel | b | wdd [ udd | U7z | 972 | 972 434
N | Sd | 072 | 958 | 958 | 917 | 875 | 847 | 847 Do | 0G| 058 | 044 | OSR [ 002 | 058 | Ov2 49Tz
fag | | uTz | 9ss | 95 | 01T | MM | BT | #47 fag | ows | wa | use | uEK [ uTe | uma | w2 w72
Lo | W4 | 072 [ 972 | 944 | M4 | 875 | BT | %32 Ty | 951 | 93] [ 955 | 044 T2 |02 [ 0T2 AT
M n ] Uz K T 1008 TRl TRl Tl 1% Adn 2 2E] 1k L] 1 USLH | NEK | AT AT
Meyp, | 286 | D72 | 972 | 938 [ 938 | 958 | 44 | 93] Ao | 24 | 4= | 055 [ 058 | 958 | 058 | 072 472
Mag 11X wr2 9T | 9ad | 917 AR HEAD Hf Ala g LA 58 M4 Uz K Ur2 [ T2 | ads s
Ay, o [ UEE | 944 | 944 [ BH9 | 903 | 7S | BT Ay | B9 | - | 3O T2 | w2 | 9T | UTE UEe
w5 edd | 9T | 972 | 93F | 9 | B73 | B0 | &6 b5 [ B3| w1 | 9sE | usE [ UTE | WEG | 055 YRA
AP edd | W | 9AE | 9AR | 91T | BES | B4T | BT 50 o3 ] | en] | oesg | wsh | uT2 | W | 472 4T2
w0 add [ g7 | 944 | 903 | B7A | 84T | BT a0 o3 ] | esd | eng | wsh | uT2 | T2 | 4T2 0 435
Ry G2 5.4 Ty Ty gEe | ur2 [ wsa G54 iy 2 1.7 ML | R u4.4 urz |z e g
Hos | 980 [ 972 | 97,0 | 934 | 958 [ 958 | 944 | 931 Hos | e | %2 [ 45H | USE [ URE | U3k | 972 472
Mywe | @86 [ 072 | 938 | 958 [ %44 | 017 | 03 | 873 Thys | Sd | 42 [ 044 | 0S8 | OS8R [ 058 | 072 avz
Mo DL WA URE | 9RH | A M3 ®1A 1 My el | L | W4 | Wad uwr2o a2 ure bal
Mis | @86 [ 086 [ 972 | 972 | 931 | 882 | &4l | 86.1 s | M4 [ 4= | 044 [ 0SB | 0BG | 972 (072 4732
Fag LI wr2 wAH | add | owEld AR ER] €447 Haa 4 X b 431 LURRCI IR I I SR
A | 986 [ D72 [ 93% | 944 | 9LT | B8O | ¥75 1 M | M4 A 4 [ 072 | 044 | QT2 [ D72 472
I WHG | WTZZ | 95 | add | nl] MR HELE | WIS I .4 1k, 04 444 UK [ UK [ 4T uia

the NB, a classification accuracy of 100% is obtained for I »-
and Ry s-information measures considering 15 or more genes in
case of breast cancer data, eight or ten genes in case of leukemia
data, and 25 or more genes i case of colon cancer data, while in
case of M s-information measure, 15 or more genes for breast
cancer data, 8 or more genes for keukemia data, and 30 or mone
genes for colon cancer data are required o achieve this accu-
racy. Similarly, 1005 accuracy for breast cancer data s oblained
for Iy s - and ) s-information measures using only five genes.
Howvever, both mutual imformation and normalized mutual in-
formation provide maximum 98.6% accuracy for leukemia data,
93.6% and 95.2% accuracy for colon cancer data, and 100% for

breast cancer data using len genes.

The results reported in Tables 1LV, and VIII are based on
the predictive accuracy of the SVYM. The results show that in
case of breast cancer dataset, the f-infommation measures, along
with mutual information and nommalized mutual information,
achieve 100% classification accuracy. While at least eight genes
are required for mutual information and normalized mutwal in-
formation to attain this accuracy, By a-, fy5- My -, g 2-, and
Fy s-information measures need only five genes. On the other
hand, both muotwal information and normalized muotwal infonma-
ton provide maximum Y8.6% accuracy for leukemia data using
25 genes, while I -, My 4-, and V- (i.e., My 4-) information
measures give 100% accuracy using only 15, 15, and 20 genes,
respectively. Similarly, for colon cancer dataset, while mutual
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miomation and normalzed mutual information attam maxi-
mum #8.7% and 85.5% accuracy, respectively, My g- -
and s g-information measures provide maximum 91 9% ac-
curacy, and both I ;- and 1“:' -information measures provide
maximum Y.3% accuracy.

For breast cancer dataset using the K-NN, 1005 accuracy
s oblained in case of mutval informaton as well as T, -
(e =1.5,2.0,3.0), ¥ (o= 20,300, B~ (o= 1.5,30) in-
formation measures, although the nomalized mutual informa-
ton provides maximum 98.0% accuracy. For the K-NN, while
mutual informaton and nomalized mutwal informmation achieve
maximum 97.2% and 98.6% accuracy vsing at least 15 and 30
genes in case of leukemia dataset, the V- or M) j-information
measure provides 98.6% accuracy using only eight genes. Sim-

ilarly, the v*"-information measure achieves 90.3% predictive
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accuracy for colon cancer dataset, while mutual information
and normalized mutual informaton provide maximum 88.7%
and B7.1% accuracy, respectively. However, in case of the
E-NN-based results for both leokemia and colon cancer
datasets, the magonty of f-information measures produces re-
sults similar to those of mutual information and normalized
mutual information.

From the results reported here, itis seen that, for a particular
number of selected genes, the predictive accuracy for some f-
mformation measures 15 higher as compared o that of mutual
mformation and normalized mutoal information, imrespective of
the classification models and microarmy datasets used. Also, the
I,- M, - and R -information measures attain 100% prediction
accuracy using the NB for oo = (1.2 1n all three datasets. In all
cases, the M, s~ and 1 5-information measures provide same
results as well as the 1'3"}-;Lnd I g-information measures show
exactly same performance as they are related by the following
relations:

Ios(P||P, x B) = 2My 5(P||P, x P»)
VEUP|IP x B) = 202 (P||P; x By).

(15)
(16)

For colon cancer and levkermia datasets, top ranked genes
selected by [y a-, My o- and Ry s-information measures are
available.!

D, Analvsiv on Class Separvability

In case of leukemia and colon cancer datasets, {,,-. M, - and
i, -information measures provide significantly better results
for o = (1.2 as compared o mutual informaton and normahzed
mutual information. In omder o analyee the results of these
measures further, the class sepambility index 15 used next. The
class separability index & [3] of a dataset is defined as § =
trace(S), LS., where S, and 5, are the within and between

Uhitp e isical ac.ind ~pmajifgeneresults. himl
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TABLE X
CLASS SEPARABILITY ANALYSIS
| Jatanet NoedBy e 00 | Ty | Baa | M-
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Calon canger .72 072 [ 0.6 | 045 | nos
class scatter matrices, defined as follows:
o o
s narl ( T oy o
S =3 PB{(X —p)(X — ) I} = 3 miE
=1 #=1

e [
Sy=3 (pj — Mo)(pj — M) : Mo = E{X} = pjn;
i=1

i=1

where ' is the number of classes, p; is a prior probability thata
pattem belongs toclass ¢, X is afeature vector, i, is the sample
mean vector for the entire data points, £; is the sample covari-
ance matrix of class c;, and E{-} is the expectation operator. A
lower value of the separability criteria ensures that the classes
are well separated by their scatter means. Table X shows that the
class separability index S obtained using I, o=, M, -, and R, o-
information measures are better than those obtained using I
(mutual mformation) and U (nomalized mutual infomation)
for breast cancer, leukemia, and colon cancer datasels.
IV. ConNCLUSION

This paper introduces different f-information measures in
order to identify discriminative genes from high-dimensional
zene expression data. It presents the results of selecting relevant
and nonredundant genes from microamray data using different
measures from information theory. The popular and extensively
researched measure of mutual information s compared with
Ve, I, -, and B, -information measures. The maximum
relevance-minimum redundancy framework is used here as the
gene selection method for different f-information measures.
The pedormance of different measures is evaluated by the pre-
dictive accuracy of NB classifier, K-NN rule, and SVM.

For all datasets, significantly better results are found for sev-
eral measures as compared 1o mutual information. The results
obtained on real datasels demonstrate that the proposed f-
information measures can bring a remarkable improvement on
gene selection problem, and therefore, the f-information mea-
sures can be a promising alternative to mutual information for
gene selection. They are capable of identifying discriminative
genes that may contribute to revealing underying class struc-
wres, providing a wseful tool for the exploratory analysis of
biological data. In order 1o address the problem of multiplicity
of marker genes, a detailed analysis of the biological relevance
of the selected genes will be conducted in future. The gene inter-
actions will be studied in detail o see whether the incorporation
of gene interaction information can improve the diagnostic test.
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