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Abstract. Euler number is a fundamental topological feature of an endthe efficiency of com-
putation of topological features of an image is critical fioany digital imaging applications such
as image matching, database retrieval, and computer \isamequire real time response. In this
paper, a novel algorithm for computing the Euler number ofratty image based on divide-and-
conquer paradigm, is proposed, which outperforms sigmifigghe conventional techniques used in
image processing tools. The algorithm can be easily péizatefor computing the Euler number of
anN x N image inO(N) time, with O(NN) processors. Using a simple architecture, the proposed
method can be implemented as a special purpose VLSI chipusdxtas a co-processor.
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1. Introduction

Topological properties serve the purpose of representgamgtric shape of an image. They remain
invariant under any arbitrargubber-sheetransformation [1, 2, 7] and hence, are very useful in image
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characterization for matching shapes, recognizing abjentage database retrieval, and in numerous
other image processing and computer vision applicatiomsinfoortant topological feature of an image
is the Euler number (or genus), which is the difference betwthe number of connected components
and the number of holes [1, 7].

With the emergence of fast Internet facilities, a growingnded for distributed and high-performance
image retrieval systems is being felt. Euler number can ptaymportant role in such applications. It
can also be used in medical diagnosis from cell images, @etection of malaria infected cells, as the
Euler number of an infected cell is often different from tlb&ia good one. Critical image processing
applications involve large amount of data and at the same tlemands for real-time response. Fast
computation of the Euler number of an image is thereforendispensable task in various missions.

Dyer proposed an algorithm to compute the Euler number afge represented by a quadtree [3].
Samet and Tamminen improved the algorithm further by usingva staircase type of data structure to
represent the blocks that have already been processed pfjevtr, it is not suitable for VLSI imple-
mentation, as the sizes of the leaf nodes are unequal, antuthber of leaf nodes varies widely for
different image samples. Gray [5] has described a methoetlbas local pattern counting which is used
in commercial image processing tools like MATLAB [8]. Thent complexity of this method 9 (N?)
foran N x N image, which is linear in the number of pixels in the imager iRtage processing tasks,
where the data is huge, the constant term that is so oftemhihidthebig-Oh notation, becomes impor-
tant. For large images, even a linear time sequential dlgorimay be inadequate to meet critical time
requirements. A faster method is thus needed to handle temgey images. Recent advances in parallel
processing and VLSI technology can be exploited to deveigp performance algorithm and architec-
ture that achieves real-time goals. A pipeline architecfor computing the Euler number on-chip has
been recently reported [12]. The concept of Euler numberdiscaiminatory feature, has been extended
further to characterize a gray-tone image [13].

In this paper, a new sequential algorithm that computes therBumber of a binary image is pro-
posed, based on divide-and-conquer approach. Althouglvtinst case complexity of the algorithm
is O(N?), its average-case behavior outperforms the earlier ghgosi significantly. Next, a parallel
version of the algorithm is described that takegV) time for anN x N image, usingD(N) simple
processors, which can be readily mapped to a simple VLSIltaatbre. The proposed algorithm can
easily be implemented with a special purpose VLSI chip tlzat serve as a co-processor of the host
computer, to expedite computation.

2. Preliminaries

The Euler number(or genus), of a binary image is the difference between thmbeu of connected
components (objects), and the number of holes [1, 5, 7]. heebtnary image be represented b@-a
pixel matrix of size(N x M), in which an object (background) pixel is denotedla®). In a binary
image, aconnected componei# a set of object pixels such that any object pixel in the set the8 (or

4) neighborhood of at least one object pixel of the same sdiolais a set of background pixels such
that any background pixel in the set is in the(or 8-) neighborhood of at least one background pixel
of the same set and this entire set of background pixels issadt by a connected component. The sets
referred to in the definition are sets contained in the imaggean example, the figure of ‘9’ shown in
Figure 1 has a single connected component and only a sinte 90, its Euler number i3.
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The most efficient and simplest algorithm, reported so far, for computing Euler number of an ir
works by looking into local patterns [5, 7]. Consider the following set ®P2pixel patterns called bit

quad:
g _foo0 00 01 10
10’0100 0 0
01 10 11 11
Qz_{l 1’11100 1}
0 1
Q3_{10’01

Let C, Co and(C3 be the number of pattern3;, @2, Q3 respectively in the image S. It has beel
shown in [5] that under the definition of four-connectivity the Euler number can be computed as

—
o
H/—/

B(S)= | (O~ Cy+2:Cy) @

and for eight-connectivity

TE(S) =, (01— O —2-Cy) @
This method is used in MATLAB image processing tool box [8]. Henceforth, we shall refer this met
as Gray’s algorithm.

In the proposed divide-and-conquer approach, the input image is partitioned into a number of di
atomic images. By atomic is meant a small part of the input image which need not be decomposed f
The Euler number of each atomic image, which is substantially smaller in size compared to the
image, can be computed by the method described above. Once the Euler numbers of all atomic i
are evaluated, the Euler number of the original image can be computed by using a simple arithmeti

3. Proposed Algorithm

3.1. Divide-and-conquer approach

The given image is partitioned recursively by arbitrary cut-lines.

Definition 1. A cutline is a sequence of pixels from one boundary of the image to its opposite bounc
where each pixel has exactly two neighboring pixels along the cut-line (except the start and end
which have only one neighbor each).

Without any loss of generality, we restrict the choice of cut-lines to only horizontal and vertical di
tions. Since a binary image is normally represented as g§@-D1) pixel matrix, any row or column of
the matrix can be used to designate a cut-line.

Definition 2. A run on a row (or column) is defined to be a maximal sequence of consedugivels.

As cut-line is designated by any row or colunnan on a cut-line is defined accordingly. In the following
definition, we definedjacent runs
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Definition 3. Consider two runs R(p1,p2,...,p,) and R (q1,42,...,gx). They are adjacent if and
only if there exists atleast one pixgl € R, and one pixel; € R, such that pis in neighborhood of g
and vice versa.

Definition 4. Theunion (U) of two imagesS, and.S;, is defined as a simple juxtaposition §f and S,
either vertically or horizontally, without any overlap. &mtersection(n) of S, and .S, is the image
formed by the last row (or column) &f,, and the first row (or column) of}, if the imagesS, and S,
are joined horizontally (or vertically).

Let S be the given binary image, adddenotes a cut-line that partitiorfsinto two sub-images,
andSs. Letp be arun on lind, and let there be such runs. Denote b, (p) the number of runs on the
boundary line ofS; that are adjacent to (neighbor @f)and byk,(p), the number of such runs .

Lemma 1. [5, 6] Euler number satisfies thecal additive property Given three images,, So and L
with Euler numberd(S;), E(S2) andE(L) respectively, the Euler number of the image= S;US;UL
is given byE(S) = E(Sl U.sSs U L) = E(Sl) + E(SQ) + E(L) - E(Sl N SQ) - E(Sl N L) - E(SQ N
L) + E(Sl NSy N L).

For details of the Lemma 1, see [5, 6].

Observation 1. The cut line L is a column (or row) lying in betwee$y and Ss, and separating;
and .S, such thatS; N Sy = ¢. S0,E(S; NSy) = 0andE(S; NSy N L) = 0. Therefore,E(S) =
E(Sl US, U L) = E(Sl) + E(SQ) + E(L) — E(Sl N L) — E(SQ N L).

Observation 2. There can be no holes in a one-row (one-column) or two-row-telumn) wide image.
Lemma 2. For a cut lineL, which is a single row (or column), the Euler numbB{,L) = r, wherer is
the number of runs id..
Proof:
The proof follows from Observation 2 and the fact that the hanof connected componentsiins r.
0
Note that, the intersection image is always two pixel rowg@umn) wide.
Lemma 3. E(S; N L) = the number of neighboring runs betwegnand L.
Proof:
The proof follows from Definitions 3 and 4 and Observation @ tre fact that the number of connected

components is equal to the number of neighboring runs foloartw wide image. O

Theorem 1. If a binary image S is partitioned into two sub-imaggsand.S; along a cut-line L such
that,

1. S=5US UL, and
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2. 5NSNL=¢

then, the Euler numbet(S) of the imagesS is given by

E(S) = E(Sl) + E(SQ) + C’ont(L) (3)
where,
Cont(L) =", {1 — ki(p) — k2(p)} - O
Proof:

From Observation 1, we hav&(S) = E(S1)+ E(S2)+ E(L)— E(S1NL)— E(SeNL). From Lemma
2, we haveE (L) = r, and from Lemma 3, we ha(S1 N L) + E(Sa N L) =377 {ki(p) + k2(p)} -
Thus,Cont(L) = E(L) — E(S1NL) — E(S2N L) =3, {1 —ki(p) — ka2(p)} - O

Example 1. Image S (see figure 1) is partitioned intp &d S by cut L;. The component Sis again
partitioned into $; and S5 by cut Ly. Similarly, S is partitioned into & and Ss by cut Ls.

E(Sl) = E(Sn) + E(512) + CO’nt(LQ) WhereCont(Lz) = ZTELQ{I — /{71(,0) — kQ(p)} =0, and
E(SH) = E(Slg) = 1. Hence,E(Sl) =14+14+0=2.

E(SQ) = E(SQl) +E(522) + CO’rLt(Lg) WhereCO’nt(Lg) = Z?"EL;}{I —ky (p) — kg(p)} =1-1—-1=
—1,andE(S21) = E(S22) = 1. Hence,E(S2) =1+1—-1=1.

E(S) = E(S1)+E(S2)+Cont(L1) whereCont(L1) = 3 .1 {1—ki(p)—ka(p)} =3-3-3= -3,
andE(S;) = 2,andE(S;) = 1. HenceE(S) =2+ 1-3=0.

T
L1
|

I
=—— Cutlines

Figure 1. Divide-and-conquer illustrated

In the next subsection, we describe a sequential algorithsed on recursive application of the above
partitioning scheme.

3.2. Sequential algorithm

The recursive proceduomputeEulecomputes the Euler number of an image. If both the dimensions
of the partitioned image become smaller than some predetiale@ MIN, then we compute its Euler
number by procedur&uler. ProcedureContribution computes contribution of the cut-line. We shall
show how to determine the value MIN after analyzing the paralgorithm in section 4.3.
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procedure ComputeEuler(S, hlen, vlen)

begin
if ( hlen < MIN and vlen < MIN ) then
begin
e = Euler(S);
end
else
begin
/*
S is partitioned by cut-line
L into S1 and S2

*/
if ( hlen > vlen ) then
begin
x = ComputeEuler(S1,hlen/2,vlen);
y = ComputeEuler(S2,hlen/2,vlen);
z = Contrib(L);
e =x +ty+t z;
end
else
begin
x = ComputeEuler(S1,hlen,vlen/2);
y = ComputeEuler(S2,hlen,vlen/2);
z = Contrib(L);
e =x t+ty+t z;
end
end
return e;

end.

ProcedureEuler computes the Euler number of an atomic image by the methadided in Gray [5].
The basis of procedui@ontrib is described below.

3.3. Contribution computation

In this section, we describe a method for computing contivbuof the line L that partitions the image S
into two sub-images; and.S; as mentioned in equation (3). Recall,

Cont(L) = 341 = ka(p) — a(p))

pEL
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We thus have to count the number of runs along L, as well as auwoflruns along the boundary lines
of S; and.S; that are adjacent to runs on L. Consider the following3dit pattern.

IS TSI
g < g

where,z,u € S1, z,w € Sy, andy,v € L. Without any loss of generality, we can assume that L is
the # row of the image matrix S. Then S(i-1,j-1) = x, S(i-1,j) = uj€(j-1) = z, S(i+1,j) = w, S(i,j-1)
=y, and S(i,j) = v. We traverse the band of three consecutvwes(i-1, i, and i+1) column by column
remembering the elements of the last column. Hence, whemakeihto column j, the elements of (j-
1) and j" columns are known. Let the number of runs on Lche | k1 (p) = 8, and}_ ka(p) = .
Using Lemma 2 and 3 we can write,

ST = ki(p) — ka(p)} = — B — 7

p

We define three boolean functiofis, ¥ , and®. We increasey, 3, and-y as following: (1) ifT" is true
then incremeng by one, (2) ifU is true then increment by one, and (3) i is true then increment

by one. Under the definition of four-connectivity, the abtwe®lean functions are defined as= 3 - v,
F'=w-v-(z+y), ¥ =w-v-(z+y); and for eight-connectivity they are defined é&s= 7 - v,
'=z-w-v+zZ-u-y+z-yg-v,9=Z-w-v+2z2-w-y+2z-4§-v. Thus, using the above equations,
Cont(L) can be evaluated easily from the pixel matrix.

3.4. Complexity and results

The time complexity’(n) (wheren is the number of pixels) of the divide and conquer algorittiofes

the recurrence
1 if n=1;
T(n) = )
2T(%) +O0(y/n) ifn>2.

Solving the recurrence, we gét(n) = O(n). In our case, a8 = N2, we get the time complexity as
O(N?), which is linear in the number of pixels. Although the asyatigttime complexity of procedure
ComputeEuleis O(N?) which is same as that of the method described in [5, 7] fdf & N image, its
average case performance is much better, as we have a sowsigant factor. In the Gray’s algorithm
[5, 7], each pixel of the image is accessed twice except thmdery pixels, which are accessed only
once. On the other hand, in the proposed divide-and-conauethod, each pixel along a cut-line is
accessed only once, and pixels in the sub-images which g@eesd to O's in the cut-line, need not be
checked. Thus, the number of pixel accesses is significegdlyced on the average and consequently, we
save time as we need fewer memory references. Experimestdts of our implementation demonstrate
the savings in computation time, and are shown below. Therighgn has been implemented in C and
the code runs on both Solaris 2.6 and Linux platforms. We kested the program with several hundred
images out of which 10 examples are tabulated in Table 1. \Wgpaced our algorithm with that of
Gray [5, 7], and the results are shown in Table 1. The columbsléd “Gray” and “Proposed method”
correspond to the number of pixel accesses, and the regimiprovement is given in percentage. For the
Gray’s method, a pixel is accessed twice but the boundasigare accessed only once, for determining
convexity. Thus, it becomes slightly less th&nx M x 2 foran N x M image [10].
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Table 1. Comparison with the Gray’s method

Img Gray | Prop. meth.| Improvement
tml 33024 28008 15.19
tm2 131584 104082 20.90
tm3 131584 109086 17.10
tm4 131584 111250 15.45
tm5 33024 27426 16.95
tm6 33024 28598 13.40
ieeel | 33024 29086 14.92
ieee2 | 33024 25705 22.15
visi 525312 448774 14.57
text 131584 102880 22.77

3.5. Results on distribution of Euler number

The values of Euler number of the images in the database viasiysfrom —3796 to 2425. There are

85 images having Euler numbers in the rang&796 to —10; 829 images in the range;9 to 10; and

125 images in the rangd,1 to 2425. See Figure 2 for the range of Euler numbers and the frequency
of the images. There af images each with a distinct Euler number; there l&eases, where only
two images have the same Euler number. The frequency of thgdasthaving different Euler numbers is
shown in Table 2. This observation justifies that Euler nunta@ be used as a potential tool for image
discrimination, search, and retrieval. Some of the the logages used for our experiments along with
their Euler number are shown in Figure 6.

4. Parallel Implementation

4.1. The Algorithm

In the proposed approach, each cut increases the numbeb-ihages by one. Let there be K atomic
images and K-1 cut-lines. The parallel architecture thatideitself most naturally to this divide-and-
conquer algorithm is a (binary) tree. We use two types of ggsing elements (PE's). Type-1 PE
computes procedur€ontrib and evaluates equation (3). Type-2 PE computes the Eulebewuof
an atomic image, i.e., computes procedirder. The PE’s are organized in a binary tree, in which
the type-2 PE’s are leaf nodes and the type-1 PE’s are némdekes. There are K-1 type-1 PE’s de-
noted byPEl’l, PELQ, Ce ,PEl’Kfl and K type-2 PE’s denoted WEQ’K, PE27K+1, Ce ,PEQ’QK,L
Each type-1 PEPE,; wherei # 1 is connected td’E, ;, if i is even and toPE; ;_y)/; if i is
odd. Each type-2 PEPE, ; is connected taPF; ;/, if j even and toPE, (;_yy/, if j odd. Let the
cut-lines beLy, Ly, ..., Lx_1. The contribution ofZ; is computed by’ E; ;. Let the atomic images be
S1,82,...,Sk, where the Euler number &f; is computed byPE, ;1. The atomic images; and
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Figure 2. Bar chart showing distribution of ranges of Eulemiver

Sj+1, wherejis 1, 3, .., K-1, have been generated by the cut-ling, _1) /. If L; partitions an image
S into S and.S; then all computations faf; are done in left sub-tree of nodeF, ;, and those foiS;
are done in right sub-tree of nod&F, ;. Let h be the height of the tree.

SIMD SM CREW Algorithm

Step 1a: fori=1to K-1 do in parallel
PE; ; computes contribution of liné;;
endfor.

Step 1b : fori=1to K do in parallel
PE, ; computesF(S;);
PE, ; sends the result to its parent;
endfor.

Step 2 : for | = h-1 downto 2 do

fori=2"1to2! — 1 do in parallel PE, ; evaluates eq.(3);
PE; ; sends the result to its parent;

endfor.

endfor.

PE, ; evaluates eq.(3) and outputs result.

4.2. VLSI Architecture

The organization of the PE’s as a binary tree has been dedditfore (see Figure 3).
In this section, we sketch the internal organization of eREh



84 S. Dey et al./ A Co-processor for Computing Euler number

Table 2. Distribution of Euler Number for 1039 logo images

Euler Number Number of images Euler Number Number of images Euler Number Number of images
-3796 1 -18 3 27 2
-2624 1 -17 3 29 1
-1698 1 -16 1 30 1
-1059 1 -15 2 33 1

-653 1 -14 6 34 2
-650 1 -13 3 35 1
-404 1 -12 6 36 1
-378 1 -11 1 37 4
-302 1 -10 6 38 2
-256 1 -9 12 39 1
-160 1 -8 15 40 1
-154 1 -7 17 41 4
-153 1 -6 24 43 1
-147 1 -5 31 44 1
-142 1 -4 31 46 2
-112 1 -3 49 48 1
-110 1 -2 69 49 2
-95 1 -1 80 50 2
-92 1 0 137 53 1
-87 1 1 121 55 1
-56 1 2 60 56 1
-54 2 3 44 57 2
-52 2 4 46 58 1
-51 1 5 25 60 1
-49 1 6 14 62 1
-48 1 7 16 65 1
-45 1 8 14 66 1
-43 1 9 11 73 2
-42 1 10 13 75 1
-40 1 11 9 80 1
-36 1 12 6 82 1
-35 1 13 7 112 1
-33 1 14 4 114 1
-32 3 15 7 163 1
-31 1 16 3 168 1
-29 1 17 7 204 1
-28 1 18 8 233 1
-26 1 19 1 254 1
-25 2 20 2 276 1
-24 1 21 3 293 1
-23 2 22 3 534 1
-22 2 23 1 861 1
-21 2 24 2 1567 1
-20 2 25 1 2425 1
-19 1 26 3

A. Type-1 processing element

The circuit for computing the contribution of a cut-line isry simple and is shown in Figure 4.
It consists of three D flip-flop’sF'Fy, F'Fy, F'F3 with inputsu, v, w and outputsz, y, z respectively.
In each clock cycle, a new column of the 3-pixel wide band @ tie the inputs of the FF’s and the
values for the earlier column are already at their outputscoiding to the equations in Section 3.3 a
combinatorial circuit consisting of basic gates evaludte$, and ®. In Figure 4, the combinational
blocks for computind®, ¥, and® are shown as a triangular object. We use three countgr€’,, and
Cs driven by the values df, @, ¥ respectively. The value of contribution is computed as,

C’ont(L) = 02 — 01 — 03.
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PE2 PE2 | ®® ¢ o o ¢ o pp PE2

Figure 3. Processor Organizationin a Tree
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Figure 4. Architecture of Type 1 Processing Element
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Figure 5. Architecture of Type 2 Processing Element

B. Type-2 processing element

We design a simple hardware that computes the Euler numbeounyting the number of patterns
Q1, Q2. Q3 (see Section 2) in the imageé The hardware is shown in Figure 5. Note that at any point we
are looking into only four pixels. For a binary image, eactepis just one bit. If we label the pixels from
the top-left corner in clockwise fashion & b1, b2, andb3 then we get a bit string of length four where
the label of the pixel serves as its position in the stringe B string is then fed to a (416) decoder. The
output lines of the decoder ailg, d1, . .., dy5. Three counters’;, Co, C3 count the number of patterns
Q1, Q2, Q3 respectively. The counters are set to zero initially andemented as follows:

e () isincremented when liné,, do, d4, Or dg is set;
e (5 isincremented when liné;, d11, d13, Or d14 iS Set;

e (3 is incremented when linés or dyg is set.

When all the pixels are visited, the Euler number is compditech the counter values by using
equationg1) and(2).
4.3. Computational complexity

The proposed architecture requitds — 1 PE’s for an input image of siz& x N which is partitioned
into 4K atomic images. Let the maximum size of an atomic image lsem (n < m) where

N? > knm 4)

By incorporating a memory prefetch buffer, data can be segpb the PE’s in a single clock cycle. In
step 1, all the PE’s are active. The time needed for execstig 1 is the maximum time taken by a PE
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Figure 6. Some Logo Images and their Euler numbers (EN) usedriexperiments.

(3)EN=0 (39) EN =-17 (43) EN = 37 (46) EN = -1

(49) EN = 13 (58) EN = -2 (62) EN = 2425 (68) EN = -1

(73) EN=-1 (76) EN = 3 (80) EN = 15 (84) EN=0
uu'
e
+ N
—

(94)EN=0 (95)EN =7 (102) EN=-3 (104) EN=9
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to compute procedurguler of Contrib. In a CREW model each type-1 PE needs

() 1 clock cycle to read three pixel data,

(i) 1 clock cycle for the combinational circuit, and

(iii) 1 clock cycle to drive the counters.

Moreover, these three operations can be executed in astage-pipeline. Hence, each type-1 PE takes
P clock cycles whereP is the length of the cut-line which is at the mast Since Step la in the
algorithm is executed in parallel, computation of conttidm takes only N clock cycles. Each type-2
PE needs

() 1 clock cycle to read pixel data,

(i) 1 clock cycle to decode and evaluate the Boolean funsti@and

(iii) 1 clock cycle to drive the counters.

Similarly these three operations also can be executed iea-#tage pipeline. As step 1b in the algorithm
is executed in parallel, computation of the Euler numberidha atomic images takes? clock cycles

by the type-2 PE’s. If we make? < N ,the overall time requirement for step 1 becomes N. Step 2 is
executed forh = log, K times. Now from eqn. (4) we ha& < % Hence time requirement for step
2isO(logy N), and the total computation needis+ O(log, N) clock cycles. Thus, the time complexity
of the parallel algorithm i€£)(N). As the number of PE’s i©(N) and computation time i®(N), we
achieve a speed-up 6f(N) foran N x N input image. ThedAT value [9] isO(N?) which is optimum

as the sequential algorithm for computing the Euler numbandinary image take®(N?) time for an

N x N image [8]. The constraini? < N determines the value of MIN as mentioned in Section 3.2.

5. Conclusion

We have presented a fast recursive algorithm for computiegBuler number of a binary image that
provides a significant savings in computation time. A patalérsion of the algorithm is then described,
which runs inO(N) time on a tree architecture with(N) simple processing elements, for Ahx N
image. TheAT—measure of the implementation@X N2), which is optimum. A hardware implementa-
tion of the scheme has been proposed. Since the architewads simple interconnections among only
two types of processing elements, it is highly suitable foichip VLSI implementation.
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