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Efficient Design of Bio-Basis Function
to Predict Protein Functional Sites
Using Kernel-Based Classifiers

Pradipta Maji® and Chandra Das

Abstract—In order to apply the powerful kernel-based pattern
recognition algorithms such as support vector machines to pre-
dict functional sites in proteins, amino acids need encoding prior
to input. In this regard, a new string kernel function, termed as the
modified bio-basis function, is proposed that maps a nonnumerical
sequence space to a numerical feature space. The proposed string
kernel function is developed based on the conventional bio-basis
function and needs a bio-hasis string as a support like conventional
kernel function. The concept of zone of influence of a bio-basis
string is introduced in the proposed kernel function to take into
account the influence of each hio-basis string in nonnumerical se-
quence space. An efficient method is described to select a set of
hio-hasis strings for the proposed kernel function, integrating the
Fisher ratio and a novel concept of degree of resemblance. The in-
tegration enahles the method to select a reduced set of relevant and
nonredundant bio-hasis strings.

Index Terms—Bioinformatics, functional site prediction, pattern
recognition, sequence analysis, support vector machines.

[. INTRODUCTION

ECENT advancement and wide vse of high-throughput
R technology for biological research are producing an enor-
mous amount of biological data. The successful analysis of bi-
ological data has become entical. Although laboratory exper-
iment is the most effective method 1o analyze the biological
data, it is very financially expensive and labor inlensive. Pattern
recognition technigques and machinge learning methods provide
useful tools for analyzing the biological data [1]-[4].

The prediction of functional sites in proteins is an important
issue in protein function swdies and hence drug design [5], [6].
The problem of protein functional sites prediction deals with
the protein subsequences. The subsequences are obtained from
a whole protein sequence through moving a fixed length sliding
window reswdue by residue. The residues within a scan form a
subsequence. A functional site 15 sad o present within a subse-
quence, if there exists a match between the subsequence and a
consensus pattern of a specific function; and the subsequence is
labeled as functional, otherwise it s labeled as nonfunctional.
Therefore, the goal of this problem is to classify a subsequence
whether it 15 functional or nonfunctional [6].
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In classification, the main objective 15 1o tran a model based
on the labeled data. The rained model 1s then used for clas-
sifying novel data. Classification analysis requires two descrip-
tions of an object: one is the set of features that are used as inputs
to train the model and the other is the class label. Classification
analysis aims to find a mapping function from the features to the
class label.

To analyze protein sequences or subsequences, BLAST [7].
suffix-tree based algorithms [8], regular expression matching
representations [9], and finite state machines [10], [11] are a
few of the many pattern recognition algorithms that use char-
aclers or strings as their pnmitive type. However, some other
pattern recognition algorithms such as artificial neural networks
trained with back-propagation [3], [12], [13], Kohonen's self-
organizing map [1]. feed-forward and recurrent neural networks
[4]. [5]. bio-basis funcion neural networks [14]-[19], and sup-
port vector machines [6], [20], [21] work with numerical fea-
tures to predict different functonal sites in proteins such as
protease cleavage sites of the human immunodeficiency virus
(HIV) and the hepatitis C virus [13], linkage sites of glycopro-
tein [3], [19], enzyme active sites [22], posttranslatonal phos-
phorylanon sites [15] immunological domains [23], Trypsin
cleavage sites [ 16], protein-protein interaction sites [21], and so
forth. Hence, in order to apply the powerful kernel-based pattern
recognition algonthms such as suppon vector machines 1o pre-
dict functional sites in proteins, the protein subsequences there-
fore have o be encoded prior to input. The objective of coding
brological mformation in subsequences 15 o provide a method
for converting nonnumerical attributes in subsequences o nu-
merical features.

There are two mun methods for coding a subsequence:
distributed encoding [12] and the bwo-basis function method
[ 14 16]. In the distributed encoding method, each of 20 amino
acids 15 encoded using a 20-bit binary vector [12]. In effect, a
subsequence with i amino acids or residues 15 converted into
a binary string of length 20w, Hence, in this method, the input
space for modeling is expanded unnecessarily [13]. Moreover,
the use of the Euchidean distance may not be able 1o encode
biological content in sequences efficiently [13].

In this background, the conce ptof bio-basis function has been
proposed m [14]-[16] for encoding subsequences. The bio-basis
function is a string kernel function that takes an input subse-
quence and areference string asits two arguments; the reference
string is termed as the bio-basis string. A set of bio-basis func-
tions transforms a nonnumerical subsequence 1o a numerical
feature vector. Transformation of an input subsequence to a nu-
merical feature vector is performed based on the similarity of the
mput subsequence and a set of bro-basis strings. The similanty
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15 caleulated usimg an amino acd mutation matrix. The bio-basis
strings are also the subsequencesof the protein sequence that are
used to transform all subsequences into numerical feature vec-
tors with dimension equal 1o the number of bio-basis strings.
The bio-basis function has been successfully applied 1o predict
different functuonal sites in proteins [14]-[19].

The most important issue for bio-basis function is how 1o se-
leet a reduced set of most relevant and nomredundant bio-basis
strings. Berry ef al [15] used the Fisher mbo for selection of
bio-basis strings. Yang and Thomson [ 16] proposed a method 1o
select bio-basis strings using mutual information. In principle,
the bio-basis stangs in nonnumerical sequence space should be
such that the degree of resemblance between pairs of bio-basis
strings would be as mimmimum as possible. Each of them would
then represent a unigue feature in numerical feature space. How-
ever, the methods proposed in [ 15] and [ 16] have not adequately
addressed this problem. Also, it has not been pad much at-
tention earlier. Morcover, the bio-basis function proposed in
[14]-[16] does not take into account the impact or influence of
each bio-basis string in nonnumerical sequence space.

In this paper, a new stnng kemel function, termed as the mod-
ified bio-basis function, is proposed that modifies existing bio-
basis function. The concept of zone of influence of the bio-basis
string is incorporated in the proposed kernel function to Lake
into account the influence or impact of each bio-basis stnng in
nonnumerical sequence space. Anefficient method is presented,
integrating the Fisher ratio and the novel concept of degree of re-
semblance, W select most relevant and distnet bio-basis strings
for the proposed string kemel functions. Instead of using sym-
metne similanty measure as i [15], the asymmetric biological
dissirmilarity 15 used o caleulate the Fisher ratio, which is shown
to be more effective for selection of most relevant bio-basis
strings. The degree of resemblance enables efficient selection
of a set of distinet bio-basis strings. In effect, it reduces the re-
dundant features in numerical feature space.

The structure of the rest of this paper is as follows: Section 11
briefly inroduces necessary notions of existing bio-basis func-
tion, and related bio-basis stnng selection methods proposed by
Berry et all [15] and Yang and Thomson [16]. In Section 111
the maodified bio-basis function is presented, while an efficient

bio-basis string selection method s proposed in Sectuon IV,

Concluding remarks are given in Section 'V,

II. Bio-Basis FUNCTION aND SELECTION METHODS

In this section, the basic notion in the theory of bio-basis
function and the bio-basis string selection methods of Yang and
Thomson [ 16] and Berry et al. [15] are reported.

A widely vsed method in sequence analysis 1s the sequence
alignment [7], [24]. In this method, the function of a sequence
15 annotated through aligning a novel sequence with known
sequences. If the alignment between a novel sequence and
a known sequence gives a very high similarity or homology
score, the novel sequence 15 beheved to have the same or
similar function as the known sequence. In this method, an
amino acid mutation matnx 15 commonly used. Each mutation
matrix has 20 columns and 20 rows. A value at the nth row
and ymth column 15 a probability or a hkehthood value that the
ith amino acid mutates to the feth amine acid after a particular
evolutionary time [25], [26]. The mutation probabalities as sim-
tlaribes among amino acids are therefore metrics. The Dayholl
matrix { Table 1) was the first mutation matrix developed in 1978
[27] and many new mutation matnees were developed later on,
for instance, the Blosum62 matnix [25]. However, the above
method may not be vseful drectly for subsequence analysis.
Because a subsequence may nol contain enough information
for conventional alignment.

To alleviate this problem, the concept of bio-basis function is
mtmoduced i [14]- 16] for subsequence analysis. 1t is based on
the principle of conventional alignment technigue. Using a table
look-up technigque, a homology score as a similanty value can
be obtained for a pair of subsequences. The nongapped pairwise
alignment technigque 15 vsed o caleulate this similanty value,
where nodeletion or insertion 15 used o align two subsequences
[ 14} 16]. For ease of subsequent discussions, the following ter-
minology is used in rest of the paper.

o M= {ALC L WY bethe set of 20 amino acids.

* g orepresents the total number of subsequences with m
aming acids or residues obtained from a whole aminoe acid
sequence of length £ through moving a sliding window of
size rre residue by residue. Hence, = L — v + 1.
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A. Bio-Basix Function

The definition of bio-basis function is as follows [14], [16]:

: Blaa ey Al )
A H}q’{ﬂl ‘ .I.."1LI:?1--. .;u-j - J} i

« Alwg,u] s the homology score between a subsequence a:;
tlnd a hli}-]:hlhlh string v;;
« Al e denotes the maximum homology score of the ith
bi-basis string v, ; and
* w18 aconstant and typically chosen o be 1 [14], [15].
Suppose both z; and @5 have m residues, the homology score
between x; and v 15 then defined as

hirg )= Z Bl (s [ ] i [ (2)

where i [%]. v:[& 1 can be obtained from an amino acid
mutation matrix through a table look-up method. Note that
wi[k]s w[A £ B oand & s a set of 20 amino acids.

Consider two  bio-basis strings v, = KITRRT and
ve = YHADL, and a subsequence w) = II'TLS having
1 residues. The nongapped parrwise homology score
15 caleulated between the subsequence v and each bio-basis
string considering the mutation probabilities as in Table 1. For
first bio-basis string «, four mutation probabilities are

e =

|13 = BACL K = 24
I“Ilr 2,.1[7],._mrP Py = b
B 3, [3]) = WIR, R = 56:
Bl [1, ey [4]0 = RIS, T = 206,

Hence, the homology score between the subsequence 2, and the
bio-basis string v is given by
s
hlwsend =3 Wi b, o6 =172

=1

Similarly, the value of iw_, wa hetween the subsequence

and the bio-basis string w15 as follows:

- ZI wlior [, i [R]1 =112,

=1

.. il
|"'!.|: ;E._ . 'E.'_1J

The maximum homology scores of two bio-basis strings 4
and v are given by

Rl =205 and Moy ng) =212

Considering the value of =, 1

Do = Ml )

R TI

flaqom)  exp {"_r‘.u } AR
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il — Alie, )

Tirpoe) = exp {’r’b } = L2500,

falang 21y
s, il — Mg, ez)
iz, 1z

Five,ue] wexp {’,v_n, } 10K,

Hence, the value of bio-basis function [ir;,;] 1s high if
two subsequences .o; and @) are similar or close o each other.
The function value 15 one if two subsequences are identical, and
small if they are distinet. The function needs a subsequence as a
support, which 1s termed as the bio-basis stnng. Each bio-basis
string is a feature dimension in a numerical feature space. If 5
15 used o denote a collection of 20 amino acids, an inpul space
of all potential subsequences with s residues is &%, Then,
a collection of « bio-basis strings formulates a numerical fea-
ture space {1, 1o which a nonnumerical sequence space B is
mapped for analysis, that is, & — 1" The bio-basis function
can transfomm various homology scores 1o a real number as 4
similarity within the interval [0 1], that is,

s Fla,m = L (3

B. Bio-Basiy String Selection Using Mutual Information

In [16], Yang and Thomson proposed a method for bio-hasis
stnng selecuon using mutual informaton [28]. The necessity
for a bio-basis string to be an independent and informative fea-
ture can be determined by the shared information between the
bio-basis string and the rest as well as the shared information
between the bio-basis string and class label [16].

The mutual information is quantified as the difference be-
twieen the mitial uncertainty and the conditional LmL'LFldinl} Let
= 43 b be a set of selected bio-basis strings, & = {u | oa sel
of candidate bio-basis strings. & = ¢ (empty) at the beginning.
A prior probability of a bio-basis string vy, is referred as piv 0.
The mitial uncertainty of +; 15 defined as

I{w.) - —plos)lupleg), (4)
Simularly, the joint entropy of two bio-basis stangs . and +, 18
given by
IMepont  —plug,oe o ples, e (3)
where 1, & T and . £ &, The mutoal information between .
and w; is therefore given by

T = III:T.-';_.:I + Iy = IR, v
1—plv lu piug ) — plag ) Lo plagd

— .t Inplig, i) (6}

However, the mutual information of wy. with respect to all the
bio-basis strings i 0 15

Mg =S Ha il (7)
T
Combining (6) and (7), we get [16]

C
Zp g, rﬁllu_{ A } (H)
Tien il

i

I'::'"”.'-:'. i ]
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Replacing & with the class label &2 = €}, ... ¢
the mutual information

; ; ALY
AT g e £
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oLk

L

PR

flg, 1

measures the mutual relationship between vy and £ A bio-basis
string whose Jwy. £2) value s the largest will be selected as
#g and will make the largest contrbution o modeling (disenm-
ination using £2) among all the remaining bio-basis sirings in
=, Therefore, there are two mutual information measume ments
for 7., the mutual information between vy, and 05 Fiey, 0230)
and the mutual information between »p and B ey, 15 In
this method, the following criterion is used for the selection of
bio-basis strings [16], [29]

"-'EY'J.':I ! |:'i-"|'.' ; i :I [ 1{}}

where vy is g constant. 1n the current study, the value of 1y
15 set at 0.7 w give more weightage in discrimination [ 16],
[29]. The mayor drawback of the method proposed by Yang
and Thomson [16] is that a huge number of prior and joint
probabilities are o be calculated, which makes the method
computationally expensive.

At = aypfleg, 21 01

C. Selection of Bio-Basis Strings Using Fisher Ratio

In [15], Berry et al. proposed a method o select a sel
Vo=, oo e oof ¢ bio-basis strings from the whole
set X = {@#-.o i@y, o) oof wosubsequences based on
their discriminant capability. The disenminant capability of
each subsequence ;15 calculated vsing the Fisher ratio [30]
that follows next:

e =,

Fla) = (11)

e

fiaa 3
1ILI..'n'_,._: | T

where gy, and ey, denote the mean and standard deviation of
similanty values of subsequences presented i group X with
respect o the subsequence ;.

The n subsequences of X would have different composi-
tions of amino acids. Hence, they should have different pair-
wise alignment scores with the other subsequences of X, As the
class labels of these raining subsequences are known, these sub-
sequences can be patitioned into two groups or classes (Tunc-
tional and nonfunctional), which are denoted as X 5 < X and
Xeg © X, respectively. Denoting the similarity between two
subsequences @, and oy as i, e, the mean and standard de-
viation values for these two groups with respect o the subse-
quence ¢, can be wrtlen as

; | : ;o g
i, = FOF} [h.:_;r'_.l:, r1'|] = E Z e W) *.".'r'_.l: s X
(12}
1 ; ;
. Fa bl ) = hiop,w,) Vo £ Xp
R, R 3 hiwp) W
(13)
o3, = Ealh®lzsad]  [Ealhleg 2]
1 S - 3k
St S LT B L e (14)
Yo :
ok = Fabhfwewl]  Fulblre. )]
| 5 £ :
= — Z{f.!.l;;-::m;t:.-,:} —pn ¥t Fup € Xn (15)

Mo

where v, ey are the number of subsequences in & | and X4,
respectively. A[hlx;, xy)] and K]0 w70 represent the zero-
mean, first-, and second-order moment of similarity, that is, ex-
pectation of i{ws, w7 and #° v xq), respectively. Hence, the
numerator and denominator of (11) can be wrilten as

pa, = piw | [ Palfia,, el — e kleee )]s (16)
ﬁi: + ”-ii.: = LRl R e, ]
— [ FEalbie, m |+ (B0
(17)

The Fisher ratio 1s used o maximize the discriminant capa-
bality of a subsequence i terms of interclass separation (as large
as possible) and imtraclass spread between subsequences (as
small as possible). The larger the Fisher ratio value, the larger
the discominant capability of the subsequence. Based on the
values of the Fisher ratio, » subsequences of A can be ranked
from the strongest discnminant capability to the weakest one.
The method yields a set 1 of r subsequences from X as the
bio-basis strings which possess good discnminant capability be-
tween two classes, having evolved from original data set. The
basic steps of this method follows next.

1) Calculate the discriminant capabilities of all subsequences

of X using the Fisher ratio as in (11).

2) Rank all subsequences of X based on the values of Fisher

rati in descending order.

3) Select first o subsequences from Y as the set V7 of bio-basis

strings.

Step 3 of this algorithm 1s not necessarily optimal. It selects
e subsequences as the bio-basis stnngs based on their discrim-
mant capabilites without considering similarity among them.
However, the bio-basis strings in nonnumerical sequence space
should be such that the similarity between pairs of bio-basis
strings would be as minmmum as possible. Each of them would
then represent a unique feature m numerncal feature space. The
methods proposed in [15] and [16] have not adequately ad-
dressed this problem. Also, not much attention has been paid
Lo it earlier.

1. PROPOSED STRING KERNEL FUNCTION
Inthis section, a new string kernel function 15 presented based
on the concepts of hiological dissimilarity and zone of influence
of the bw-basis string.

A. Asvmmetricity of Bilogical Dissimilarity
Here, two asymmetric dissimilarities are defined between two
subsequences @ and x; as follows:

i wp =0t b =4k Iy 05T}

(18}

ey way = (s, my) = {hir; 0 — Al )

where ., . denotes the dissimilarity of subsequence =, from
the subsequence :; and fi{;, 7,1 = hix;, ;) is the nongapped
pairwise homology score between @; and 5.

Consuder two subsequences ; = KPR and 7; = YR AFK
with four residues. According to the Dayhoff mutation matrix
(Table 1), the nongapped pairwise homology score between two
subsequences w; and «; 15 therefore il w ) = Rl wl =
1M1, while the maximum homology scores of lwo subsequences
wi and oy are given by biwgor;] = 208 and h':.'r_r-, .:.'_,-‘_! = 212,
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respectively. Hence, the dissimilarity of subsequence ; from
the subsequence ;18 given by

diwy ol Rl ) = Bleg, e 208 = 1000 108
whereas the dissimilarity of 2; from =, is as follows:
Ao, ANy o) — Ble,agd )t 22 =100 112
Thus, the dissimilarity 15 asymmetne in nature, that is,
diw e e (19

The asymmetricity reflects domain organizations of two sub-
sequences x; and . When two subsequences s, and ry consist
of the same single domain, nf.['.'.n_,,._:.f:.;;)'n and i,y 1 will be sim-
tlar small values. However, suppose that &, has one extra do-
main, then dia: ;o) becomes large even if oz, r;) is small.
These dissimilarities may be used for clusterng of prolein se-
quences or subsequences so thal domam organizations are well
reflected. The asymmetric property of the biological dissimi-
larity was alsoobserved by Stogmimovie [31] and lloh et al. [32].
The asymmetric dissimilarity might be a powerful ool to cluster
sequences or subsequences and o explore the gene or protein
Umiverse.

B. Maodified Bio-Basis Function

The design of new string kernel function is based on the
principle of asymmetric biological dissimilarity. Using a table
look-up technigque, a biological dissimilanty 1s caleulated for a
pair of subsequences based on an amino acid mutation matnx.
The nongapped pairwise alignment method s used w caleulate
this dissimilarity, where no deletion or msertion 15 used o align
two subsequences. The definition of the modified bio-basis func-
tien 15 as follows:

Dy = Relv, i) }

i

Yo N —_
.frr|||:|ill‘r:r: Lyt Xy { Pk

. ) . il ]
that 15, fuaditied (25, %51 = exp { i Cr } (209

i+

where ~,, is a constant and typically chosen w be 1 similar

as < in (1), The parameter #; in (20) represents the zone of

influence of the ith bio-basis string w;. Combining (1) and (20},
the relation between the existing bio-basis function and modified
Bio-basis function 15

o flae,w) 3
]ﬂ-lJr|||-.:--.:.i|'i-:'~:][--r-'_,-:u"--:-']l [ﬂ] [L] ]-ﬂ-l,lrl:”"_.l-. T:.-_:' B

W U
(21)

If all the subsequences are partitioned into a set of disjoint
clusters considenng cach bio-basis string as a cluster prototy pe,
then the zone of influence of each bio-basis siring represents
the variance of that string with respect to the subsequences pre-
sented in that cluster. That s, the parameter o represents the
radius of the cluster associated with the bio-basis string 1. The
value of +; could be the same for all bio-basis strings if all of
them are expected o form similar clusters in nonmumerical se-
quence space. In general, it is desirable that vy should relate
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to the overall size and shape of the cluster associated with the
bio-basis string ;. In the present research work, the following
definition is used:

| : I
Fpp = = E iy gy = —
Thi T,

£

Ahles e Alrg e

(2

where n; is the number of subsequences presented in the cluster
associated with the dth bio-basis string a; (that is, the number of
subsequences having mimimum dissimilarity with the jth bio-
basis string 5 among all the bio-basis strings) and { A0, o)
hix;, v} is the dissimilarity of the subsequence @ ; from the
bio-basis string ;. In other words, the valoe of 1 represents
the average dissimilarity of input subsequences from their cor-
responding bw-hasis stnng +;.

Hence, the main difference between the proposed and ex-
isting string kernel functions is that the former normalizes the
asymmetnic dissimilarity value by the zone of influence or vari-
ance of the bio-basis string considering the impact or influence
of the bio-basis string in nonnumerical sequence space, while
the later, as in (1), does not take into account this, rather it nor-
malizes the dissimilarity value using maximum homology score
of that bio-basis string.

IV. PrROPOSED Bio-BASIS STRING SELECTION METHOD

In real biological data analysis, the data sel may contain a
number of similar or redundant subsequences with low discrim-
inant capability or relevance w the classes. The selection of such
similar and nonrelevant subsequences as the bio-basis strings
may lead o a reduction in the useful information in numerical
feature space. Ideally, the selected bio-basis strings should have
high discnminant capability with the ¢lasses while the similanty
among them would be as low as possible. The subsequences
with high discnminant capability are expected 1o be able w pre-
dict the classes of the subsequences. However, the prediction
capability may be reduced if many similar subsequences are se-
lected as the bio-basis srings. In contrast, a data set that con-
tains subsequences not only with high relevance with respect 1o
the classes but with low mutal redundancy is more effective
in its prediction capability. Hence, o assess the effectiveness of
the subsequences as the bio-basis strings, both relevance and re-
dundancy (similanty) need to be measured guantitatively. The
proposed bio-basis string selection method addresses the above
issues through following three phases:

1) computation of the discriminant capability or relevance of

each subsequence;

2y determination of the nonrelevant subsequences; and

3 computation of the similanty or edundancy among sub-

SEQUETICES.

An asymmetric biological dissimilanity based Fisher ratio 1s
chosen here o compute the discnminant capability or relevance
of each subsequence to the classes, while a novel concept of
the degree of resemblance 15 used o caleulate the mutual redun-
dancy (similarity ) among subsequences. The nonrelevant subse-
quences are discarded using a nearest mean classifier [30]. Next
the calculation of the Fisher ratio using asymmetric biological
dissimilarity is provided, along with the concept of degree of re-
semblance and the principle of nearest mean classifier.
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A, Fisher Ratio Using Biological Dissimilarity

In the proposed method, the Fisher mto [30] 1s vsed wo
measure the discnminant capability or relevance of cach sub-
sequence x; & X The Fisher o is calculated based on the
asymmetne biological dissimilanty. As the class labels of all
training subsequences are known, the set X can be partitioned
into two groups or classes Xy (functional) and Xz (nonfunc-
tional), where

a7 Xp i

Yol =wa;

AiLAg X

"(.ljl = T,

(23)
Tea 4 Ty = v (24)
Hence, each subsequence o; & X should have vy and n g dis-
similarty values with the subsequences of X, and Y5, respec-
tively. Denoting the dissimilurily of the subsequence w, from
the subsequence o, as d.l';rr_J 1, the mean and standard devia-
tion values for the two classes X 7 and A with respect to the
subsequence 2, are as follows:

B = nl_.1 Z el Vg £ Xy (25)

Hop, = ”.ln Zu’z Litn it b Wi © AR (26)
; l 4 . .

‘-’.%1: = 1 Z_{-:A'Q[_;.::_.I;.;.::;; —mi Py Mere & (27)

Gh = - Z{[-ﬁzf.;;:,.,w;;l — g} Vee € Xpo (28)

where 34, . 3y, . T4, and 7, represent the mean and standard
deviaton values of the subsequence r; for two groups X and
A uy, respectively. These four gquantities are caleulated based on
the square of biological dissimilanity with respect o the sub-
sequence &y Based on these four gquantities, the discnminant
capability of each subsequence «; 15 computed using the Fisher
ratio that is as follows:

|.|I_"'_-'| s F_’-H;

/

Fiash= L2 200
) =3
Y4 | T

(2%

Let iy = i, o) represents the maximuom homology score
of the subsequence ;. The above four quantties can, then, be
Wrillen using &; as

e +E_.L|'FF|:;,';J-,;.':;_‘|' o Ef:fE__‘[“f.[.T'j..T'-,']]}

(30)
fiag, = {r.:]_’ + b ] = De R )}
(31
i % = { st iEa i-‘t-g it |
[.E_.L[_lll I:;n;:_,i; : TU']]Q i
— A By [ o = Eg Rl o)
% g b5, m)
[l ey ]+ Rl e (32)

= -['—h.‘.; o [h.'rl: st
—| B R3] 2
-1r.L|F-,f."" Fgedig]]
Flalbdee o0 Fu[hfieg. w0
—[Ea e il + Balh ()]

2
el o

b33

where H[A"(x
ment of simil:

o ]: represents the zero-mean, »th order mo-
¥ A, 0 belween two subsequences 2, and
v Now, the numerator of (29) is given by

e = [ Falb i, Folh (e 2]}
=2 E W) — Eglhlcs o]t

|1,
(34)

Hence, the numerator of (299 not only depends on the dif-
ference of zero-mean, first-order moment of similarity of two
groups as m (11}, it also takes into account the difference of
zero-mean, second order moment of similanty as well as the
maximum homology score of the subsequence ;. That is, the
numerator of (29) depends on following three factors:

» difference of zero-mean, first-order moment of similanty

of two groups, [F hlay. e Bl xd])
« difference of zero-mean, second order moment of simi-
larity of two groups, | £, [#° Lrpoal] - En U TN E
« maximum homology score of the subsequence o, that 15,
My = |rJ.|;J.'¢'..T'.;:|.

Similarly, the denominator of (29) contains the following
Lerms:

gy +oh = e {EL WP ) + Eglh® (i)}

—An | Eable e 7 + [Eplhiae, o))
— L B, ) + _E-.[h"‘[-;-;_ il
+ e T By, 20 P [h )
+.+’.-lj[f.|.|r.‘?f' \.]lf"”[."? .IK J\_I]J'
S Ze
HGENR TR Fulh i w] ]
+ {Eq H ..L;__]]-I—tr{[l'! G-V H. (35)

Hence, the denominator of (29) considers the zero-mean,
higher order (up 1w fourth order) moment of similarity of
two groups as well as the maximum homology score of the
subsequence a;, whike that of (11) only takes into account the
zero-mean, first-, and second-order moment of similarity of two
eroups and does not consider the maximum homology score of
the subsequence z;. In effect, (29) calculates the discriminant
capability of each subsequence i; more accurately.

B. Nearest Mean Classifier

Aflter computing the discominant capability or mrelevance
r[:].'{] of each subsequence &; £ X using the Fisher ratio
according o (29), the nonrelevant subsequences are discarded
based on a threshold value &. The subsequences those have the
Fisher ratio values larger than or equal to the threshold value &
are considered as the candidate bio-basis stnngs. The value of
& is obtained using the concept of nearest mean classifier.

The proposed technigue assumes at least one bio-basis stnng
in the set X If the Fisher ratio value F{x, ) of the subsequence
#a 18 the maximum, then o, 18 declared to be the first bio-basis
string. In order o find other candidate bio-basis strings, the
threshold value & s caleulated wsing the nearest mean classi-
fier. To obtain the reliable arithmeie mean, the subsequence @,
and those have the Fisher ratio values less than Fia, ) /L0 are
removed [33], [34). The mean A4 of the Fisher ratio values of
the remaining subsequences is then caleulated. Finally, the min-
imum mean distance 15 calculated as follows:
14w

Piw,) = min|T ;) — A (36)



where the Fisher ratio value Fir,) of the subsequence z, has
the minmmum distance with A4, To make the threshold value
noise-insensitive, the Fisher ratio value F i, ) that is closest o
the mean A s setas &, rther than the mean itself, that is,

(37

The basic steps of this approach follow next.

1) Compute the mean Af of the Fisher ratio values of the
subsequences without considering the best and below one
tenth best Fisher ratio values.

2) Find out the Fisher ratio [ (2,1 of the subsequence i, that
has the minimum distance with A4 and set the threshold
vilue & = r[.'r',,‘:-.

31 Remove those subsequences with Fisher rauo values below
the threshold #.

After eliminating nonrelevant subsequences using the prin-
ciple of nearest mean classifier, the redundancy among existing
subsequences (candidate bio-basis stnngs) s caleulated interms
of nongapped homology score. A quantitative measure is intro-
dugced next to compute the stmilanity or redundancy between two
subsequences.

C. Degree of Resemblance
The degree af resemblance of the subsequence oy with re-

spect wo the subsequence «; is defined as

lll.r
DORx. w;) = (38)

It 15 the mbto between the nongapped pairwise homology score
of twoinpul subsequences :x, and =, 1o the maximum homology
score of the subsequence . 1L is used to gquantify the similarity
in terms of homology score belween pairs of subsequences.
Combining ( 18) and (38), the relation between the degree of re-
semblance and the asymmetric dissimilarity of the subsequence
at; with respect Lo the subsequence i, 15

di gt = flws, p0 [ — DO, ). (39)

The degree of resemblance 15 asymmelnic in nature, that is,

DRy, 0 22 DRy (40

This asymmelric propery makes a reference subsequence
different from the subsequence under study. 1t helps 1o find out
redundant subsequences with respect o a selected bio-basis
string. If two subsequences are different, the degree of resem-
blance between them is small. A high value of 1M1, T
between two subsequences i and 1, asserts that the similarity
between them is high, I two subsequences are same, the degree
af resemblance between them is maximum, that is, 1. Thus,

0 < DORm, 2} <1,

0. Details of the Algorithm

While the Fisher ratiois used to caleulate the discriminant ca-
pability or relevance of each subsequence, the degree of resem-
Blance takes into account the similarity or redundancy between
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two subsequences. Based on the concept of degree of resem-
Blance as in (38) and the Fisher ratio as in (29), the method for
selecting g reduced set of most relevant bio-basis strings is de-
scribed next. The algorthm proceeds as follows:

Selection of Bio-Basis Strings

« Input: ¥ = lu, .. T b be the set of »
subsequences with ne residues, where ;< O™ and

Moo= {ACL L LOWLY) be the setof 20 amino acids,

T e

« Output: ¥V = {wy,.. .65, ... t:] bethe setof ¢
bio-basis strings with rre residues, where o © X and
i & OhL
begin:

1) Initialize ¥ — X and ¥ — @

2) Caleulate the discriminant capabilities of all
subsequences of T using the Fisher ratio as in (29).

3) Compute the threshold value & using (37).

4) Remove the subsequences from 17 those have Fisher
ratio values below the threshold 4.

5) Repeat steps a) and b) for all the remaining
subsequences of 1.

a) Select a subsequence from ¥ as the candidate
bio-basis string of 17 that has the highest Fisher
ratio value (maximum discominant capability ).

b} Remove the subsequences from 17 those have the
DOR valves with respect o the selected bio-hasis
string of step a) above the threshold £.

6 Stop.

Note that the main motive of introducing the concepts of de-
gree of rexemblance and nearest mean classifier lies in reducing
the number of bio-basis sirings. That is, both attempt 1o elimi-
nate nonmelevant and redundant bio-basis strings from the whole
subsequences. The whole approach is therefore data dependent.

V. CONCLUSION

The main contribution of this paper is twolold, namely:

1) the development of a new string kernel function based on
the principle of biological dissimilarity and the concept of
zone of mfluence of bio-basis siring; and

the development of a method for selection of a reduced set
of most relevant and nonredundant bio-basis strings.

The concept of zone of influence intmoduced in the pro-
posed modified bio-basis function nommalizes the biological
dissimulanity. As the modified bio-basis function lakes nlo
account the influence of each bio-basis string in nonnumerical
sequence space, it can transform nonnumencal sequence space
to numerical feature space more accurately than the existing
bio-basis function. Moreover, the proposed bio-basis string
selection method overcomes the limitations of existing string
selection methods and is expected to be more effective to select
a reduced set of most relevant and nonredundant bio-basis
strings. However, the effectiveness of the proposed kernel
function and proposed bio-basis string selection method, along
with a comparison with existing bio-basis function and related
bio-basis sinng selection methods, 15 demonstrated i [35]
using different protein data sets.

I
r
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