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using the computed feature values is known as semantic gap. The accuracy of a CBIR system may be improved by an

iterative process of refinement of queries and visual features, guided by user’s feedback [8–11], which is commonly

known as the relevance feedback mechanism.

Feature extraction is one of the most important parts in designing a CBIR system. The extracted features should be

well separated in the feature space to produce effective discrimination between images. The importance of each selected

feature of the feature set may further be varied by a suitable weighting factor derived from the feature evaluation index

(FEI) [12,13] based on the user’s impressions from the relevance feedback.

Natural images generally contain edges and corners, which are locally defined by their positions. These features are

visually significant [14] and carry a high proportion of the information contained in the image, with a limited number

of pixels. The human visual system is highly efficient in selecting such significant features from an image, which may

be used to evaluate the similarity between images [15,16]. This idea is used in the present work.

Image retrieval tasks based on visually significant points are reported in [17–19]. A recent work on the optimal use

of color points of interest for the CBIR is presented in [20]. The detection of significant points based on the analysis of

statistics of color derivatives is proposed in [21]. Scale invariant feature transform (SIFT) [17] is an efficient algorithm

for object recognition, which is based on local extrema of differences of Gaussian filters in scale space. Potential points

of interest are identified using a difference of Gaussian functions that are invariant to scale and orientation. Local

image gradients are measured at the selected scale in the region around each key point. This representation allows

significant levels of local shape distortion and change in illumination. These invariant features have good applications

for identifying objects among clutter and occlusion.

Mikolajczyk et al. [18] proposed an interest point detector, which is invariant to scale and affine transformations

also. From a multiscale representation of the Harris interest point detector, the characteristic scale is selected by

selecting distinctive points at which a local measure (the Laplacian) is maximal over scales. The affine shape of a

point neighborhood is estimated based on the second moment matrix. Matching between two images is performed by

determining point to point correspondence.

An image retrieval system is proposed in [22], in which local features such as color, texture, etc. are computed on a

window of regular geometrical shape surrounding the corner points. The corner points are detected by general purpose

corner detectors like [23].

To estimate the local features around significant curvature points, it is necessary to select window size and shape

properly. A large window may incorporate lot of insignificant information (noise) along with significant information,

whereas small ones may leave out a lot of important information. Hence, the estimation of local features on a fixed

sized window will have some limitations as the spread of significant information may be different depending on the

type of curvature points (sharp, medium or weak). The characteristics of sharp curvature points will be confined within

a small region, while for those of medium and weak type, the region will be larger. These facts indicate the usefulness

of extracting the possible high curvature region of interest (ROI), whose shape and size vary adaptively according to

the nature of curvature type.

In general, segmentation intomultiple regions has been a primary step in image analysis, especially for image retrieval

applications [24–26]. A similarity measure between regions was introduced in the FIRM [25], where the properties

of all regions are integrated by a family of fuzzy features, in order to evaluate similarity between images. Although

segmentation is important for the effective characterization of an image, it is a difficult task without prior knowledge

about the classes present in an image. Segmentation becomes difficult when there is a large number of fragmented

objects in a scene, or no specific objects. Instead of segmentation and detailed region representation, the information

derived from the ROI may be subsequently used for overall scene matching applications.

The proposed technique is based on the assumption that two visually similar images will have similar visual char-

acteristics. A representation that captures local characteristics of visually significant portions is very important in

generating inferences from portions that draw visual attention with reduced computational cost. However, some global

measurements may also be considered to obtain a better representation, as the notion of similarity is dependent on

both local (significant curvature points and around) and global (image in total) views. Looking into these aspects, a

fuzzy set theoretic approach is proposed to extract clusters around different types of curvature points (sharp, medium

and weak), whose centroid almost depicts a true corner. These points are considered as candidate points for the com-

putation of features. The invariant moments of the extracted point sets are used as features for similarity evaluation.

An optimal set of relevant and non-redundant features is selected based on the mutual information criterion, and these

features are then used to retrieve images in the first pass. A fuzzy entropy based feature evaluation mechanism [27] is
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Fig. 1. (a) S type function. (b) 3 × 3 neighborhood of a pixel.

presented to enhance the accuracy of the system based on user’s feedback. The user marks the relevant images and the

irrelevant images in the retrieved set. The individual feature weights are updated using a measure known as the fuzzy

feature evaluation index (FEI) [27]. This value is computed from the ‘intraset ambiguity’ and the ‘interset ambiguity’

as obtained from the relevant and irrelevant set of images. The results of the proposed methodology are compared with

those of some well known techniques, namely, the integrated region based approach [28,25] and the color histogram

method [29].

The organization of the paper is as follows: In Section 2, the proposed methodology is described in detail, while

the experimental steps and corresponding extensive results are demonstrated in Section 3. Concluding remarks are

presented in Section 4.

2. Proposed methodology

The feature extraction and feature evaluation methods based on fuzzy methodology are explained in the following

subsections. The proposedCBIRmethod for the retrieval of related images consists of the followingphases: 1. Extraction

of visually significant points. 2. Computation of color features at significant points. 3. Feature selection. 4. Feature

evaluation. Each of the four phases will now be elaborated, one by one.

2.1. Extraction of visually significant points

An efficient CBIR system should be able tomodel the vagueness that is usually present in the image content, relevance

feedback, etc. A fuzzy set theoretic approach may be a good choice for handling the uncertainties that arise at different

stages of the processing and analysis of a CBIR system [25,26].

The proposed technique is based on work reported in [30,31]. The potential fuzzy corner regions are extracted

using the topographic characteristics of intensity surfaces [32,33] using the terms Plateau Top and Bottom, which are

similar to the ridges and valleys of gray level images. The uncertainty arising in locating such points is handled using

a fuzzy set theoretic approach. The discontinuities in the intensity surfaces are the possible candidates for curvature

points.

The feature computation process involves assigning three membership values to the candidate points. In the first

phase, the possible edge candidates Pc are extracted, which lie between the Plateau regions of the Gaussian smoothened

image. These points are characterized by gradient membership (�d (P)), generated by a S type function shown

in Fig. 1(a).
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The standard S function of an event (x), which is used in the proposed algorithm, is given by

S(x; a, b, c) = 0 x�a

= 2 ×

{

(x − a)

(c − a)

}2

a�x�b

= 1 − 2 ×

{

(x − c)

(c − a)

}2

b�x�c

= 1 x�c.

(1)

In S(x; a, b, c) the parameter b is the cross-over point, i.e. S(b; a, b, c)= 0.5. The shoulder point is at c, at which

S(x)=1.0. The point a is the feet point, i.e. S(a; a, b, c)= 0.0, as shown in Fig. 1(a).

The assignment of the membership value is based on the local gray level contrast [31], given by

�d (P) = S(x; a, b, c), (2)

where x is determined from the ratio of contrast between two opposite pixels (Xmr ) over a specified window as shown

in Fig. 1(b), and

Xmr = min{Xr }, (3)

where

Xr =

[

1 + |a1 − a2|

1 + |c1 − c2|
,
1 + |c1 − c2|

1 + |a1 − a2|
,
1 + |b1 − b2|

1 + |d1 − d2|
,
1 + |d1 − d2|

1 + |b1 − b2|

]

. (4)

The parameters a and c are determined from the maximum and minimum value of Xmr , which maps the membership

between 0.0 to 1.0. By thresholding on (�d (P)), the fuzzy edge map, as shown in Fig. 3(b), may be obtained. Two

more memberships (� f , �b) are computed to estimate the strength of connectedness on both sides of the curvature

junction. The memberships assigned are related to the value of the curvature subtended at the corresponding points.

The flowchart of the proposed algorithm is explained in Fig. 2.

The proposed algorithm assumes that the high curvature points should lie on valid gray level edges. Different sets

of curvature points Cik are obtained from the fuzzy edge map by selecting different membership values �d (P) as

thresholds and applying fuzzy rules to the computed features (� f , �b). A cluster of such points is called a corner

signature.

The high curvature region of Fig. 3(a) is plotted as (*) on the edge map thresholded at �d (P)�0.6, and shown in

Fig. 3(b). If the threshold is selected at �d (P)�0.5, both high and medium curvature points will be extracted together.

Threshold values �d (P)�0.5 are not considered because along with the high and medium curvature points, they

simultaneously select a lot of spurious curvature pointswhichmay reduce the accuracy of the techniques. Experimentally

it is found that the proposed algorithm performs better with the values �d (P)�0.5, typically at (0.6, 0.7 and 0.8).

The feature descriptors, computed from the fuzzy edge map, work successfully in the retrieval of gray level images

as shown in Fig. 4, which is reported in [31]. To generate a descriptor rich in structural information, we intend to extract

clusters of significant points depicting the change in curvature regions. The clusters of points ROI around the corners

carry shape information as well as information about the spatial distribution of those points.

The feature extraction procedure is implemented for color images by converting the (red, green, blue) RGB plane

to (hue, saturation, intensity) HSI, and considering only the intensity component to detect the corner signature. The

extracted corner signatures for some images are shown in Figs. 5 and 6. The signature does not change significantly

under varying imaging conditions, as shown in Fig. 7(a) and (b).

2.2. Computation of color features at significant points

The color properties of the extracted candidate points are considered to compute the invariant moments. The invariant

moments are computed from the component planes in terms of (c1, c2 and c3), as obtained from theRGB representations.
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Fig. 3. (a) Original image. (b) The high curvature region, marked as (*) on the edge map, with �d (P)�0.6.

The invariant feature model in terms of (c1, c2 and c3) as proposed in [34] is chosen here, and is defined as follows:

c1 = arctan(R/max(G, B)),

c2 = arctan(G/max(R, B)),

c3 = arctan(B/max(R,G)).

(5)
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Fig. 4. Retrieved results with feature descriptors from the edge map [31]. The top left image is the query image.

Fig. 5. (a) Flower image. (b) Fuzzy corner signature at �d (P)�0.8.

Thismodel is able to denote the difference between two colors based on their perceptual difference. Among the different

color models reported in literature, the normalized RGB representation, illumination and viewing geometry invariant

representations are popular, whichmostly belong to the HSI family of colormodels. In addition to these traditional color

spaces, new invariant color models (c1, c2, c3) also discount the effects of shading and shadows. Although invariant
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Fig. 6. (a) House image. (b) Fuzzy corner signature at �d (P)�0.7 and (c) �d (P)�0.8.

color representations are very popular in CBIR, these models have short comings under certain circumstance due to

some loss of discriminatory power among images.

The spatial color moments of the candidates of ROI are extracted (using (5)) from each of the component planes (c1,

c2, c3) [35]. The moments are the global descriptors of a shape with invariance properties [35]. The invariant moments

are computed as follows:

The moments m pq of order p and q of a function f (x, y) for discrete images are usually approximated as

m pq =
∑

x

∑

y

x p yq f (x, y). (6)
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Fig. 7. (a) Representative points (centroids) of the clusters: (a) blurred; (b) illumination change.

The centralized moments are expressed as

�pq =
∑

x

∑

y

(x − x̄)p(y − ȳ)q f (x, y), (7)

where x̄=m10/m00, ȳ=m01/m00.

The centralized moments up to order 2 are expressed as

�00 = m00,

�20 = m20 −
m2

10

m00

,

�02 = m02 −
m2

01

m00
,

�11 = m11 −
m10 ∗ m01

m00
. (8)

The normalized central moments are computed as

�pq =
�pq

�
�
00

, (9)

where � = (p + q)/2+ 1 for p+ q = 2, 3, . . . . A set of seven moments invariant under translation, rotation and scale

can be computed from �pq . Among these moments, the invariant moment (�) is considered for the proposed feature

extraction, and represented as

� = �20 + �02. (10)

The image is characterized in the following manner. The moment (�) of the extracted significant spatial locations ROI

will help to identify the color similarity of the identified regions. Three additional sets of moments are computed,

taking all points from each of the (c1, c2, c3) planes. The components of the feature vector Fk are designated as

[ f1, f2, f3, . . . , f6]. The features f1, f2, f3 represent the moment values (�) are computed, considering all the points

of each of the component planes obtained from (5). These values do not vary with the thresholding levels. The other

features f4, f5, f6 represent (�) as obtained from the representative locations ROI of the generated signature (Cik),

from each component plane.
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The proposed feature vector has six components as

fl = {�l (Sc)}
6
l=1. (11)

Sc represents the component planes. �l are the invariant moments computed using Eqs. (6)–(10). For l ={1,2,3},

f (x, y)Sc = {c1, c2, c3}, respectively, of all points (x, y) ∈ M × N (the image). For l ={4,5,6}, f (x, y)Sc = {c1, c2,

c3}, respectively, for (x, y) ∈ Cik (the clusters), and the default white (1) for other locations, as shown in Fig. 5(b).

The features are computed on all images of the database. Each image of the feature database is represented as, Fk=

[ f1, f2, f3, f4, f5, f6]. The representative features [ f1, f2, f3, f4, f5, f6] of each image of the database are used for

the similarity evaluation, where similarity between two images is measured by the Euclidean distance between the

feature vectors Fk .

2.3. Feature selection method

For natural images (consisting of different objects), the representation obtained from the corner signature, although

important, may not be sufficient to differentiate them from other categories. To show this, the extracted features have

been ranked using an optimal classifier. Theminimum redundancy-maximum relevance based feature selectionmethod,

proposed by Battiti [36], is used to extract a set of non-redundant and relevant features. The relevance of a feature with

respect to the class and the redundancy between two features are calculated using the mutual information. To calculate

the mutual information, the values of each feature thresholded using � (mean) and � (standard deviation): any value

larger than � + �/2 is transformed to the state 1; any value between � − �/2 and � + �/2 is transformed to the state

0; any value smaller than � − �/2 is transformed to the state −1 [37]. To evaluate the effectiveness of the selected

features, the leave-one-out cross validation is performed using the C4.5 based decision tree algorithm [38]. The C4.5

is a popular decision tree-based classification algorithm. It is used for evaluating the effectiveness of reduced feature

set for classification. The selected features are fed to C4.5 for building classification models. The C4.5 is used here

because it performs feature selection in the process of training and the classification models it builds are represented

in the form of decision trees, which can be further examined. The features [ f1, f2, f3, . . . , f6] are computed on all

images of the (SIMPLIcity) database, which consists of images from 10 different semantic categories. As seen from

the classification results, of Tables 1 and 2, the inclusion of the components f4, f5, f6 along with the components of

f1, f2, f3 improves the recognition score. This implies that a combination of local properties (information from corner

signature) and global moments (considering all points) are important for the effective characterization of an image.

However the features f5, f6 alone do not play a significant part in improving the recognition score.

The features [ f1 · · · f6] are invariant to rotation, translation and scaling by definition, as explained in Section 2.2.

To test the robustness of the features against noise, we inject noise at different levels with SNR rations (50, 20, 0 and

−10dB) on the query examples of a particular type. We add this class of images into the database images to form a

separate noise injected class, and label the class as level 10. The error rate from such class is also shown in Tables 1

and 2. This indicates that the proposed feature is not noise invariant. It has beenmentioned that invariant representations

can cover a wide range of perceptual variations, but at the same time lacks discriminatory power among images. With

the features f1 · · · f6 computed directly from the RGB plane, i.e. without using Eq. (5), better recognition has been

obtained for some classes, even for the noise injected case, as shown in Tables 3 and 4. We have designated the feature

set [ f1, f2, f3, . . . , f6] as computed from the (c1, c2, c3) model using (5) as set (A), and those computed directly from

the RGB plane as set (B). The recognition scores obtained from both cases are shown in Tables 1–4.

2.4. Feature evaluation method

Using either of the feature set (A) or (B), images relevant to a particular query are retrieved from the database. For

a given database, different combinations of features (color, texture, shape etc.) may be effective for handling different

types of queries [39]. Within a selected feature set, the individual feature weights may be further updated to specify

their importance for improvement in retrieval accuracy. If with the selected set of features and total number of images

is denoted by (Is), then k similar images Is = {I1, I2, . . . , Ik}, where Ik ∈ Is , are returned to the user. Let Ir be the set

of relevant images and Iir be the set of irrelevant images as marked by the user. Ir = {I j |I j relevant, for I j ∈ Is} and

Iir = {I j |I j irrelevant, for I j ∈ Is}. The information from Ir and Iir are combined to compute the relative importance

of the individual features, from the fuzzy FEI proposed by Pal et al. [27,40] in pattern classification problems.
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Table 1

Cost matrix for set (A) considering the three top ranked features.

feature:: 1 rank ::3

feature:: 2 rank ::2

feature:: 3 rank ::1

feature:: 4 rank ::−1

feature:: 5 rank ::−1

feature:: 6 rank ::−1

Errors :: 236(23.2%)

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Class 0 77 2 3 2 12 3 1 1 (a)

Class 1 1 75 4 1 3 5 11 (b)

Class 2 7 1 57 8 5 7 13 2 (c)

Class 3 1 3 88 5 2 (d)

Class 4 5 1 94 (e)

Class 5 9 2 4 2 3 74 1 1 1 3 (f)

Class 6 2 9 53 4 32 (g)

Class 7 1 1 1 97 (h)

Class 8 1 16 6 5 1 3 1 66 1 (i)

Class 9 3 3 2 2 4 2 84 (j)

Class 10 10 9 (k)

Table 2

Cost matrix for set (A) considering the four top ranked features.

feature::1 rank ::3

feature::2 rank ::2

feature::3 rank ::1

feature::4 rank ::4

feature::5 rank ::−1

feature::6 rank ::−1

Errors :: 160(15.7%)

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Class 0 93 1 2 3 1 (a)

Class 1 3 86 4 1 4 2 (b)

Class 2 5 7 74 5 1 2 1 3 2 (c)

Class 3 1 2 91 3 2 1 (d)

Class 4 2 97 1 (e)

Class 5 5 2 6 2 2 79 2 1 1 (f)

Class 6 1 2 4 2 79 2 1 1 (g)

Class 7 1 1 97 1 (h)

Class 8 2 12 3 3 1 2 1 1 75 (i)

Class 9 3 2 4 2 1 10 2 76 (j)

Class 10 10 9 (k)

For (m) pattern classes C1,C2, . . . ,C j , . . . ,Cm in an N -dimensional (x1, x2, xq , . . . , xN ) feature space, let the class

C j contains n j samples. The value of themeasure Hq j (fuzzy entropy) [33] represents an estimate of ‘intraset ambiguity’

along the qth coordinate axis in C j .

The entropy of a fuzzy set having n points is defined as

H (A) =

(

1

nln2

)

∑

i

Sn(�(xi )); i = 1, 2, . . . , n, (12)

where the Shannon’s function (Sn�(xi )) = −�(xi ) ln �(xi ) − {1 − �(xi )} ln{1 − �(xi )}.

Entropy is dependent on the absolute values of membership (�) and satisfies the properties [33], Hmin = 0 for � = 0

or 1, Hmax = 1 for � = 0.5.
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Table 3

Cost matrix for set (B) considering the three top ranked features.

feature::1 rank ::3

feature::2 rank ::1

feature::3 rank ::−1

feature::4 rank ::2

feature::5 rank ::−1

feature::6 rank ::−1

Errors :: 204(20.0%)

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Class 0 82 3 2 2 2 6 1 2 (a)

Class 1 4 69 4 8 7 7 1 (b)

Class 2 9 6 76 3 5 2 1 1 (c)

Class 3 6 9 5 72 4 3 1 1 (d)

Class 4 98 2 (e)

Class 5 4 6 3 2 70 5 4 6 (f)

Class 6 2 1 2 3 84 1 5 2 (g)

Class 7 3 1 6 76 14 (h)

Class 8 3 3 3 5 1 10 2 73 (i)

Class 9 10 2 3 1 3 6 1 1 72 1 (j)

Class 10 18 (k)

Table 4

Cost matrix for set (B) considering the four top ranked features.

feature::1 rank ::3

feature::2 rank ::1

feature::3 rank ::4

feature::4 rank ::2

feature::5 rank ::−1

feature::6 rank ::−1

Errors :: 189(18.6%)

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Class 0 82 1 3 2 2 6 4 (a)

Class 1 1 70 5 9 5 8 2 (b)

Class 2 5 4 81 3 2 2 2 1 (c)

Class 3 6 3 7 75 5 3 1 (d)

Class 4 100 (e)

Class 5 4 5 3 1 74 5 3 5 (f)

Class 6 3 4 2 88 3 (g)

Class 7 1 8 76 2 15 (h)

Class 8 1 3 5 6 1 1 1 2 80 (i)

Class 9 7 3 2 4 2 3 6 1 1 70 1 (j)

Class 10 1 17 (k)

To compute Hq j of C j along the qth component, an S-type membership function is considered, with parameters set

as

b = (xq j )av,

c = b + max{|(xq j )av − (xq j ) max|, |(xq j )av − (xq j ) min|},

a = 2b − c,

(13)

where (xq j )av, (xq j ) max, (xq j ) min denote the mean, maximum and minimum feature values, respectively, computed

along the qth coordinate axis over all the n j samples in C j .

The criteria of a good feature is that it should be invariant to within class variation while emphasizing the differences

between patterns of different types [27]. Since �(b) = �(xq j )av = 0.5, the value of Hq j is 1.0 at b = (xq j )av and

tends to zero when moving away from b towards either c or a of the S function. Therefore a higher value of Hq j



3334 M. Banerjee et al. / Fuzzy Sets and Systems 160 (2009) 3323–3341

indicates a larger number of samples having �(x) equal to 0.5. Therefore, the samples would have a greater tendency

to cluster around the mean value, resulting in less internal scatter within the class. After combining the classes C j and

Ck , the mean, maximum and minimum values (xqk j )av, (xq jk) max, (xq jk) min, respectively, of the qth dimension over

the samples (n j + nk) are computed. The value of entropy (H) would therefore decrease as the goodness of the qth

feature in discriminating between the pattern classes C j and Ck increases. The measure denoted as Hq jk is called the

‘interset ambiguity’ along the qth dimension between classes C j and Ck . Considering the two types of ambiguities,

the proposed FEI for the qth feature is shown below:

(FE Iq ) =
Hq jk

Hq j + Hqk

. (14)

The lower the value of (FE I )q, the higher the quality of importance of the qth feature in recognizing and discriminating

different classes. The accuracy of retrieval can be improved by emphasizing the weights of the features that help the

most in retrieving the relevant images, while reducing the importance of the features that impede the process.

In the proposed algorithm, the number of classes is two. The relevant images constitute the (intraclass) and the

irrelevant images constitute the (interclass) image features. To evaluate the importance of the qth feature, the qth

component of the retrieved images is considered, i.e. I (q) = {I
(q)
1 , I

(q)
2 , I

(q)
3 , . . . , I

(q)
k }. Hq j is computed from I

(q)
r =

{I
(q)
r1 , I

(q)
r2 , I

(q)
r3 , . . . , I

(q)
rk }. Similarly, Hqk is computed from the set of images I

(q)
ir = {I

(q)
ir1, I

(q)
ir2, I

(q)
ir3, . . . , I

(q)
irk }. Hqk j

is computed by combining both sets. The commonly used decision function for measuring the similarity between the

query image Iqr and other images I, is represented as

Dis(I, Iqr ) =

N
∑

q=1

wq‖ fq (I ) − fq (Iqr )‖, (15)

where ‖ fq (I ) − fq (Iqr )‖ is the Euclidean distance between the qth component and wq is the weight assigned to

the qth feature component. The images are ranked according to the Euclidean distance. The user marks the relevant

and irrelevant sets from 20 returned images, for the automatic evaluation of (FEI). Squire et al. [41] proposed a

weight adjustment technique based on the variance of the feature values. Since each feature is weighted by its relative

importance, say wi , the weighted feature vector is now represented as

F =

N
∑

q=1

wq fq (I ), (16)

where wi is the weight associated with the feature component ( fq ). The importance of each feature component ( fq )

is evaluated as follows. wi = 1.0 indicates the inclusion of the feature component with full importance within the

feature vector. For wi = 0.0, no importance is assigned to the component. Initially all components are considered to

be equally important, i.e. wi = 1.0, and the candidate images are retrieved using the Euclidean distance metric as

the similarity measure. The FEI for each feature component is evaluated from the two classes, relevant (intraclass)

and irrelevant (interclass), that are thus obtained. Experimentally better results are obtained if the weights are adjusted

based on the FEI values, as wi = (FE Iq )
2. A new retrieved set of the same query is then obtained. This process may

be followed over a number of iterations. In the first pass, all features are considered to be equally important. Hence,

w1 = w2, . . . , = wq = 1. The feature spaces of the relevant images are then altered by updating the components

with wq . As a result, the ranks of the relevant images are not significantly affected. For irrelevant images, one feature

component may be very close to the query, whereas other feature component may be far away from the query feature.

But the magnitude of the similarity vector may be close to the relevant ones. After the features of the query and the

stored images have been updated with the FEI values, the weighted components are expected to dominate over the

feature space, such that the rank of the irrelevant ones are pulled down. Since different components within the feature

vector may be of totally different physical quantities, the presence of very large values of some feature components

may bias the similarity. One solution is the normalization of the features [42]. The proposed feature set almost represent

the same physical quantity (moments). Therefore, normalization is not required in computing the Euclidean distance

between the feature vectors.
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3. Experiment and comparison

The performance of the image retrieval system is tested upon the following two databases: (a) SIMPLIcity images and

(b) COREL 10,000 miscellaneous database downloaded from http://bergman.stanford.edu/cgi-bin/www_wavesearch.

The SIMPLIcity database consists of 1000 images from 10 different categories: Africa(0), Beach(1), Buildings(2),

Buses(3), Dinosaurs(4), Elephants(5), Flowers(6), Horses(7),Mountains(8) and Food(9). Each category has around 100

images, along with some images undergoing changes due to rotation, translation, scaling, noise injection, illumination,

etc.

The main objective here is to design a CBIR system using simple techniques involving a low cost feature extraction

mechanism. The moments generate a compact representation with fewer features, compared to other sophisticated

features. At the same time, it may yield poor results as the query complexity increases.

The experiments are performed in the following manner. The feature set (A), which is explained in Section 2.3,

obtains satisfactory results for almost all categories, except for a few cases. In such cases, better results are obtained

by computing the invariant moments (�) directly from the RGB component planes without using (5) i.e. set (B). Such

differences in performance can be explained from the fact that a single set of features may not prove to be effective

for all types of queries. Moreover, the results also depend upon the availability of similar images in the database. The

RGB components are sensitive to varying imaging conditions [6] but have better discriminatory power among images.

For an unknown database, feature set (B) becomes a good choice when there is less variation in the imaging conditions

or perception. Better recognition scores are obtained in the noise injected class and the class of dinosaurs, as shown in

Tables 3 and 4. We start by retrieving queries separately using the sets (A) and (B). The retrieved results are assigned

scores by users, as highly relevant (score 3), relevant (score 2) and non-relevant (score 1). The feature set giving better

results is chosen for the further feature evaluation scheme.

In the case of moderate results (score 2) for both the cases, the retrieval score is further enhanced by combining both

sets of features in a hierarchical fashion. This method generates better results particularly on the 10,000 miscellaneous

image database, in which the images do not belong to any specific class. The illumination invariant set (A) is used first

to get the short listed candidates (around 100 images) and a second set of retrievals is performed on the short listed

candidates using set (B). Each retrieved set can be further subjected to the feature updating scheme to generate still

better results.

To evaluate the retrieval performance, standard retrieval benchmarks such as the recall rate and the precision rate [2]

are generally considered. Let n1 be the number of images retrieved in the top 20 positions that are close to the query.

Let n2 represent the number of images in the database that are similar to the query. The evaluation standard recall rate

(R) is given by n1/n2 × 100%, and the precision rate (P) is given by n1/20 × 100%. The performance is evaluated

in terms of the precision rate. This may be a better choice for an unknown database, because in order to evaluate the

recall rate, the number of relevant images of a particular type has to be known.

The experimental results are shown in Figs. 5–14. The results are explained as follows: The corner signature of

the image in Fig. 5(a) is shown in Fig. 5(b) at �d (P)�0.8. Similarly, for Fig. 6(a), the signatures thresholded at

�d (P)�0.7 and 0.8, respectively, are shown in Fig. 6(b) and (c). The representative corners of Fig. 6(a) under vary-

ing imaging conditions (blurred and illumination change) are shown in Fig. 7(a) and (b). The query results of the

SIMPLIcity data set are shown in Figs. 8–10. The signature is generated at a threshold value of �d (P)�0.8. The

images are displayed from left to right according to the Euclidean distance, with the top left image as the query

image.

The query shown in Fig. 8(a) is of a red flower, which is able to identify similar images that have undergone

illumination changes. The image in Fig. 8(b) is from the horse category. The precision obtained is very high in this

case. The retrieved images are less dependent on shadows. Fig. 9(a) shows the result when queried with a dinosaur.

The precision obtained is very high for such images having distinct objects. The feature is fairly invariant to linear

transformations. The further improvement in precision after updating the weights calculated from the FEI values can

be seen in Fig. 9(b) from its ability to retrieve blurred, noisy images at the 4th and 6th positions from the left. The

results when queried with a flower (yellow), with moments computed from the corner signature only, is shown in

Fig. 10(a). The further addition of color moments computed from all points of the component planes generates better

results, as shown in Fig. 10(b). The images of this category have objects with some regularity in shape and background.

An improvement is also observed in Fig. 11(a) from retrieving images with the literal color properties of the query

after adjusting the feature weights. The results when queried with the same flower of Fig. 10(a) with feature set (A) is
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Fig. 8. Retrieved results, with the top left image as the query image. (a) Test for illumination invariance with set (A). (b) Retrieved results using

set (A).

Fig. 9. Retrieved results, with the top left image as the query image. Test for (rot, trans. scale, noise ) invariance, using set (B). (b) After feature

updating with (FEI), the noisy and blurred images are retrieved.

shown in Fig. 11(b). Similar images under varying illuminations were retrieved, as shown in Fig. 11(b). However, the

results show that feature set (B) generates better results in this case.

The results obtained from database (b) of 10,000miscellaneous images are shown in Fig. 12. The results of Fig. 12(a)

show the candidates retrieved by combining the features in a hierarchical fashion. The result after iterative refinement

with set (B) on the short listed candidates is shown in Fig. 12(b). As the query image of Fig. 12(a) is a single object,

the corner signature should be a more important discriminant in this case. To study this, we have set w1, w2, w3 equal

to zero. The result from this observation is shown in Fig. 13(a). The result for a query (scene) is shown in Fig. 13(b).

The results obtained prove to be satisfactory for retrieving scenes.

The FEI values for some queries are shown in Table 5. In the case of dinosaurs, i.e. query image of (Fig. 9), it is

observed from the FEI values that the importance of the corner signature ( f4, f5, f6) is greater than that of the other

three components. In case of flowers (Fig. 10(b)), it is seen that all the components have significant contributions to

the evaluation of the similarity among the images.
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Fig. 10. Retrieved results using set (B), with the top left image as the query image. (a) By taking moments from corner signature only. (b) Also

considering moments from all points.

Fig. 11. (a) After feature evaluation with (FEI) on set (B). (b) Using set (A).

Table 5

Feature evaluation index.

Image (FE I1)2 (FE I2)2 (FE I3)2 (FE I4)2 (FE I5)2 (FE I6)2

Fig. 9 (iteration 1) 0.64 0.32 0.38 0.02 0.02 0.02

Fig. 9 (iteration 2) 0.62 0.52 0.51 0.02 0.02 0.02

Fig.10(b) (iteration 1) 0.38 0.12 0.13 0.27 0.29 0.29

Fig.10(b) (iteration 2) 0.39 0.29 0.11 0.34 0.39 0.39

Fig.10(b) (iteration 3) 0.35 0.32 0.32 0.38 0.38 0.38
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Fig. 12. Retrieved results, with the top left image as the query image. (a) First set of retrieved candidates. (b) After feature updating with (FEI).

Fig. 13. (a) Taking the contribution from the corner signature only. (b) Results, querying with a natural scene.

To evaluate the performance of the proposed scheme, we have randomly chosen queries from each category of

SIMPLIcity data set. The average precision value from each category, after retrieving (10, 20, 40) images as shown in

Table 6 show improvement in the results. The performance is evaluated in terms of precision rate given by the fraction

of correctly retrieved images within the retrieved set. The overall precision recall curve for the SIMPLIcity test database

after the first iteration is shown in Fig. 14.

3.1. Performance comparison

CBIR systems have been reported in the literature, but in most cases the systems rely on user defined parameters.

In segmentation dependent techniques the accuracy depends upon the number of classes defined by the user [25,5].

As a result, it is difficult to judge the performance of a CBIR system unless the parameters match exactly. So a pro-



M. Banerjee et al. / Fuzzy Sets and Systems 160 (2009) 3323–3341 3339

Table 6

Average precision % from our algorithm.

Category Unweighted features Weighted features (iteration 1)

10 images 20 images 40 images 10 images 20 images 40 images

Africa 68.20 60.25 55.03 70.50 61.00 58.00

Beach 70.00 55.23 50.60 71.48 56.23 52.58

Building 70.26 60.50 54.46 72.40 63.67 56.00

Bus 80.00 70.59 60.67 81.45 72.77 62.67

Dinosaur 100.0 95.0 90.7 100.0 95.0 92.0

Elephant 83.5 75.5 65.8 85.0 77.0 66.0

Flower 90.0 80.5 70.6 92.0 83.0 71.2

Horses 100.0 90.0 80.5 100.0 95.0 83.0

Mountains 70.5 65.8 60.9 72.0 68.0 62.0

Food 60.8 55.8 53.40 62.0 57.0 55.20

Fig. 14. Precision, recall curves of the SIMPLicity database.

posed scheme can be compared and evaluated best when the results are tested and evaluated over the same database.

In order to prove the efficiency of our the technique, we benchmark our results with the well known standard image

retrieval algorithms namely [25,28] and color histogram matching [29] using the same data set against the quantita-

tive measure defined as weighted precision in (17). Online demonstrations of their methods are provided at the site

(http//:www.wang.ist.psu.edu/IMAGE). The proposed method was compared with the techniques, which have shown

useful results on evaluating overall similarity between images. The proposed feature evaluation method was used to

study the improvement of results. The results almost converges after two iterations. The proposed scheme is compared

with the above-mentioned techniques in order to see, to what extent the simple features (moments) can be used effec-

tively as an alternative to detailed region segmentation in developing a retrieval system. The weighted average of the

precision values within the k1 retrieved images are computed as

p̄(i) = 1/(100)

100
∑

k1=1

nk/100, (17)

where k1 = 1, . . . , 100 and nk is the number of matches within the first k1 retrieved images. The weighted precision as

obtained from each category is shown in Table 7.
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Table 7

Comparative evaluation of weighted average precision.

Class Our method SIMPLIcity Histogram based FIRM

Africa 0.45 0.48 0.30 0.47

Beach 0.35 0.32 0.30 0.35

Building 0.35 0.35 0.25 0.35

Bus 0.60 0.36 0.26 0.60

Dinosaur 0.95 0.95 0.90 0.95

Elephant 0.60 0.38 0.36 0.25

Flower 0.65 0.42 0.40 0.65

Horses 0.70 0.72 0.38 0.65

Mountains 0.40 0.35 0.25 0.30

Food 0.40 0.38 0.20 0.48

As seen from Table 7, the SIMPLIcity method has reported better results than the color histogram method for all

categories. It is difficult to obtain satisfactory results for retrieving from all categories using the same set of features.

However, the FEI can provide a good measure for improvement in precision. In most of the cases, the average precision

for each category can be made better than the SIMPLIcity and FIRM by the feature updating scheme. The SIMPLIcity

and FIRMmethods are segmentation based. In effect, better results are obtained with these algorithms when each object

has different texture properties and the number of objects matches the number of classes. The algorithm is implemented

in MATLAB on a SUN Blade system with a 700MHz Processor. The average CPU time required for computing the

features is 10 s.

4. Conclusion and scope of future work

In the current work, major emphasis has been placed on developing significant feature descriptors and selecting an

optimal set of features suitable for retrieving a set of images perceptually relevant to the query image. From different

query examples and classification results using different training sets on a standard database, it is shown that a single set

of features may not be suitable for handling all types of queries. The set of features that may be able to retrieve images

with a range of illumination variations may fail to retrieve noisy images. To overcome such limitations, the features

are combined and the weights are updated to obtain a trade-off between feature selection and accuracy in the case of

retrieving from an unknown database. Although the proposed CBIR system is not capable of handling very complex

types of queries, it can identify relevant images that differ visually in some characteristics due to translation, rotation,

scaling, blurring, illumination change, etc. The suitability of the proposed features may be increased if the application

is extended to specific images like logos or facial images, rather than general purpose images. To achieve these goals

we shall try to introduce other sophisticated features and incorporate some other mechanism, like surrounding text for

web images, to obtain better applications.
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