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Rough Sets for Selection of Molecular Descriptors to
Predict Biological Activity of Molecules

Pradipta Maji and Sushmita Paul

Abstraci—Quantitative structure activity relationship (QSAR)
is one of the important disciplines of computer-aided drug design
that deals with the predictive modeling of properties of a molecule.
In general, each QSAR dataset is small in size with large number
of features or descriptors. Among the large amount of descriptors
presented in the QSAR dataset, only a small fraction of them is ef-
fective for performing the predictive modeling task. In this paper,
anew feature selection algorithm is presented, based on rough set
theory, toselect aset of effective molecular descriptors from a given
QSAR dataset. The proposed algorithm selects the set of molecu-
lar descriptors by maximizing both relevance and significance of
the descriptors. An important finding is that the proposed feature
selection algorithm is shown to be effective in selecting relevant
and significant molecular descriptors from the QSAR dataset for
predictive modeling. The performance of the proposed algorithm is
studied using R* statistic of support vector regression method. The
effectiveness of the proposed algorithm, along with a comparison
with existing algorithms, is demonstrated on three QSAR datasets.

Index Terms—Drug design, feature selection, quantitative struc-
ture activity relationship (QSAR), rough set, support vector ma-
chine (SVM).

I. INTRODUCTION

ceeds largely by tial and error synthesizing thousands of
molecules. Although this approach is the most effective method
o discover drugs, it is very financially expensive and labor in-
ensive. The conventional drug design method 15 improved by
a nonconventonal method, wrmed as computer-aided drug de-
sign (CADD) [1]. The CADD helps in predicting biological
activity of a hypothetical molecule and guides scientists toward
a specific direction to develop a drug by predicting a molecule
with effective biological activity or molecular property against
a target molecule. In effect, it minimizes both tme and cost.
Two well-known approaches are generally taken for predic-
ton: structure-based method and quantitative structure activity
relationship (QSAR) method [2] In structure-based method,
the procedure starts with the known 3-D structure of a target
molecule, where the goal 15 to design a higand or drug that can
enhance or decrease the activity of the target molecule. Whereas
the QSAR method predicts the activity of hypothetical com-
pounds based on the assayed activity of previously synthesized
one [3].

I N CONVENTIONAL drug design, the drug discovery pro-
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The QSAR is the process by which chemical structure is
quantitatively correlated with a well-defined process such as
biological activity or other molecular property. Biological ac-
tivity can be expressed quantitatively as in the concentration
of a substance mequired o give a certain biological esponse.
Addibonally, when physiochemical properties or structures ane
expressed by numbers, one can form a mathematical relation-
ship or QSAR between the two. The mathematical expression
can then be used o predict the biological response of other
unknown chemical structures. The properties that describe the
mobkecule gquantitatively are known as molecular descriptors.
Molecular descriptors can be obtamed by calculated methods
or experimental methods. In calculated method, a mathematical
procedure is used that ransforms chemical information into a
number such as surface areas (polar, nonpolar), dipole moment,
and volume. On the other hand, in expenmental method, some
standardized experiments are conducted o measure a molecu-
lar descriptor such as melting point, partition coefficients, and
refractive index. The molecular descriptors describe different
aspects of a molecule; compare different molecular structures,
different conformations of same molecule, and database storage;
and relate structure to activity [2], [4]-6].

However, among the large amount of descriptors, only a small
fraction is effective for performing the predictive modeling task.
Also, a small subset of descnptors 1s deswrable m develop-
ing QSAR data-based predicting tools for delivering precise,
reliable, and interpretable results. With the descenplor selec-
tion results, the cost of biological experiment and decision can
be greatly reduced by analyzing only the effective descriptors.
Hence, identifying a reduced set of most relevant deseriptors is
the goal of descenptor selection. The small number of molecules
and a large number of descriptors make this problem a more
relevant and challenging problem in the Q5AR method. This
is an important problem in machine learning and referred o as
feature selection [7].

Many approaches have been proposed o generate a error-free
method for predicting biological acuvity or other chemcal prop-
erty of a molecule. Ozdemir e af [8] used genetic algorithm o
select a subset of molecular descriptors and the significance of
these descrptors has been evaluated by a mululayer perceptron.
Guha and Jurs [3], [9] used correlation, simulated annealing,
and genetic algorithm to obtain the best subset of descriptors.
Both Imear and nonlinecar predictive models have been vsed 1o
establish the significance of selected descriptors. Similar type
of work has been done by Leardi and Gonzalez [10], where
genetic algorithm has been used for feature selection and par-
tial least square method for prediction. Sventik eral. [11] used
the concept of ensemble method for compound classification
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and biological activity prediction. In [12], Jain et al. have
used steric and polar descriptors 1o predict the biological ac-
tivity. Tuppurainen et af. [13] and Turner et al [ 14] have used
an electronic eigenvalue molecular descriptor and a molecu-
lar vibration-based descriptor, respectively, o melate structure
and activity of steroid data. Different 3-D molecular descriptors
have been proposed in [15], [16] w forecast the biological ac-
tivity. A different approach based on fuzey regression has been
used w predict the biological activity of persistent organic pol-
lutants [17]. Kumar er al. [18] used a method based on fueey
mappings for the QSAR modeling, while a neural and neuro-
fuzzy model have been used in [19] for prediction of Loxic action
of phenols. On the other hand, Zhou e al. [20] have developed
a robust boosting partial least square method for modehing the
antagonisms of angiotensin 11 antagonists.

Rough set theory [21], [22] 15 a new paradigm o deal with
uncerainty, vagueness, and incompleteness. I has been applied
o fuzey rule extraction, reasoning with uncerainty, fuzezy mod-
eling, feature selection, and so forth [231-[26]. It s proposed
for indiscernibility in classification according to some similar-
ity [21]. The theory of rough sets has been applied successfully
o feature selection of discrete-valued data [27]. Given a datasel
with discretized attribute values, it is possible to find & sub-
set of the original attibutes using rough set theory that is the
most informative; all other attnbutes can be removed from the
dataset with minimal information loss, From the dimensional-
ity reduction perspective, informative features are those that are
most useful in determining classifications from their values.
Chouchoulas and Shen developed a mough-set-based feature
selection algorithm, termed as mough set attribute reduction
method [28], which is based on the idea of indiscernibility.
The attributes are eliminated from the dataset in such a way
that the reduced set, also termed as redoct, provides the same
quality of classification as the onginal set. The dependency
vilues of different combinations of equivalence relations are
first calculated, and finally, the reduct with maximum depen-
dency value 1s retnieved. However, this method 1s computation-
ally costly as it has to generate several reducts. To alleviate
this problem, quick reduct algorithm [28] first caleulates the
dependency orquality of approximation of single attribute with
respect 1o class or decision attribute. After selecting the best
attribute, other attributes are added to it to produce better qual-
ity. Addition of attributes is stopped when the final reduct has
the same quality as that of maximum possible guality of the
dataset.

A reduct with effective attributes can also be obtained from
the discermibility matnx-based method [29] The matrix is de-
veloped by considering those attributes that differentiate objects.
A discernibility function can then be defined for discemibility
matrix data. This function generates all the minimal reducts.
However, this approach is computationally very costly. On the
other hand, the vanable precision rough-set-based attribute se-
kection algorithm [30] 15 an imporant method with better gen-
eralization ability to produce effective reducts. The main idea
here is to classify objects with minimal error. In this method,
the relative classification error is calculated between the equiva-
lence classes of condiion and decision atiributes. The dynamic

reduct-based method [31] 1 an another rough-set-based atribute
reducuon algorithm, which 1s based on the dea that the reducts
obtained from an information system are sensitive to changes in
the system. This method generates a large number of reducts by
randomly removing objects from the original data. The reducts,
whose proportion of occurrence is more than a defined thresh-
old, are considered as the dynamic redocts. The mamn drwback
of this method is that a predefined threshold value is required.
Also, the generation of all reducts iscomputationally very costly.
Many algorithms have also been developed [32]-[34] to gener-
ate reducts. Different heuristic approaches based on rough set
theory have also been developed for feature selection [35]. Com-
bining rough sets and genetic algorithms, different algorithms
have been proposed in [32], [34] to discover optimal or close o
optimal reducts. However, the rough-set-based feature selection
methods proposed in [28]-[34] select the relevant or predictive
features of a dataset without considering the redundancy among
them.

In this paper, a new feature selection method is proposed
to select a set of molecular descriptors for predicting biolog-
wcal activity of molecules. It employs mough sets o provide a
means by which discrete-valued data can be effectively reduced
without the need for user-specified information. The proposed
method selects asubset of molecular descriptors from the whole
feature set by maximizing both relevance and significance of
the selected descriptors. The relevance and significance of the
descriptors are caleulated based on rough set theory., Hence,
the only information required in the proposed feature selection
method isin the form of equivalence partitions for each attribute,
which can be automatically derved from the given dataset. This
avoids the need for domain experts to provide information on
the data involved and ties in with the advantage of rough sets in
that it requires no information other than the dataset iesell. The
pedformance of the proposed approach is compared with that of
the existing approaches using the F° statistic of support vector
regression method. An imponant finding is that the proposed
approach is shown to be effective for selecting relevant and
significant molecular descriptors from the QSAR datasets. The
effectiveness of the proposed method, along with a comparison
with other methods, s demonstrated on three QSAR datasets.

The rest of the paper is structured as follows: Section 11 in-
troduces the necessary notions of rough sets. The proposed fea-
ture selection method is desceribed in Section 11 for predicting
biological activity of molecules. A few case studies and a com-
panson with other related methods are presented in Secuon 1V,
Finally, Section V concludes the paper.

II. ROUGH SETS

The theory of mough sets begins with the notion of an
approximation space, which is a pair {II &), where I =
{.r.'. ...... (1 .._r.',,} be a nonempty sel, the universe of dis-
course, and A& is a family of attributes, also called knowledge in
the universe. V' is the value domain of & and f is an informa-
tion function f: 10 x & — V. An approximation space is also
called an information system [21].
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Any subset P of knowledge & defines an equivalence (also
called indiscernibility) relation TN D{F) on T

IND(P) = {(zi,z;) e Ux UVa g P, f(z;,a) = flz;,a)}.

If {(z;, x;) € IND(F), then 2; and x; are indiscernible by
atributes from F. The partition of 1 generated by TN D{F) is
denoted as

U/IND(PF) = {[zi]p : 2z € U} il
where [z; |p 1s the equivalence class containing z; . The elements
in [z; | are indiscemible or equivalent with respect to knowledge
[F. Equivalence classes, also ermed as information granules, are
used o characterize arbitrary subsets of 1. The equivalence
classes of TND(F) and the empty set § are the elementary sets
in the approximation space {1, &),

Given an arbitrary set X' C 1, in general, it may not be pos-
sible to describe X precisely in {1, &). One may chamclerdze
X by a pair of lower and upper approximations defined as fol-
lowws [21]:

and

B(X) = | H{l=lell=:]e € X}

P(X) = | J{l=]ellz:]e n X # 0}. (2)

Hence, the lower approximation F(X') is the union of all the
elementary sets, which are subsets of X, and the upper approx-
imation F{X) is the union of all the elementary sets, which
have a nonempty intersection with X, The tuple (B({X ). F(X))
is the representation of an ordinary set X in the approxima-
tion space {1, A&} or simply called the rough set of X. The
lower (respectively, upper) approximation B X)) (respectively,
F{ X)) is interpreted as the collection of those elements of T
that definitely {respectively, possibly) belong to X The lower
approximation is also called positive region sometimes, denoted
by POSp(X). Aset X is said 1o be definable (orexact) in {1, &)
iff B{X) = B(X). Otherwise, X is indefinable and termed as
a rough set. BNs(X) =F(X)\ P(X) is called a boundary
sel.

Definition 1: An information system {1, &) is called a de-
cision table if the atribute set & = C U D, where © and b
represent the condition and decision attribute sets, respectively.
The dependency between T and [ can be defined as

; | POS ()|
vie (D) D] (3)
where POS- (M) = UCX,, X is the dith equivalence class in-
duced by [ and | - | denotes the cardinality of a set.

LetI = {IJ, &) be a decision table, where U1 = {z;,.... 27}
is a nonempty set of finite objects, the universe, and & = CUD
is a nonemply finite set of attributes. Here, C ={ Age, LEMS]
and [ ={ Walk } are the setof condition and decision attributes,

respectively.

el Age LEMS | Walk
T LG — 30 all yes
T3 LG — 30 U no
Ty 31 —45 1-25 no
Iy 41 —45 1 —25 | wyes
T 46 — 60 26 —49| no
T 16— 30 26 —49( yes
7 46 — 60 26 —49| no

T ND{{Age}) creates the following partition of 1
U/IND{{Agel) = {1z, 2o, 2 L {3 2y b {25, 21 1)

as the objects xy, xa, and zy are indiscernible with respect 1o
the condition attabute set {Age}. Similarly, the partition of T
generated by the condition atiribute set {LEMS} is given by

U/ IND({LEMS}) = {{z:1 }, {za}. {z3. 21 }, {75, 26, 27} }

and the partition of 11 generated by the condition attribute set
{Age, LEMS} is as follows:

U/{Age, LEMS] = {{z }. {za } {za. 2} {75, 20} {ms } |

Similarly, the partition of U generated by the decision attrbule
set { Walk} is given by

U/D = U/ {Walk} = {{z1, 24, 24}, {22, 23, 75, 27 } |

The positive region contains all objects of 1J that can be clas-
sified into classes of U/ using the knowledge in attributes C.
Hence, for the above example, the positive region is as follows:

POSc(D) = | [{e {z1}, {ea ) {27}, {6} }
= {ﬂl-fi-ii.r.--ﬂei-if.']'-
The dependency between © and I is, therefore, given by

(D) =

l-\.]| on

Animportant issue in data analysis isdiscovering dependency
between atiributes. Intuitively, a set of attrbutes [ depends
totally on a setof attributes T, denoted by C = I, if all attnbute
values from [ are uniquely determined by values of atributes
from . If there exists a functional dependency between values
of [ and T, then [ depends totally on ©. Dependency can be
defined in the following way:

Definition 2: For C, [0 C A, it is said that [ depends on C in
adegree & ([} < k < 1), denoted by C =, I, if

_ |POS(D)|
T

If £ =1, [ depends totally on C, if 0 < & < 1, [ depends
partially {in a degree «) on C, and if x = (), then [I' does not
depend on .

To what extent an attdbute is contributing to caleulate the
dependency on decision attribute can be calculated by the sig-
nificance of that atribute. The change in dependency when an

k= (D) (4)
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attribute is removed from the set of condition attributes is a mea-
sure of the significance of the attribute. The higher the change
in dependency, the more significant the attribute is. If the sig-
nificance is (), then the attribute is dispensable.

Definition 3: Given T, [I, and an attribute a € C, the signifi-
cance of the attrbute a is defined as follows:

"'Inl:[[il '”:I =1C “B':I — fC—u ':.]E':I # (3)

Considering the above example, let © = {a, b}, where a =
TAgel, b= [LEMS}, and [ = {Walk}. The significance of the
two attributes o and b is as follows:

. ; 5 2 3
agc(D,a) = (D) — ve_a(D) = - T s
, , i 2 A
Ufl:'m'. il.i:| = F:“:':]E'j = “,-"_‘.—.I;II_]E':I = ? = ? = ?.

III. PROPOSED FEATURE SELECTION ALGORITHM

The mamn objective of the current research is w0 build a
method that can effectively find out biological activity values of
molecules provided with their molecular descriptors. In effect,
it can help to decide which features of a molecule give rise to
its overall activity and help to make modified compounds with
enhanced properties.

In general, the QSAR dataset may contain a number of in-
significant molecular descriptors. The presence of such irrele-
vanl and insignificant molecular descriptors can produce inap-
proprate information. A standard descriptor set is the one that
has high relevance with the actvity values and high significance
in the feature set. The molecular descriptors with high mele-
vance are expected o predict the biological activity effectively.
However, if insignificant descriptors are present in the subset,
they may reduce the prediction capability. A feature set with
high relevance and high significance enhances the predictive
capability. Accordingly, a measure is required that can enhance
the effectiveness of the descriptors. In this paper, the theory of
rough sets is used wo select the relevant and significant molecular
descriptors from the QSAR dataset.

A. Macimum Relevance—Maximum Significance { MEMS)

LetU = {zy,... .7 ....x, be the set of n molecules and
Bl = {&,. .., B, ..., I, } be the set of m molecular de-

scriptors of a QSAR dataset. These molecules and descrip-

orsformatable T = {wyli = 1,. .., melalyeeg m}, where
wi; € N is the measured value of the molecular deseriptor I in
the molecule z;. Let B = {5;. .. ., Bi o B, } represents the

set of biological activity values of n molecules, where B, € R is
the activity value of the molecule z;. Hence, in terms of rough
sel theory, a QSAR dataset can be considered as a decision
table I = {U, B B), where I and B play the role of con-
dition and decision attnbute sets, mespectively. However, the
continuous values are discretized wo compute the relevance and
significance of descriptors using rough sets.

Let S be the set of selected descriptors with cardinality d < .
Define f(B0;,B) as the relevance of the descriptor I, with
respect o the response variable or biological activity value B
while f(I;, B;) as the significance of the descriptor B, with

respect to the already selected descriptor B, . The total relevance
of all selected descriptors is, therefore, given by

\Tlt'lt"- ot Z f{MH]Ej- fﬁ}

M, 8

The task of descrptor or feature selection is o find a descrp-
tor subset E C B that maximizes the objective function ., .
In terms of rough set theory, the relevance f{IM; . B) of a molec-
ular descriptor B, with respect to the biological activity [B can
be calculated using (4), i.e.

xl-llrl'-:'h". ] Z M iIE':I- [?}

M, £S

However, it is likely that descriptors selected according o
the above criterion could have rich redundancy, that is, the de-
pendency among these descrniptors could be large. When two
molecular deseriptors highly depend on each other, the respec-
tivie biological actuvity prediction power would not change much
if one of them were removed. It follows that one descriptor is
dispensable with respect wo the other. The significance eriterion
defined in (5) is able to find out the dispensable descriptors.
If the significance of a descriptor with respect o another de-
scriptor is (), then the descriptor is dispensable [21]. Therefore,
the significance eriterion can be added to select mutually ex-
clusive descriptors. The total significance among the selected
descriptors 1s

> f(ML, M) (8)

M; #M.£8

LII'xiJ.:_uI' =

_In the proposed feature selection method, the significance
Filll; Bl ) of the descriptor B; with respect to the already
selected descriptor Bl is computed using (3), i.e.

Llu;_n = Z TR LM i]]}'- M_.‘ :I' (9)
M;#M; 8

Therefore, the problem of selecting a set 5 of d relevant and
significant descriptors from the whole set Bl of e descriptors
is equivalent o maximize both Ja, and Jigr. that is, to
maximize the objective function 7, where

LI.T = LTI'\('II\."\.‘ + Ll-‘r."\-lghr
ie, J= Z . (B + Z M LI (B, ;). (11)

M; 5 M; #£M; £8

(10

Obwiously, when d equals 1, the solution is the molecular de-
scriptor that maximizes f(B,, B); (1 < i < m). Whend > 1,a
simple incremental search scheme s to add one desenptor at one
time. This type of selection is called the first-order incremental
search. By definition of first-order search, it is assumed that the
set of (o — 1) descriptors has already been obtained. The task
is o select the optimal dih descrptor B from the remaining
descriptors of the set B that contributes to the largest increase
of the following condition:

| i I
fquﬂJ.__IBj+@ > F(Mi.M;) where|S|=d—1. (12)

MiES
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Hence, the following greedy algorithm is used w select rele-

vant and significant descriptors from a QSAR dataset:

1) Initialize M — {8, ..., ML, ..oy ML, 18— .

2) Caleulate the relevance value f(Id;, B) of each descriptor
By € B with respect to the biological activity [B.

3) Select the descriptor B, as the most relevant descriptor
that has the highest relevance f(I;, B). In effect. b, 8
and B = BO A\ B,

4) Repeat the following two steps until the desired number
of descriptors are selected.

5) Calculate the significance of each of the remaining de-
scriptors of I with respect to the already selected de-
scriptors of 5.

6) From the remaining descriptors of i, select descriptor
B ; that maximizes

é > FM, M),
UM e8

f(ull;, B) + (13)

As a result of this, B; € 8 and M = M B,

In the proposed feawre selection method, the relevance
FiBA, ) of a molecular descriptor B, with respect to the bio-
logical activity [ is caleulated using (4), while the significance
FBL L) of the descriptor B; with respect o the already
selected descriptor I, is computed using (5).

B. Computational Complexity

The rough set theory-based proposed feature selection
method has low computational complexity with respect o the
number of descriptors in the original dataset. The computation
of the relevance of e descriptors is carred out in step 2 of
the proposed algordthm, which has O{m) time complexity. The
selection of the most relevant deseriptor from the set of m de-
scriptors, that is step 3, has also a complexity (). There is
only one loop in the proposed feature selection process, which
is executed (d — 1) times, where d represents the number of se-
lected features. Each iteration of the loop takes only a constant
amount of time. The complexity to calculate the significance
of a descriptor with respect to the already selected descriptors
is i), where 1t is the cardinality of the already selected
descriptor set. In effect, the selection of a set of d relevant and
significant descriptors from the whole set of m descriplors using
the proposed first-order incremental search method has an over-
all computational complexity of ((m) + O{di)) = Q) as
d, 1 < m.

C. Generation of Equivalence Classes

In QSAR datasel, the molecular descriptor values as well as
the biological activity values of different molecules are contin-
uous. Hence, 1o measure both the relevance and significance
of molecular descrplors using rough set theory, the continu-
ous descriptor values of a molecule are vsvally divided into
several discrete partitions 1o generate equivakence classes. The
discretization method reported in [36] is employed to discretize
the continuous descriptor values. The values of a descriptor or
an attribute are discretized using mean pand standard deviation

a computed over nvalues of that attribute: any value larger than
(p + % is transformed into state 1; any value between (p— 3
and (p + %) is transformed into state 0; and any value smaller
than (¢ — %) is transformed into state -1 [36]. The equivalence
classes are then generated o compute both the relevance and
significance of molecular descriptors.

IV. EXPERIMENTAL RESULTS

The performance of the proposed rough-set-based MRMS
method is extensively studied and compared with that of some
existing algorithms. All the algorithms are implemented in C
language and run in LINUX environment having machme con-
figuration Pentinm IV, 2.8 GHz, 1 MB cache, and 512 MB R AM.
To analyze the performance of different algorithms, the exper-
imentation is done on three QSAR datasets. The major metric
for evaluating the performance of different algorithms is the B
statistic of support veclor regression method.

A. OSAR Datavets

In this paper, the following three QSAR datasets are used that
are available at hup:fwww.eheminformatics.org.

1) Steroid  Daraser; This  dataset contains 31
maobkecules presented in MOL format, which 15 used in chemin-
formatics applications for storing atomic coordinates, chemical
bond information, and metadata of the 3D sructure of a single
chemical compound in plain text tabular format. The log(1/&)
values of these molecules are also given. All these molecules
are categorized into three activity classes. Among them, 11 are
reported as high-activity molecules, 9 moderate, and the rest 11
as the lowest activity molecules.

2) Small Dopamine Dataset;: 1L contains 26 dopamine
molecules given in MOL format. The biological activity of these
mobecules s also available.

3) Large Dopamine Dataser: This dataset consists of 116
dopamine molecules that are given along with ther molecular
descrplors in binary form. The continuous-valued biological
activity of each molecule s also given.

Both steroid and small dopamine datasets are available in
MOL format. The molecular descriptors of these datasels are
obtained using MODEL software [6], which caleulates approx-
imately 4000 molecular descriptors for each molecule. The
caleulated descriptors cover different aspects of the molecular
structure including topological, electronic, constitutional, geo-
metncal, and physical desenptors.

steroid

B. Suppoirt Vector Regression Method

The support vector machine (SVM) [37] is a relatively new
and promising classification and regression method. 1t is g mar-
gin classifier that draws an optimal hyperplane in the fea-
ture vector space; this defines a boundary that maximizes
the margin between data samples in different classes, there-
fore, leading to good generalization properties. A key fac-
tor in the SVM s to use kernels to construct nonlinear de-
cision boundary. In this paper, radial basis function kemels
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TABLE I
PERFORMARCE ON NUMBER OF EQUIVALENCE CLASSES
Ity Mot bxperitnent | a=2 [ n=4  r~=1h
Storoid T0-fialgd O .12 [ R
LIy .33 1+ k% [EE
Sumall I0-feald ©% 0.13 [
Nepamme [EEERS 1134 nAs
|arge T0-tisld W .32 sz
Dioparoiing LAY (IR 33

are used. The source code of the SVM is downloaded from
http:/fwww.csie ntuedu. tw/~cjlin/libsvm.

The pedformance of the SVYM is analyzed using F* statistic or
coefficient of determination value. The B? statistic tells about
the goodness of fit of a model and how well a regression approx-
imates its attributes. The value of B statistic ranges from Oto 1.
The near the value reaches o 1, the betier is the approximation.
The B statistic can be caleulated as follows:

Rg i :'i:'i-:-u
bl{"l-.:-l

(14}
where 55, = B (g — 4)° represents the total sum of squares,
which is proportional to the sample vardance, and 55, =
iy — fi)° is the sum of squared errors, also called the resid-
ul sum of squares. Here, i represents the mean of the observed
data, while g, and f; are the ith observed and modeled or pre-
dicted values, respectively.

C. Optimum Number of Equivalence Classes

In QSAR dataset, both molecular desenptors and biological
activity values are continuous. Hence, to measure the relevance
and sigmificance of descnptors using rough set theory, the con-
tnuous values have to be divided into several discrete partitions
W generate equivalence classes. In the proposed method, the
continuous values are discretized into three (¢ = 3) states as per
the procedure reported in Section HI-C.

In order to establish the effectiveness of the three (o= 3)
states discretizaton procedure, the exlensive experiments are
carried out on different QSAR datasets. The performance of
the proposed feature selection method for ¢ = 3 is compared
with that for ¢ = 2 and 5 For ¢ = 2, any value larger than
mean i transformed nto one state, while others o another
state. On the other hand, for ¢ = 5, the intermediate state of
r= 4 15 parttoned into three states, while other two states
remain unaltered, therefore, leading 1o total five states. Table |
reports the comparative pefformance of the proposed method
for ¢ = 2, 3, and 5 with respect to the B? statistic of the SYM.
To compute the B2 statistic, both leave-one-out cross validation
(LOOCY) and 10-fold cross validation (CV) are performed on
cach QSAR datset. All the results reported in Table 1 establish
the fact that the performance of the proposed rough-set-based
feature selection method is significantly better in case of ¢ = 3
than that of ¢ = 2 and 5.

Dy Performance Analysis

The experimental results on three Q5AR datasets are pre-
sented in Figs. 1-9. Subsequent discussions analyze the results
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with respect to the B statistic of the SYM. To compute the
F* statistic of the SVM, both LOOCY and 10-fold CV are
pedformed on each QSAR dataset. The number of molecular
descriptors selected ranges from 1 o 3.

Fig. 1 presents the performance of the proposed MREMS
method on steroid molecules obtained by both 10-fold CV and
LOOCY, while Figs. 2 and 3 depict that for small and large
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dopamine molecules, respectively. In Fig. 1,1t 15 seen that as the
number of selected descriptors of steroid molecules ranges from
1 to 15, the B statistic of the SVM fluctuates in case of both
10-fold CV and LOOCY. I indicates that the proposed MRMS
miethod gets stuck into local minima of the search space for this

steroid molecules obtained by leave-one-out CV. {a) Proposed method.
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Results for small dopamine molecules obtained by leave-one-out CV. (1) Proposed method. (b) Quick reduct algor thm.
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Results for large dopamine molecules obtained by leave-one-out CY. (1) Proposed method. (h) Quick reduct algorithm.

range. However, the F* statistic continuously increases with the
increase in number of selected descriptors for more than 15, Fi-
nally, the proposed method attains its maximum B statistic of
088 and 0.89 usmg only 44 descriptors for the LOOCY and ten-
fold CV, respectively. That is, the MRMS method is able to find
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outl an optimum or near-optmum solution usmg 44 descriptors
for both 10-fold CV and LOOCY. On the other hand, in Fig. 2, 1t
can be seen that in case of small dopamine molecules, two most
relevant and significant descriptors are sufficient w achieve the
maximum & statistic values of 045 and 0.37 of the proposed
method for the LOOCY and 10-fold CV, respectively. Finally,
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TABLEII
EXECUTION TIME OF DNIFFERENT ALGORITHMS
1Jary Mot Cick Redoer | Pisecmn. Motz [ELANE
Sterreid EEEFER] S50 A4
Serall Dupacine 2E0LE 34044 4260
lLarpe Depamine ARTTAS A5027 1755

Fig. 3 depicts the mesults for large dopamine molecules. From
the results presented in Fig. 3, 10s seen that the proposed method
attains maximum - statistic of (.53 with nine deseriplors using
the LOOCY, while for 10-fold CV, the best B? statistic is 0.52
with the same number of descriptors. In other words, the MRMS
method is able to find out optimum or near-optimum solutions
using two and nine molecular deseriptors for small and large
dopamine molecules, respectively.

Figs. 46 present the comparative performance analysis of the
proposed MEMS method and one of the most popular rough-
set-based algonthms, called quick reduct algorithm [28]. All
the results are reported for three QSAR datasets based on the
LOOCY. The actual and obtained biological activity values of
different molecules for three QSAR datasets are reported for
comparson. The B statistic values of quick reduct algorithm
are 0L82, 0,45, and 0.56 for steroid, small dopamine, and large
dopamine molecules, respectively. For 10-fold CV, the R* statis-
tic values of quick reduct algorithm are 0083, (L37, and (0,52 on
steroid, small dopaming, and large dopamine, respectively. From
the results reported in Figs. 4-6, it 15 seen that the performance
of the proposed MRMS method is better than the quick reduct al-
gonthm in case of steroid dataset and comparable with the quick
reduct algonthm for both small and large dopamine molecules.
In this regand, 1t should be noted that another rough-set-based al-
gonthm, called discernibility-matrix-based method [29], attains
the B statistic values of 0,79, (0,43, and (.39 for steroad, small
dopamine, and large dopamine molecules, respectively, using
10-fold CV, while the corresponding values for the LOOCY
are 0.79, 0,61, and .41, mespectively. However, as the com-
putational complexity of both guick reduct method [28] and
discernmibality-matrix-based method [29] s very high, they re-
quire significantly higher execution time compared w that of the
MREM S5 algonthm.

Table I compares the execution tme (in millisecond) of the
proposed MRMS algonthm and that of the quick reduct al-
gonthm [28] and discemibility-matnx-based method [29] for
three QSAR datasets. From the results reported in Table IL it s
seen that the execution tme required for the proposed MEMS
algonthm s significantly lower than that of other two algo-
rthms, mrespectve of the datasets used. As the computational
complexity of both quick reduct algorithm and discernibality-
matrnx-based method 1s exponential in nawre [28], [29], they
require significantdy higher execution time compared to that of
the proposed algorithm. The significantly lesser execution time
of the proposed algorithm s achieved due 1o its low computa-
tonal complexity.

E. Comparative Performance Analysis

The proposed MRMS method performs significantly bet-
ter than different existing QSAR methods. To establish the
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superiority of the proposed method, extensive experimenti-
tion is carred out on different QSAR datasets. Fig. 7 presents
the predicted biological activity values of the proposed method
and Compass [12], a well-known existing QSAR model, along
with the actwal activity values. Results are reported based on
the LOOCY. The £ statistic values corresponding to the pro-
posed method and Compass are (.89 and (.79, respectively.
MNext, the sterowd dataset 15 divided into two sels: tmming sel
of 21 molecules and test set of 10 molecukes. The LOOCY
results of 21 molecules obtained by the proposed method as
well as two well-known existing approaches, namely Com-
pass [12] and CoMFEA [14], are reported in Table 1. Figs. 8
and 9 depict the acmal and predicted values of the pro-
posed method and Compass [12] for 21 taining and 10 test
steroid molecules, respectively. A detailed comparison of the
proposed method with other existing 3D QSAR methods,
namiely Compass [12], MS-WHIM [15]. PARM [38], TQSAR
[16], SOMFA [39], EVA [14], CoMFA [14], COMSA [40],
MEDV [41], )5-5M [42], and EEVA [13], is presented in
Table IV on test set of steroid data, that s, molecules 22-31.

From the B* statistic reported in Tables 111 and 1V, along
with the results reported in Figs. 7-9, it can be seen that the
proposed MRMS method outperforms different existing QSAR
approaches in case of steroid dataset. Also, the proposed method
predicts biological activity of 21 training and 10 west molecules
significantly better than the Compass [ 12]. Mareover, the model
building phase of Compass takes about 1 minute per molecule
for steroid dataset [12], which is significantly higher than that
of the proposed method.

Among 2901 molecular descriptors of steroid dataset, 44 rel-
evant and significant descriptors obtained using the proposed
MREMS method can predict biological activity values of steroid
molecules accurately. All these 44 desenptors can be grouped
into one of the following four descriptor Ly pes, namely opolog-
ical, geometrical, electronic, and charge. By analyzing the B
statistic values of steroid dataset, one can deduce that the topo-

logical, geometrical, electronic, and charge descriptors do fa-
vorably affect the biological activities of these molecules, while
thermodynamic and constitutional descriptors can make adverse
affect on biological activities.

Finally, the 10-fold CV result of the MRMS method for large
dopamine data 1s compared with the existing approach Boosting
of Sventk er all [11]. While the proposed method achieves the
F* value of 052 with nine attibutes, the best result obtained
by the Boostung method 1s 048, that 15, the proposed method
performs significantly better than the existing method.

V. CONCLUSION aAND FUTURE DIRECTION

This paper introduces a new feature selection algorithm based
on rough set theory in order o dentify the relevant and sig-
nificant molecular descriptors from high-dimensional QSAR
datasets. 1t presents the results of selecting effective molecular
descriptors for predicting biological activity of molecules.

The MEMS framework is proposed here as the molecular
descriptor selection method. The performance of the proposed
method is evaluated by the B2 statistic of support vector re-
eression method. For all datasets, significantly better results are
found for the proposed method, compared to different existing
QSAR models. The results obtained on real datasets demon-
strate that the proposed method can bring a remarkable im-
provement on descriptor selection problem, and therefore, 1t
can be a promising allernative o existing QSAR models for
prediction of biological activity of molecules. All the resulis
reported in this paper demonstrate the feasibility and effective-
ness of the proposed method. The new method is capable of
identifying effective molecular descriptors that may contribute
to revealing undedying molecular structures, providing a useful
tool for exploratory analysis of QSAR data.

As the current study is done with just a single conformation
of datasets, a further stwdy can be done using the proposed
method with multiple conformations. An extensive analysis is
also required o understand how these molecules or ligands bind
Lo their respective targel biomaolecules.
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