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Fuzzy—Rough Supervised Attribute Clustering
Algorithm and Classification of Microarray Data

Pradipta Maji

Abstrace—One of the major tasks with gene expression data is
to find groups of coregulated genes whose collective expression is
strongly associated with sample categories. In this regard, a new
clustering algorithm, termed as fuzzy-rough supervised attribute
clustering (FRSAC), is proposed to find such groups of genes. The
proposed algorithm is based on the theory of fuzzy-rough sets,
which directly incorporates the information of sample categories
into the gene clustering process. A new guantitative measure
s introduced based on fuzzy-rough sets that incorporates the
information of sample categories to measure the similarity among
genes. The proposed algorithm is based on measuring the similar-
ity between genes using the new guantitative measure, wherehy
redundancy among the genes is removed. The clusters are refined
incrementally based on sample categories. The effectiveness of
the proposed FRSAC algorithm, along with a comparison with
existing supervised and unsupervised gene selection and clustering
algorithms, is demonstrated on six cancer and two arthritis data
sets based on the class separability index and predictive accuracy
of the naive Bayes' classifier, the K-nearest neighbor rule, and the
support vector machine.

Index Terms—Attribute clustering, classification, gene selection,
microarray analysis, rough sets.

. INTRODUCTION

ICROARRAY technology is one of the important

botechnological means that allows o mecord the ex-
pression levels of thousands of genes simultancously within a
number of different samples [1]. An important application of
microarray gene expression data in functional genomics is o
classify samples according to their gene expression profiles.
However, among the large amount of genes, only a small
fraction is effective for performing a certain task. Also, a small
subset of genes is desirable in developing gene-expression-
based diagnostic tools for delivering precise, reliable, and in-
terpretable results. Hence, identifying a reduced set of most
relevant genes is the goal of gene selection. As this is a feature
selection problem, a clusterimg method can be used, which
partitions the given gene set into subgroups, each of which
should be as homogeneous as possible [2].

Cluster analysis is & technique for finding natural groups
present in the data. It divades a given data set into a set of
clusters in such a way that two objects from the same cluster
are as similar as possible, and the objects from different clusters
are as dissimilar as possible [2], [3]. When apphied to gene
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expression data analysis, clustering algorithms can be applied
on both gene and sample dimensions [4], [5]. The conventional
attribute-clustering methods group a subset of genes that are
mterdependent or correlated with each other. In other words,
genes or attributes moa cluster are more comelated with each
other, whereas genes in different clusters are less correlated [5].
The attnbute clustering s able o reduce the search dimension
of a classification algorithm and constructs the model using a
tightly correlated subset of genes rather than using the entire
gene space. After clustering genes, a reduced set of genes can
be selected for further analysis.

The conventional gene clusterng methods allow genes with
similar expresswon pattems, that is, coexpressed genes, o be
identified [4]. Different unsupervised clustering technigues
such as hierarchical clustering [6], the k-means algorithm [ 7],
the self-organizing map [8], and principal component analysis
[9] have been widely applied to find groups of coregulated
genes on microarray data. The hierarchical clustenng wen-
tifies sets of comelated genes with similar behavior across
the samples, but yields thousands of clusters in a tee-hike
structure, which makes the identification of functional groups
very difficult [6]. In contrast, the self-organizing map [8] and
the k-means algorithm [7] require a prespecified number and an
initial spatial structure of clusters, but this may be hard 1o come
up with in real problems. However, these algorithms usually fail
to reveal functional groups of genes that are of special interest
in sample classification, as the genes are clustered by similarty
only, without using any information about the class labels [ 10].

To reveal groups of coregulated genes with strong associ-
ation to the sample categories, different supervised atiribute-
clustenng algonthms have been proposed recently [10]-12].
The supervised attribute clusterng is defined as the grouping
ol attnbutes, controlled by the values of atributes as well as
the supervised information of sample categories [10]. Previous
work in this field encompasses tree harvesting [11], a two-
step method that consists first of generaling numerous can-
didate groups by unsupervised hierarchical clustering. Then,
the average expression profile of each cluster is considered as
a potential input variable for a response model, and the few
zene groups that contain the most useful information for lissue
discrimination are identified. Only this second step makes the
clustenng supervised, as the selection process relies on external
information about the tssue ypes.

An interesting supervised clustering approach that directly
mcorporates the response vanables in the grouping process 1s
the partial least squares procedure [12], which, in a supervised
mannér, constructs weighted linear combinations of genes that
have maximal covanance with the outcome. However, it has the
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drawback that the fitted components involve all (usually thou-
sands of) genes, which makes them very difficull 1o interpret.
Moreover, partial least squares for every component yields a
linear combination of gene expressions, which completely lacks
the biological interpretation of having a cluster of genes acting
similary in the same pathway.

A direet approach to combine pene selection, clustering,
and supervision in one single step is repored in [10]. The
supervised attnbute clustering algorithm proposed i [10] 15
a combination of gene selection for cluster membership and
formation of & new predictor by possible sign-flipping and av-
eraging the gene expressions within a cluster. The cluster mem-
bership is determined with a forward and backward searching
technigue that optimizes the Wilcoxon-test-based predictive
score and margin criteria defined in [ 10], which both involve the
supervised response variables from the data. However, as both
predictive score and margin criteria depend on the actual gene
expression values, they are very much sensitive to the noise or
the outlier of the data set.

One of the main problems in gene expression data analysis
is uncertainty. Some of the sources of this uncertainty include
incompleteness and vagueness in class definitions. In this back-
ground, the possibility concept introduced by furzy sets [13]
and rough sets [14] has gammed popularity m modeling and
propagating uncertainty. Both fuzzy sets and rough sets provide
a mathematical framework 10 caplure uncertainties associated
with the data [15]. The generalized theories of rough—fuzey
sets and fuzzy-rough sets have been applied successfully to
feature selection of real valued data [16], [17], rough—fuzzy
clustering [ 18], and so forth. To cluster coexpressed genes from
microarray data, different fuzey [19], [20] and rough—fuzey
[18] clustering algorithms can be wsed. However, these algo-
rthms are unsupervised in nature, as the genes are clustered
without using any information of class labels. Recently, the
furzy—rough set-based feature selection algorithm has been
proposed in [21] to select a set of relevant and nonredundant
zenes from microarray data.

In this paper, 4 new supervised gene clustering algorithm,
termed as fuzey-rough supervised atribute clusterng (FR-
SAC), is proposed based on the theory of fuzzy-rough sets.
It finds coregulated clusters of genes whose collective expres-
siom 1% strongly associated with the sample calegories. A new
quantitative measure, based on fuzey—rough sets, is introduced
to compute the similarity between genes. This measure incor-
porates the information of sample categories or class labels
while measuring the similanty between genes. The proposed
FRSAC algorithm uses this measure 1o reduce the redundancy
among genes. [t involves partitioning of the original gene set
o some distinet subsets or clusters so that the genes within
a cluster are highly coregulated with strong association 1o
the sample categores, while those in different clusters are as
dissimilar as possible. A single gene from each cluster having
the highest gene-class relevance value is first selected as the
initial representative of that cluster. The representative of each
cluster is then modified by avermging the initial representative
with other genes of that cluster whose collective expression
is strongly associated with the sample categories. Finally, the
maodified representative of each cluster is selected to consti-

tute the resulting reduced feature set. In effect, the proposed
FRSAC algorithm yields clusters typically made up of a few
genes, whose coherent average expression levels allow perfect
discrimination of sample categories. The performance of the
proposed gene clustenng algonthm, along with a comparison
with existing algorthms, 15 studied vsing the class sepamability
(CS) index and predictive accuracy of naive Bayes' (NB)
classifier, the K-nearest neighbor (K-NN) rule, and the support
vector machine (SVM) on six cancer and two arthotis data sets.
The stucture of the rest of this paper is as follows: Sec-
tion Il briefly introduces rough sets and fuzzy—rough sets.
The proposed fuzzy-rough set-based supervised gene cluster-
ing algorthm is presented in Section 1. A few case studies
and a comparson with existing algorithms are presented in
Section IV, Concluding remarks are given in Section V.

II. ROUGH SETS AND FUZZY-ROUGH SETS

Let (U, &) represent an approximation space or an informa-
tion system, where U = {zq, ..., 2,000 3 ) s the universe of
discourse, and /& is a family of altributes, also called knowledge
in the universe. V' is the value domain of &, and f is an
information function f: U x & — V' [14]. Any subset P of
knowledge & defines an equivalence or indiscemability relation

IND(F)on T, ie,
IND{P) = {(zi,z;) e Ux Ul ¥a € P, fa(z:) = falzy)}.
If (z;,2;) € IND(F), then z; and =; are indiscemible by
attributes from [F. The partition of 1J generated by IND(F) is
denoted as

U/IND(P) = {[z,)p : z; € U} (1)

] | e |
where |z

is the equivalence class containing z;. The ele-
ments in [z;]p are indiscemible or equivalent with respect to
knowledge F. Equivalence classes, also termed as information
eranules, are used o characterize arbitrary subsets of 1. The
equivalence classes of TN D(PF) and the empty set §f are the
elementary sets in the approximation space {[U, &),

Given an arbitrary set X C 1, in general, it may not be pos-
sible to describe X precisely in {IJ, &). One may characterize
X by a pair of lower and upper approximations defined as
follows [14]:

B(X) = [ J{[zde | [z € X} and
F(X) = [J{lzde | [z]en X # 0}

Hence, the lower approximation B(X) is the union of all
the elementary seis that are subsets of X, and the upper ap-
proximation F{ X ) is the union of all the elementary sets that
have a nonempty intersection with X . The tuple (P X), B(X))
is the representation of an ordinary set X in the approxima-
tion space {1, &) or simply called the rough sets of X. The
lower (respectively, upper) approximation F{ X)) [respectively,
F(X)] is interpreted as the collection of those elements of 1J
that definitely (respectively, possibly) belong to X The lower
approximation 15 also called the positive region sometimes,
denoted as POSp(X). A set X s said o be definable or exact
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in {IJ, &} iff B{X) = F{X). Otherwise, X is indefinable and
termid as a rough sel.

An information system {1, &) is called a decision table if the
attribute set & = C U D, where € and [T represent the condi-
tion and decision attribute sets, respectively. The dependence
between T and I can be defined as

|[POSc(ID)|

(2)
where POS:-(D) = UCX,, X; is the dth equivalence class
induced by [, and | - | denotes the cardinality of a set.

A crisp equivalence relation induces a crisp partition of the
universe and generates a family of crisp equivalence classes.
Correspondingly, a fuzzy equivalence relation generates a fuzzy
partition of the universe and a series of fuzzy equivalence
classes [153]-[17]. This means that the decision attributes and
the condition attributes may all be fuzzy.

Let {IJ, &) represent a fuzzy approximation space, and X is
a fuzzy subset of 11, The fuzzy P-lower and F-upper approxi-
mations are then defined as follows [15]:

pex(Fy) = i.lJl_f{ltUIx{I::l —prlE)), px(z)}} Wi (3)

By Fi) = sup {min {pr (z), px(z) }} Wi i4)

where F; represents a fuzzy equivalence class belonging to
/P, and py (x) represents the membership of = in X, These
definitions diverge a litle from the crisp upper and lower
approximations, as the memberships of individual objects o
the approximations are not explicitly available. As a result, the
fuzzy lower and upper approximations are defined as [17]

pgex(z) = sup min {j”.;.{_?:].yg_r{ﬂjl} (5)
Fell/P

Hsx(r) = sup min {p.prf_;r::l.y?_,l.{ﬂ:l} ’ i)
F:el/P

The tuple {EX,FX) is called a fuzzy—rough set. This defin-
ition degenerates o traditional rough sets when all equivalence
classes are cdsp. The membershipof anobject = £ Ubelonging
to the fuzey positive region is
pex (x) (7)

Brossmiz) = sup

Xel/D

where & = CU D, C and [ represent the fuzzy condition and
decision atiribute sets, respectively, and U/ represents the
partition of 1] generated by the decision atribute set [, Using
the definition of the fuzzy positive region, the dependence
function can be defined as follows [17]:

L rogemie) 1
(D) = | m-?-l'ﬂ.:- 2 | = o ZPPUH.— mlz).  (8)
! Vel

IC

IIl. FUZZY-ROUGH SUPERVISED ATTRIBUTE CLUSTERING

Here, a new supervised gene clustering algorithm, termed
as FRSAC, is presented for grouping coregulated genes with

strong association 1o the class labels. It is based on a supervised
similarity measure that follows next.

A. Fuzzy-Rough Supervised Similarity Measure

A new quantitative measure, called fuzzy—rough supervised
similarity, is defined next based on the definition of the fuzey
positive region of fuzzy—rough ses 1o compute the similarity
between two andom variables. 1t incorporates the information
of sample categories or class labels while measuring the simi-
larity between attributes.

In real data analysis, one of the important issues is compuling
both relevance and redundancy of atributes by discovering
dependencies among them. Intuitively, a set of atributes €}
depends totally on a set of attdbutes P iff all attabute values
from 0} are uniquely determined by values of attributes from P,
If there exists functional dependence between values of T and
[, then ) depends totally on [P

LetC={4;,..., Y VI P Ap} denote the set of D
fuzzy condition attributes of a given data set. Define R g, () as
the relevance of the fuzzy condition attribute 4; with respect o
the class label or fuzzy decision atribute [0 The dependence
function of furzy-rough sets can be used to calculate the
relevance of furzy condition atiributes. Hence, the relevance
BE.g () of the fuzzy condition attribute 4; with respect to
the fuzzy decision atribute [ using fuzzy-rough sets can be
calculated as follows:

R, (D) = 7.4,(D) ©)

where 4, () represents the degree of dependence between
fuzzy condition attribute 4; and fuzzy decision attribute or
class label [ that is given by (8).

Definition I: The significance of a fuzzy condition attribute
A with respect to another condition attibute .4; can then be
defined as follows:

UAF{D.AJj = H'{-":‘--'h }l:'m'j = H._,irl::m'j. 'f].ﬂ::l

Hence, the significance of a fuzey condition attribute 4; is
the change in dependence when the attribute 4, is removed
from the set {.4;..4;}. The higher the change in dependence,
the more significant the atribute A;. If the significance is (),
then the attribute 4, is dispensable.

Based on the concept of significance of an attribute, the
fuzey—rough supervised similarity measure between two al-
tributes is defined nexl

Definition 2: The fuzzy—rough supervised similarity mea-
sure between two attributes A, and L4 is defined as follows:

PldiAj)=1—k (11

o, (D, Aj) +oa (D, A) }

(12)

where k= { =

Ry (I Ry (I
that 1=, H=R-{J,.J,}{D:|_{ A: :I-: A :I} (13)

Hence, the supervised similarity measure 10(.4;, .4, ) directly
takes into account the information of sample categories or class
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labels [ while computing the similanty between two attributes
A and Aj If attributes A; and A4, are completely correlated
with respect to class labels I, then & = 0, and so 4{4,;,.4;) is
1LIfA; and 4 aretotally uncorrelated, (4, .4, ) = 0. Hence,
WA A, ) can be used as a measure of supervised similarity
between two attributes A; and 4. The following properties can
be stated about the measure.

1) 0< (A, Ay) <1

2) v Ay) = 1if and only if 4; and 4 are completely

comrelated.

3 wid, Ay =0if and only if 4; and A; are totally

uncorrelated.

4y (A A = AL A (symmetric).

Hence, the fuzzy-rough supervised similarily measure
i, A between two attributes 4; and A4; can be used
to compute the redundancy among the attributes taking into
account the information of the class label while computing the
similanty between two attobutes.

Exampfe 1: Let 4y and As be two attibutes having rel-
evance values 4, (I = 0.375 and ~ 4, (1) = 0.381, respec-
tively, with respect to the class label [0 If the joint relevance of
these two attributes 7 4, 4, 1([) = 0.618, then the significance
values of .4, and 45 are

o4, (D, A;) = (0.618 — 0.381) = 0.237
o, (D, As) = (0.618 — (.375) = 0.243

respectively, while the supervised similarity between 4, and
Aa is given by

_ 0.375 + 0.381
WAL, Ay = [{}_mﬂ— (”—)] — 0.760.

2

B. Proposed Supervised Gene Clustering Algorithm

The proposed supervised attnbute clustenng algorithm re-
lics on mainly two factors, namely, determining the rel-
evance of each attnbute and growing the cluster around
each relevant atribute incrementally by adding one  at-
tibute after the other. One of the imporant properies
of the proposed clustering approach is that the cluster
is augmented by atiributes that satisfy the following two
conditions:

1y suit best into the current cluster in erms of a supervised
similarity measure defined above;

2) improve the differential expression of the current cluster
most, according to the relevance of the cluster represen-
Lalive or proolype.

The growth of a cluster is repeated until the cluster stabilizes,
and then the proposed clustering algonthm stars 1o generale a
new cluster.

Let By, () represent the relevance of attribute A, € © with
respect o class label [0 The relevance uses information about
the class labels and is, thus, o criterion for supervised clustering.
The proposed algorithm starts with a single attribute 4, that
has the highest relevance value with respect to class labels. An
initial cluster W, is then formed by selecting the set of attributes

P
=
L

Camrses Cluster %

= Finer Clysmr Y
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D | 87 reprosents radivs af eluster
1

Fig. 1. Repmresentation of a supervised attribute cluster.

14, } from the whole set T considering the attibute 4; as the

representative of cluster W, where
Vi={Ajl(Ai, Aj) 2 6 A; # A e T} (14)

Hence, the cluster ¥, represents the set of attrbutes of ©
that have the supervised similarity values with the atribute 4,
greater than a predefined threshold value 4. The cluster % is
the coarse cluster comresponding o the attribute 4, while the
threshold 4 is termed as the radius of cluster % (Fig. 1).

After forming the initial coarse cluster %W, the cluster rep-
resentative is refined incrementally. By searching among the
attributes of cluster %, the current cluster representative is
merged and averaged with one single attnbute such that the
angmented cluster representative A; increases the relevance
value. The merging process 1s repeated untl the relevance value
can no longer be improved. Instead of averaging all atributes
of %W, the augmented attribute 4; is computed by considering a
subsel of attributes %, < %, that increase the relevance value of
cluster representative ;. The set of attributes %; represents the
finer cluster of the attribute 4, (Fig. 1). While the generation of
the coarse cluster reduces the redundancy among atiributes of
the set T, that of the finer cluster increases the melevance with
respect to class labels. After generating the augmented cluster
representative A, from the finer cluster %, the process is re-
peated to find more clusters and augmented cluster representa-
tives by discarding the set of attributes % ; from the whole set C.

The main steps of the proposed supervised atribute cluster-
g algorithm are reported next.

Let © represent the set of atributes of the original data set,
while § and 5 be the set of actual and augmented attributes,
respectively, selected by the proposed atrnbute clustering
algonthm.

Let %W, be the coarse cluster associated with the attribute 4,
and ket %, which is the finer cluster of 4, (Fig. 1), represent
the set of attrbutes of %W; that are merged and averaged with
the attribute A; 10 generate the augmented cluster represen-
tative A;.

1) Imitialize T — {A4;,.....4;,..., 7 Apl, 80,
and & — @

2) Calculate the relevance value R4, (D) of each atiribute
AieC

3) Repeat the following nine steps (steps 4-12) until © = @
or the desired number of attributes is selected.
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4) Select attribute 4; from © as the representative of cluster
%, that has the highest relevance value. In effect, 4; € &,
Aie¥W, A eV, andT =0T A,

5) Generate coarse cluster %; from the set of existing at-
tributes of T satisfying the following condition:

Vo= {Ajl(Ai, A;)) = d.4; # A4, € C}.

6) Initialize A4, — A,

7) Repeat the following four steps (steps 8-11) for each
attribute A4; € ¥,

8) Compute two augmented cluster representatives by aver-
aging .4, and its complement with the attdbutes of ¥, as

follows:
1
+ o -
Ao = Az_r_i_._,_“ih'JrAJ ()
T
g 2 E , — 16
A = M_F,,_A* o =4

9 The augmented cluster representative 4, after averag-
ing .4; or its complement with %; is as follows:

Ty {AE:U "‘R**L‘. @) =Ry, (B)
Ay otherwise.

10y The augmented cluster representative 4; of cluster %
is Ay if Ry, (D) = R, (ID); otherwise, .A4; remains
unchanged.

11) Select attribute 4 ; or its complement as a member of the
finer cluster ¥V, of attribute A, if R 5 (D) = R 3 (ID).

12) Ineffect, 4; e 5andC =T W,

13) Sort the set of augmented cluster representatives 5 =
{A;} according to their relevance value R ; (I} with
respect to the class labels [

14y Swp.

In this regard, it can be shown that as the number of desired
clusters is constant and sufficiently small compared with the
total number of attributes T, the proposed clustering algorithm
has an overall (T tme complexity.

C. Fundamental Property

From the above discussions, the following properties come-
sponding o each cluster % can be derived:

1) ¥ A, Ay =28¥A; e Vs

2) Ba, (D) = R, (D);¥A; € W5

3) Rj,, (D) = Ry, (D) VA; € Vi

4) Ry, (D) < Ry (D);VA; € ¥V, \ V..

Property 1 says thatif an attdbute 4, €V, =0(4,,.4;) = &
That is, the supervised similarity between the atribute 4, of
coarse cluster %W, and the mitial cluster representative 4, is
greater than a predefined threshold value 4. Propeny 2 estab-
lishes the fact that if 4; € ¥, = R () = R4 (D), that is,
the relevance of the cluster representative .4; is the maximum

among that of all attributes of the cluster %;. Properies 3 and
4 are of greal importance in increasing the relevance of the
augmented cluster representative with respect to the class labels
and reducing the redundancy among the attribute set. Property 3
says that if A; eV, = Rj (D) =R (D). It means that
an attribute 4, belongs to the finer cluster % if and only
if it increases the relevance value of the augmented cluster
representative A, On the other hand, Property 4 says that the
attributes that belong to only coarse cluster W, not to finer
cluster W, are not responsible in increasing the relevance of the
aungmented cluster representative. Hence, the set of atributes %,
increases the relevance value of the attribute 4; and redoces the
redundancy of the whole set, while the set of attributes % 4 W,
is only responsible for reducing the redundancy.

D, Generation of Fuzzy Equivalence Classes

The family of normal fuzzy sets produced by fuzey parti-
tioning of the universe of discourse can play the role of fuzey
equivalence classes. Given a finite set T, € is a fuzzy condition
attribute set in 1, which generates a fuzzy equivalence partition
on [ If ¢ denotes the number of fuzzy equivalence classes
generated by the fuzey equivalence relation and n is the number
of objects in U, then e-partitions of 1 are sets of (en) values
{ptg} that can be conveniently arrayed as a (e x n) matnx
I = [pS], which is denoted by

)
BT M2 Hin
S WG HE

subject to 375, !*E. = 1,4, and for any value of 4, if

b = argmax {p:';} . then max {;i:';} = max {p.a.} =1
i i

where P‘E. = pr(z;) € [0, 1] represents the membership of
object x; in the ith fuzzy equivalence class F;. In the proposed
supervised gene-clustering method, the 7 function in the 1-D
form is used 1o assign membership values to different fuzey
equivalence classes for the input genes. A fuzzy set with mem-
bership function 7 x; ¢, o) represents a set of points clustered
around ¢, where

0

2
E(I—M) forg <|z—¢| =a

w{zé, o) = 19y

2
1 (II?‘;.{'") for() < ||z —&]| <

1} oltherwise

(=]

where o > )% the radius of the 7 function, with & as the ceniral
point, and | - | denotes the Euclidean nomm [22]. When the
pattern x lies at the central point ¢ of a class, then ||z — & = (0,
and its membership value is maximum, that is, w{e; e o) = L
The membership value of a point decreases as its distance from
the central point 7, that is, |z — ||, increases. When ||z — ¢ =
(e /2], the membership value of x is 0.5, and this is called a
crossover point. The (¢ x n) matrix B4, , corresponding to the
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ith gene A;, can be caleulated from the c-fuzzy equivalence
classes of the objects = = {2, ..., 5,000, Ty, }, where

w(x €. Th )
] 3
Y w(x &, 1)

=1

iy = (20)

Each input real-valued gene in a guantitative form can be
assigned to different fuzzy equivalence classes in terms of
membership values using the 7 fuzzy set with appropriate ¢
and a. The centers and the radii of the 7 functions along each
gene axis are determined from the distribution of the training
pattems. In the proposed gene-clustering algonthm, three fuzzy
equivalence classes (¢ = 3), namely, low, mediom, and high,
are considered. These three equivalence classes comrespond 1o
underexpression, baseling, and overexpression of continuous-
vilued genes, respectively. Comesponding to three fuzey sets
low, medium, and high, the following relations hold:

iy =f-'|.;_|w|::A.-:| Ca = f-'|||¢-<|i||||||::¢4-g:| Cy = f'hiHh'::A a:l

Ty ='|7|-:1w|::v‘4-.i:| g = U|||<R|i||||||::v‘4-.':| oy = vI'J'||iH|||::A,.:|.

The parameters © and o of each 7 fuzey set are compuled
according to the following procedure [22]. Let iz, be the mean
of the objects = = {z1,...,2;,..., T, | along the ith gene A;.
Then, vi;, and v, are defined as the mean along the ith gene
of the objects having coordmate values in the range (A, .17
and (i, .4 respectively, where 4, and A denote
the upper and lower bounds of the dynamic range of gene 4, for
the tramming sel. For three fuzey sets low, mediom, and high, the
centers and the corresponding radii are computed as follows:

1
tranz | Ermin

Elaw [Ai) =74 Emedium (i) = 7 Engn (Ai) = 7,
Lea P ':,A.':I =32 l::'r'lllllt.‘i”llllll::An':I - r-'|-:1w|::v‘4-.i:|:|
"'Ihighi:v"‘rh:l =2 {r'hiHh'::Aa:I = r-'|||<'1|i||||||::v’4-¢:|:|
JIII!N”IIIII'::AEII =nx %

whene
A = o (A0 (AL, — Crnedinm{Ai))
+onigh (Ai) (Cmedium(Ad) — Ai )
B={A.. — A}

where 77 15 4 multiplicative parameter controlling the overlap-
ping. The distribution of the patterns along cach gene axis 1s
Laken mnto account, while computing the corresponding centers
and radii of the fuzzy sets. Also, the amount of overdap between
the three fuzzy sets can be different along the different axis,
depending on the distribution of the pattems.

IV. EXPERIMENTAL RESULTS

The pedformance of the proposed FRSAC algorithm is com-
pared with that of some existing supervised and unsupervised
gene-clustenng and  gene-selection algorithms, namely, the
furzy equivalence partition matrix (FEPM)-based gene selec-
tion algorthm [21], ough—fuzzy c-means (RECM) [18], the
supervised gene clustering algorithm (SGCA) [10], the atribute

clustering algorithm {ACA) [5], fuzey c-means (FCM) [20],
and the mimmum redundancy—maximum relevance (mREME)
framework [23]. To analyze the perfformance of different algo-
rithms, the experimentation 15 done on eight microarray gene
expression data sets, namely, breast, leukemia, colon, prostate,
lung, RBreast, RAOA, and RAHC data sets [21]; each of the
data is preprocessed by standardizing each sample to zero mean
and unit variance. The source code of the FRSAC algorithm
written in C language and the supplementary information are
available at hitp:/ffwww.isical acin/~pmaji/resultsffrsac himl

A. Class Prediction Methods

The major metrics for evaluating the performance are the CS
index [2] and the classification accuracy of the NB classifier
[2], the K-NN rule [2], and the SVYM [24]. To compute the
classification accuracy of three classifiers, the leave-one-out
cross-validation is performed on each data set.

1) SVM: The SVM [24] 15 a relatively new and promising
classification method. It is a margin classifier that draws an
optimal hyperplane in the feature vector space; this defines
4 boundary that maximizes the margin between data samples
in different classes, therefore leading 1o good generalization
properies. A key factor in the SVM is to use kemels to
construct & nonlinear decision boundary. In this paper, linear
kernels are used. The source code of the SVM is downloaded
from hitp:ffwww csie ntuedu. ta/~cjlinfibsvm.

2) K-NN Rule: The K-NN rule [2] 15 vsed for evaluating
the effectiveness of the reduced feature set for classification.
1t classifies samples based on the closest training samples in
the feature space. A sample is classified by a majority vote of
its K-neighbors, with the sample being assigned 1o the class
most common among its K-NNs. The value of K, chosen for
the K-NN, is the square root of the number of samples in the
training set.

3) NB Classifier: The NB classifier [2] is oblained using the
Bayes rule and assuming features or variables are independent
of each other given its class. For the jth sample x; with m
gene expression levels {wrg, ..., Wiy onvy Wy | for m genes,
the postenor probability that =; belongs 1o class c1s

e

plejxy) o Hp{ﬂr:uir.':l (21)
i=1

where pla;|c) are the conditional tables or conditional density
estimated from training examples.

4) C8§ Index: The CS index S [2] of a data set 15 defined
as & = Lruuu{ﬁ'_,;'lﬁ'“.:l, where 5, and 5, are the within and
between class scatter matrices, respectively, defined as follows:

i i
S, = Z m B {(X — iy )(X —jJ-J.:ITif.'_l.} = Z w0y
i=1 i=1
c

o
Sy= (py—ip; — )T andji= B{X} =3 "mp,
=1

i=1

where € is the number of classes, m; is the @ priori proba-
bility that a pattern belongs to class e;, X is a feature vector,
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TABLE 1
PERFORMANCE OF THE PROPOSED ALGORITHM ON COLON AND LUNG CANCER DATA SETS FOR 000 < § < 096 AND 1.0 <5 < 1.5
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ji 15 the sample mean vector for the entire data points, gy oand
E; mpresent the sample mean and the covanance matrix of
class ¢;, and E{-} is the expectation operator. A lower value
of & ensures that classes are well separated by their scatter
IMEAnS.

B. Role of the Threshold and Multiplicative Parameter

The threshold & in (14) plays an important role to form the
mital coarse cluster. It controls the degree of similarity among
the attibutes of a cluster. In effect, it has a direct influence on
the performance of the proposed supervised attaobute clustering
algorithm. If § increases, the number of attributes in a cluster
decreases, but the similanty among them with respect o sample
categones mereases. The similarity among the attributes of
a cluster decreases with the decrease in the value of 4. On
the other hand, the multuphcative parameter 5 controls the
overdapping between three fuzey equivalence classes low and
medivm or medium and high,. Keeping the values of oy, and
Thigh fixed, the amount of overlapping among the three =
functions can be altered varying opedinm. As 1718 decreased, the
rading & yedinm decreases around g0 0, Such that, ultmately,
there is insignificant overdapping between the 7 functions low
and medium or medium and high. As 5 mereases, the mdios
Tinedinm I0Creases around ©,e0000 Such that the amount of
overdapping between 7 funclions increases,

To find out the optimum values of both 5 and 4, the extensive
experimentation s camed oul on eight microarray data sets.
Tables 1 and 1 represent the pedformance of the proposed clus-
tering algorithm on colon, lung, prostate cancer, and RBreast
data sets for different values of 7. The results and subsequent
discussions are presented with respect to the classification
accuracy of the SVM and the K-NN rule, and 090 < § <
(.96, The results are reporied for three best clusters (m = 3)
obtained using the proposed attnibute-clustermg method. From
the results reported i Tables Land 11, it 18 seen that very large
or very small amounts of overdapping among the three fuzzy
equivalence classes of the mput feature are found o be unde-
sirable irrespective of the values of §. The proposed supervised
attribute clustering algonthm achieves its best perdommance at
i1 = L.1 for colon cancer data, 1.2 for lung and prostate cancer
data, 1.3 for RBreast data, and 1.0 and 1.5 for lung cancer
data. That is, the best performance of the proposed algorithm 1s
obtained on these four data sets for 1.1 < 5 < 1.3 with respect
to the classificaton accuracy of the SVM and the K-NN rule.

Table 111 mepresents the performance of the proposed super-
vised attobute clustenng algorithm on colon, lung, prostate
cancer, and RBreast data sets for different values of §. The
results and subsequent discussions are presented with respect o
the classification accuracy of the SYM and the K-NN rule, and
1.1 <9 = 1.3. From the results reported in Table 111, it 1s seen
that as the value of § increases, the classification accuracy of the
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SVM and the K-NN rule increases. The proposed supervised  cancer data, (.94 for lung cancer data, and 0.96 for RBreast
attribute clustering algorithm achieves its best performance at  data. That is, the algorithm pedonms best for (.90 < § < .96
d = 0.91 for colon cancer data, 093 for lung and prostate  with respect to the classification accuracy of the SVM and the
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K-NN rule. Fimally, Tables IV and ¥ report the pedormance
of the proposed algonthm on breast cancer, leukemia, RAOA,
and RAHC data sets for 1.1 <5 < 1.3 and 0.90 < § < (196,
Out of 504 cases, the proposed supervised attnbute clustering
algonthm attains 100% classification accuracy in 485 cases,
that 15, 96.2% cases on these four data sets. All the resulis
reported in Tables -V establish the fact that the best perdor-
mance of the proposed algorithm is achieved for 1.1 < ¢ < 1.3
and (1L.90 < 4 < 0.96 rrespective of the data sets used. In other
words, the proposed algonithm attaing its best pedormance
when the genes are grouped based on at least 90% of ther
fuzzy—rough supervised similarity values and when at least
onge of the membership values in any one of the three fuezy
equivalence classes 15 greater than 005,

C. Importance of Augmented Genes

Each coarse cluster mepresents the set of genes that have
the fuzzy—rough supervised similarity values with the mitial
cluster representative greater than a predefined threshold value
4. In fact, the relevance of the initial cluster representative is
greater than that of other genes of that cluster. After forming

the mmitial coarse cluster, the cluster mepresentative 15 refined
incrementally in the proposed attribute clustering algorithm. By
searching among the genes of the coarse cluster, the cument
cluster representative s merged and averaged with one single
gene such that the avgmented cluster representalive INCreases
the melevance value. The merging process 1 repeated until the
relevance value can no longer be improved.

In order to establish the importance of the augmented cluster
representative of the finer cluster over the imitial cluster repre-
sentative, that 1s, the actual gene, the extensive experiments are
camed out on eight microarray data sets. Table V1 reports the
comparative performance of actual and augmented genes of dif-
ferent finer clusters as well as that of augmented genes of coarse
and finer clusters. Results are reported for m = 3 considenng
fuzzy—rough supervised similanty measure. The performance
15 compared with respect w the C8 index and the classification
accuracy of the 5VM, the K-NN rule, and the NB classifier.
All the results reported in Table VI establish that the proposed
supervised attnbute clustering algonthm performs significantly
better in case of the augmented gene computed from the finer
cluster than that of the coarse closter and the actual gene
irrespective of the data sets and gquantitative indexes used.
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In this context, it should be noted that the pedormance of
the actual gene 15 better than that of the augmented gene com-
puted from the coarse cluster for breast, leukemia, colon, and
prostale cancer data irrespective of the number of clusters and
quanttative indexes used. For other data sets, the pedfomance
of the augmented gene computed from the coarse cluster 1s
better than the actual gene in only 15 cases out of total 48
cases. Hence, the augmented cluster representatives should be
computed by considenng only genes of finer clusters, not all
genes of corresponding coarse clusters. The atnibutes present
in the coarse cluster, but not in the corresponding finer cluster,
reduce the redundancy among the augmented attnbutes w be
generaled. The mmclusion of these genes with the genes of the
finer cluster may degrade the quality of the solution.

D. Biological Significance

To interpret the biological significance of the generated clus-
ters, the gene ontology (GO) term finder 15 vsed [25]. It finds
the most significantly enriched GO terms associated with the
genes belongmg o a cluster. The GO project aims w0 build tree
structures and controlled vocabulanes, also called ontologies,
that describe gene products in terms of their associated bio-
logical processes (BPs), molecular functions (MFs), or cellular
components (CCs). The GO term finder determines whether

any GO term annotates a specified list of genes at a frequency
greater than that would be expected by chance, calculating the
associated p-value by using the hypergeometric distribution and
the Bonferromi multiple-hypothesis comection [25]. The closer
the p-value 15 o zem, the more significant the particular GO
term associated with the group of genes becomes, that is, the
less Tikely the observed annotation of the particular GO Lerm
to 4 group of genes occurs by chance. On the other hand, the
false discovery rate (FDR) 15 a multiple-hy pothesis testing ermor
measure indicating the expected proportion of false positives
among the set of significant results.

Henee, the GO term finder is used o determine the statistical
significance of the association of a paticular GO term with the
genes of the best cluster produced by the proposed algorithm.
The GO term finder is used to compute both the p-value and
the FDR (in percent) for all the GO terms (rom the BP, MF, and
CC ontology, and the most significant term, thatis, the one with
the lowest p-value, is chosen to represent the set of genes of the
best cluster. Table VI presents the p-values and the FDR for
the BE, the MF, and the CC on different data sets. The results
corresponding 1o the best clusters of the SGCA [10] are also
provided on same data sets for the sake of comparson. The
“"m Table VII mepresents that no significant shared term s
found considenng the p-value cutofl as 0.05. From the mesults
reported in Table VIL it 1s seen that the best cluster generated
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by the proposed algorithm can be assigned w the GO BPs
with high reliability in terms of the p-value and the FDR.
That s, the proposed algonthm desenbes accurately the known
classification, the one given by the GO, and, thus, it 1s rehable
for extracting new biological insights.

E. Comparative Performance Analysis

Fmally, Table VUI compares the pedonnance of the pro-
posed FRSAC algorithm with the best performance of different
algonthms, namely, FEPM [21], RFCM [18], SGCA [10], ACA

[5]. FCM [20]. and mBEMRE [23]. The resolts are presented
based on the best classification accuracy of the SVM, the
K-NN rule, and the NB classifier for eight microarray data
sets. From the results reported in Table VILIL it s seen that the
proposed supervised attabute clustering algonthm generates a
sel of clusters having the highest classification accuracy of the
SVM, the K-NN rule, and the NB classifier and the lowest CS
index values n maost of the cases. However, the FEPM and
mBEME methods perform better than the proposed algorithm
for the lung cancer data set with respect o the C5 mdex and
for the RBreast data set at ve = 1 and the prostate cancer data
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sel at e = 2 and 3 with respect 1o the NB classifier. Also, the
pedformance of the proposed algorithm is lesser than that of
the SGCA and the mRMR for the prostate cancer data set at
m = 1 with respect to the NB classifier. That is, the proposed
supervised attribute clustering algorithm performs better than
the existing algorithms in 89 cases out of a total of 96 cases.

The better performance of the proposed FRSAC algorithm is
achieved due to the fact that it uses the fuzey—rough supervised
similarty measure 10 generate coregulated gene clusters with
strong associabon o the class labels. The measure incorporales
the information of sample categories while measuring the simi-
lanty between genes. Also, it can deal with uncertainty, vague-
ness, and incompleteness in the class definition. Moreover, the
cluster representatives of the proposed algorithm are modified
based on the information of sample categories. 1n effect, it can
identify functional groups of genes present in microarray data
more accurately than existing algonthms. The coherent average
expression levels of these functionally similar gene clusters
allow perfect discrimination of sample categories.

V. CONCLUSION

The main contribution of this paper is threefold, namely,
defining & new guantitative measure, based on fuzzy-rough
sels, o caleulate the similarity between two attributes or genes,
which incorporates the information of sample categores; de-
veloping a new supervised attribute clustering algorithm to find
coregulated clusters of genes whose collective expression is
strongly associated with the sample categones; and comparing
the performance of the proposed method and some existing
methods using the C8 index and the predictive accuracy of the
SVM, the K-NN rule, and the NB classifier.

For six cancer and two arthritis microarmy data sets, sig-
nificantly better results are found for the proposed method
compared with existing methods in most of the cases. All
the resuls reported in this paper demonsirate the feasibility
and the effectiveness of the proposed method. It is capable
of identifying coregulated clusiers of genes whose average
expression is strongly associated with the sample calegories
or class labels. The identified gene clusters may contribute 1o
revealing underlying class structures, providing a useful tool
for the exploratory analysis of biological data.
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