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A bstract—An evolutionary rough feature selection algorithm is
wsed for classifving microarray gene expression patterns. Since the
data typically consist of a large number of redundant features,
an initial redundancy reduction of the attributes is done to en-
able faster convergence. Rough set theory is emploved to generate
reducts, which represent the minimal sets of nonredundant fea-
tures capable of discerning between all ohjects, in a multiohjective
framework. The effectiveness of the algorithm is demonstrated on
three cancer datasets.

Index Terms—RBioinformatics, feature selection, genetic algo-
rithms ((: As), microarray data, rongh sets, reduct generation, soft
computing.

[. INTRODUCTION

OMPUTATIONAL molecular biology 15 an imterdisci-
C plinary subject involving fields as diverse asbiology, com-
puter science, information technology, mathematics, physics,
statistics, and chemistry. Aspects of this subject that relae to
miommation science are the focus of biomformaties [1], [2].
One needs 1o analyze and mierpret the vast amount of data that
are available, involving the decoding of around 24 00030000
human genes. Specifically, high-dimensional feature selection
is important for chamclerzing gene expression data involy-
mg many atinbutes—indicating that data mining methods hold
promise m this direction.

Unlike a genome, which provides only static sequence infor-
mation, mCroarray experiments produce gene expression pat-
terns that provide dynamic information about cell function. This
information is useful while nvestigating complex interactions
within the cell. For example, data mining methods can ascenain
and summariee the set of genes mesponding o a certain level
of stress in an organism [ 1], Microarray technologies have been
utilized to evaluate the level of expression of thousands of genes
in colon, breast, and blood cancer classification [3-[6] as well
as clustenng [7]. [8].

In addition w the combinatorial approach for solutions, there
also exists scope for soft computing; especially, for generat-
mg low-cost, low-precision, good solutions. Soft computing 15
a consortium of methodologies that works synergistically and
provides flexible information-processing c apability for handling
real-life ambiguous situations [9]. Its aim is to exploit the wler-
ance for imprecision, uncertainty, approximate reasonmg, and
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partial truth i order o achieve tractability, robusmess, and low-
cost solutions. Recently, varous soft computing methodologies
isuch as fuzzy logic, neural networks, genetic algorithms (GAs),
and rough sets) have been applied to handle the different chal-
lenges posed by data mming [ 10], involving large helemgeneous
datasets.

One of the mportant problems in extracting and analyzing
mformation from large databases 15 the associated high com-
plexity. Feature selection 1s helpful as a preprocessing slep
for reducing dimensionality, removing rrelevant data, improv-
ing leaming accuracy, and enhancing output comprehensibality.
There are two basic categories of feature selection algorithmes,
viz., filter and wrapper models. The filker model selects fea-
ture subsets independently of any leaming algorithm and relies
on various measures of the general characteristics of the train-
g data. The wmpper model vses the predictive accuracy of a
predetermmined learning algonthm o determine the goodness of
the selected subsets and 15 computationally expensive. Use of
fast-filter models for the efficient selection of features, based
on correlation for relevance and redundancy analysis, has been
reported in hterature [11], [12] for high-dimensional data.

Microamray data are a typical example presenting an over-
whelmingly large number of features (genes), the majority of
which are not relevant 1o the description of the problem and
could potentially degrade the classification performance by
masking the contribution of the relevant features. The key in-
formative features represent a base of reduced cardinality for
subsequent analysis aimed al determinmg their possible role
in the analyzed phenotype. This highlighis the importance of
feature selection with particular emphasis on microarray data.
Recent approaches i this direction melude probabilistic neu-
rl networks [13], support vector machines [14], neuro-fuzzy
computing [ 15], and neuro-genetic hybridizatnon [16].

Rough set theory [17] provides an important and mathemati-
cally established tool for this sort of dimensionality reduction in
large data. A basie issue addressed morelation to many practical
applications of knowledge databases is the following. An infor-
mation system consisting of a domain [ of objectsfobservations
and a set A of attributes/features induces a partitioning (clas-
sification) of [ by 4. A block of the partition would contain
those objects of [V that share identical feature values, Le., they
are indiscernible with respect to the given set A of features.
But the whole set A may not always be necessary to define
the classification/partition of [, Many of the attributes may be
superfluous, and we may find the minimal subsets of attributes,
which give the same classification as the whole set A. These sub-
sets are called reducts in rough set theory. In terms of feature
selection, therefore, reducts comrespond 1o the minimal feative
sets that are necessary and sufficient 1o represent a correct deci-
ston gbout the classificaton of the domain, One s thus provided
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with another angle of addressing the problem of dimensionality,
based on the premise that the initial set of features may render
objects of the domain indiscemible, due 1o lack of complete
information.

The task of finding reducts is reported o be nondeterministic
polynomial tme (NP)-hard [ 18]. The high complexity of this
problem has motivated imvestigators o apply vanous approx-
imation techniques o find near-optimal solutions [19]. This
includes work on computing reducts, specifically for feature se-
kection [19], [20]. Zhong [21], for instance, proposes a greedy
heunstics and applies it on cancer (notmicroarray ) data. Others
have mamly based their methods on the filter or the wrapper ap-
proach. Apart from these, there are some studies reported, e.g.,
[22] and [23], where GAs [24] have been applied 1o find reducts.

GAs provide an efficient search technigue in a large solution
space based on the theory of evolution. It involves aset of evolu-
tonary operators such as selection, crossover, and mutaton. A
population of chromosomes 15 made to evolve over genertions
by optimizing a fitness function, which provides a quantitative
measure of the fitness of individuals in the pool. When there are
two or more conflicting charactenstics 1o be optimized, ofien
the single-objective GA requires an appropriate formulation of
the single fitness function in terms of an additive combination
of the different criteria involved. In such cases, multiohjective
GAs (MOGAS) [25] provide an alternative, more efficient, ap-
proach in searching for the optimal solutions.

Eachof the studies in [22 | and [23 ] employs asingle-objective
function to obtain reducts. The essental properties of a reduct
are: 1) 1o classify among all elements of the universe with the
same accuracy as the starting attnbute set sitmultaneously and
2) to be of small cardinality. A close observation reveals that
these two charactenstics are of a conflicting nature. Hence the
determination of reducts is betler represented as a two-objective
optimization problem. This idea was first mooted in [26], and a
preliminary study was conducted.

In the present paper, we consider microarray data consistng
of three sets of wo-class cancer samples. Since such data
typically contains a large number of features, most of which are
not relevant, an mitial redundancy redoction 1 done on the (at-
tribute) expression values. The idea 15 to retain only those genes
that play a major mole in arriving at a decision about the output
classes. This preprocessing aids faster convergence, mainly be-
cause the mitial population 15 now located nearer 1o the optimal
solution in the huge search space. Reducts or the minimal fea-
tres are then generated from these reduced sets using MOGA.
Among the different muliobjective algorithms, it is observed
that mondominated sorting  genetic algornthm  (NSGA-IL
[27] has the features required for a good MOGA. NSGA-LL is
adapted here to handle large datasets more effectively.

Section 11 describes the relevant preliminaries on rough set
theory, MOGASs, and microarray gene expression data. We as-
sume that the readers are sufficiently familiar with the basics
of classical GA [24], and hence, do not go into its details here.
The redundancy reduction to better handke the high-dimensional
data, the basic notions used in the evolutionary rough feature
selection algorithm, and the algorithm itself are described in
Section L. The performance of the algorithm is demonstrated
in Section IV on microarray gene expression data from bioin-
formatics involving very high-dimensional attributes. Compar-
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Fig. 1. Lower and upper approximations of a rough set.
ative study and analysis of the results are also included. Finally,
Section V concludes the papern

II. PRELIMINARIES

In this section, we briefly discuss the basic concepts of rough
set theory, MOGAS, and microamay gene expression data.

A. Rough Set Theory

Rough sets [17] constitule a major mathematical tool for
managing uncerainty that arises from granularity in the domain
of discourse—due to incomplete information about the objects
of the domain. The granularity is represented formally in tenms
of an indiscernibility relation that partitions the domain. If there
is a given sel of arributes ascribed o the objects of the domain,
objects having the same attribute values would be indiscernible
and would belong to the same block of the partition. The in-
lention 15 o approximate a rough Omprecise) concept m the
domain by a pair of exact concepts. These exacl concepls are
called the lower and upper approximations and are determined
by the indiscermibality relation. The lower approximation is a sel
of objects definitely belonging o the rough concept, whereas
the upper approximation is a set of objects possibly belonging
to the same. Fig. 1 shows a rough set with its approxmmations.
The formal definitions of the aforementioned notions and others
required for the present work are given as follows.

Definition I Aninformation system A = (I, A) consists of a
nonempty, finite set [ of objects (cases, observations, ele ) and a
non-empty, finite set A of attributes a (features, variables), such
that o : U7 — V,, where V), is a value set. We shall deal with
information systems called decision tables, in which the attribute
sel has two parts (A = 'L D) consisting of the condition and
decision atributes (in the subsets O D of A, respectively). In
partcular, the decision tabkes we take will have a single decision
attribute o and will be consistent, i.e., whenever objects =,y
are such that for each condition atribule o, a(x) = a{y), then
d(z) =d(y).

Definition 2: Let B < A, Then a B-indiscemibility relation
INDH ) 15 defined as

IND(B) = {({z,y) € U ralz) = aly), Ya e B} (1)

It is clear that INDY B) partitions the universe [ into equiva-
lence classes

[zig ={z; e U : (zi,z;) € IND{B)}, mell. (2)
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Definition 3- The B-lower and B -upper approximations of a
given set X (C [) are defined, respectively, as follows:

BX={zeU:[zg CX}

BEX={zecU:|z]gnX #¢}

The B-boundary region is given by BNg(X) = BX ', BX.

1) Reducts: In a decision table A = (70U D), one is in-
terested in elminating redundant condition attributes and actu-
ally relative ( D)-reducts are computed.

Let B C ¢, and consider the B-positive region of D, viz.,
POSg (D) = UM“ Blz|]p. An attnbute be B(C C) is D-
dispensable in 7 if POSp(D) = POSg s (D). otherwise b
is D-indispensable in B, Here, B is said 1o be D-independent
in A, if every attribute from B is D-indispensable in .

Definition 4: B{C (') is called a D-reduct in A4, if Bis D-
independent in A, and POS-( D) = POSE(D).

Notice that, as decision tables with a single decision attribute
d are taken to be consistent, [ = POSA(d) = POSE (D), for
any d-reduct B.

2) Discernibility Matrix: D-reducts can be computed
with the help of D-discemibility matrices [18]. Let UV =
{71, 2 o A D-discernibility matrix Mp (4] is defined as
an e x e matrix of the mformation system 4 with the (4, jith
enlry c;; given by
i ={acCalz;) #alz;), and (2, 2;) & IND(D)},

i,iEedl---.mk (3)
A varant of the discernibility matrix, vie., distinction table
[22] is used in our paper o enable faster compulation.
Definition 5: A distinction table 15 a Sinagry matnx with di-
mensions w x N, where N is the number of attributes in
A. Anentry b((k, j),7) of the matrix corresponds to the attribute
a; and pair of objects (x4, ;) and is given by

oo 1 if ai{Ee) # alzy)
bi(k, j), 1) = { 0, if aize) = ailzy). (4
The presence of a *“17 signifies the ability of the attdbute o; to
discern (or distinguish) between the pair of objects (2, ;).

B, MOGA

Most real-world search and optimization problems typically
mvolve multiple objectives. A solution that 1 betler with respect
o one objective requires a compromise in other objectives. Let
us consider the deciswon-making problem regarding the purchase
of a car. It is expected that an inexpensive car is likely 1o be less
comforable. 1f a buyer is willing o sacrifice cost 1o some extent,
(s)he can find another car with a better comfort level than the
cheapest one. Thus, in problems with more than one conflictng
objective, there exists no single opumum solution. Rather, there
exists a setof solutions, which are all optimal involving tradeoffs
between conflicting objectives. For example, the various factors
w be optimized in the problem of buying a car melude the
total finance available, distance to be daven each day, number
of passengers rding in the car, fuel consumption and cost,
depreciation value, road conditions where the car will be mosty
driven, physical health of the passengers, social status, etc.

Unlike single-objectve optimization problems, the MOGA
ries o optimize two or more conflicting characteristics rep-
resented by fitness functions. Modeling this situation with a

single-objective GA would amount to a heunstic detemmination
of & number of parameters involved in expressing such a scalar-
combination-type fimess function. MOGA, on the other hand,
generates a sel of Pareto-optimal solutions [25], which simul-
taneously optimize the conflicting requirements of the muluple
fitness functions,

Among the different multiobjective algorithms, it is observed
that NSGA-IL [27] possesses all the features required for a good
MOGA. It has been shown that this can converge o the global
Pareto front, whilke simultaneously maintaining the diversity of
the population. We descenbe here the charactenstics of NSGA-
I such as nondomination, crowding distance, and the crowding
selection operator. This is followed by the actual algorithm.

1) Nondomination: The concept of optimality, behind the
multiobjective optimization, deals with a set of solutions. The
conditions for a solution o be dominated with respect to the
other solutions are given as lollows.

Definition 6: If there are M objective functions, g solution
7'M 15 said o dominate another solution 2! , il both conditions
| and 2 are true.

17 The solution 'Y is no worse than ' in aff the M

objective functions.

2) The solution =M is strictly better than z'2) in at least one

of the M objective functions.

Otherwise, the two solutions are nondominating 1o each other.
When a solution ¢ dominates a solution j, then mnk v, < ry.

The major steps for finding the nondominated set in a popu-
lation P of size | P| are outlined as follows.

Step 1) Set solution counter ¢ = 1 and create an empty non-
dominated set P
Step 2) For a solution j £ P(j 1), check if the solution j
dominates the solution ¢. If yes then go to step 4).
Step 3) If more solutions are left in P, increment j by one
and go to step 2). Else set P' = P Ui}
Step4) Increment i by one. I < | P| then go tostep 2). Else
declare P as the nondominated set.
After all the solutions of P are checked, the members of P
constitutle the nondommated set at the first level (front with
rank = 1). In order to generate solutions for the next higher
level (dominated by the first level), the aforementioned proce-
dure is repeated on the reduced population P = P — P’ This
is iteratively continued until P = ).

2) Crowding Distance: In order 1o maintain diversity in the
population, a measure called crowding distance 1 used. This
assigns the highest valoe to the boundary solutions and the aver-
age distance of two solutions [( + 1)th and (¢ — 1)th] on either
side of solution ¢ along each of the objectives. The following
algorithm computes the crowding distance o; of each point in
the front F.

1y Let the number of solutions in F be | = | F| and assign

d; =0fori=1,2,.... k

2) For cach objective function fi. kb = 1,2, .., M, sort the

setin ils worse order.

3 Setdy = dp = .

4) Forj =2w (I —1) increment d; by fi, , — fi, ..

3) Crowding Selection Operator: Crowded toumament se-
lection operator is defined as follows. A solution @ wins Lour-
nament with another solution j if any one of the following is
Lrue.
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* Solution ¢ has better rank, Le., v <y,

# Both the solutions are in the same (ronl, e, r; = 7, but
solution 7 15 less densely located i the search space, 1e.,
di <dj.

4) NSGA-Ii: The muliobjective algonthm NSGA-ILis char-
acterized by the use of the aforementioned three characteristics
while generating the optimal solution. Let us now outling the
main steps of NSGA-IL[27].

1y Imitialize the population randomly.

2) Calculate the multiobjective fitness function.

3y Rank the population wsing the dominance crilena of
Section 1I-B 1.

4) Calculate the crowding distance based on Section 11-B2.

5) Do selection wsimg  crowding  selection  operator of
Secton 11-B 3.

6) Do crossover and mutation (as i the conventional GA) o
generte children population.

71 Combine parent and children populaton.

8) Replace the parent population by the best members of the
combined population. lnitially, members of lower fronts
replace the parent population. When it 15 not possible 1o
accommodate all the members of a panticular front, then
that front is sorted according 1o the crowding distance.
Selection of individuals is done on the basis of higher
crowding distance. The number selected 15 that required
to make the new parent population size the same as that
of the old one.

C. Microarray and Gene Expression Data

Micmarrays are wsed m the medical domain o produce
molecular profiles of discased and normal tssues of patients.
Such profiles are useful for understanding various diseases and
aid in more accurate diagmosis, prognosis, reatment planning,
as well as drug discovery.

DNA microarmys (gene arrays or gene chips) [1] usoally con-
sist of thin glass or nylon substrates containing specific DNA
gene samples spotted inoan army by a robolic pnnting device.
Researchers spread fluorescently labeled m-RNA from an ex-
penmental condion onto the DNA - gene samples in the amay.
This rr-BNA binds (hybridizes) strongly with some DNA gene
samples and weakly with others, depending on the inherent dou-
ble helical characteristics. A laser scans the amay and sensors 0o
detect the Quorescence kevels (using red and green dyes), indi-
cating the strength with which the sample expresses each gene.

The logarithmic ratio between the two intensities of each dye
15 used as the gene expression data. The relative abundance of
the spotted DNA sequences in a pair of DNA or RNA samples
is assessed by evaluating the differential hybridization of the
two samples o the sequences on the army. Gene expression
levels can be determined for samples taken: 1) at multiple time
instants of a biological process (different phases of cell divi-
sion) or 2) under varous conditions (tumor samples with differ-
ent histopathological diagnosis). Each sample corresponds 1o a
high-dimensional row vector of its gene expression profile.

II. EvOLUTIONARY REDUCT GENER ATION

Ower the past few years, there has been a good amount of stdy
in effectively applying GAs w find reducts. We describe here the

reduct genermtion procedure, incorporating mitial redundancy
reduction, in a multiobjective framework. NSGA-II is adapted
to handle large datasets more effectively. We focus our analysis
to two-class problems.

A, Redundancy Reduction for Microarray Data

Gene expression data typically consist of a small number of
samples with a very large number of features of which many
are redundant. We consider here two-class problems, particu-
larly, diseased and normal samples, or two vareties of discased
samples. In other words, there is a single decision attribute o
having only two members in its value set V. We first do a re-
dundancy reduction on the (attribute) expression values Lo retain
only those genes that play a highly decisive mole in choosmg in
favor of either output class. Note that this preprocessing phase
is a simple, fast, heuristic thresholding with the objective of
generating an initial crude redundancy reduction among fea-
tures. Subsequent reduct generation with MOGA (as explaimed
in Sections 11-B—C) determines the actual, refined minimal fea-
ture sets that are necessary and sufficient o represent a correct
classification decision.

Normalization leads 1o scaling of intensities, thereby enabling
the companison of expression values between different microar-
rays within an expenment. Preprocessing aims ate iminating the
ambiguously expressed genes (neither too high nor too low) as
well as the constantly expressed genes across the tissue classes.
Dunng reduct generation, we select an appropriate minimal sl
of differentially expressed genes, across the classes, for subse-
quent efficient classification.

1y Atmbutewise nommalization by
a;{x;) — min;

ay(ri) = ———— (5)
MAX; — min;

where max; and min; comrespond 1o the maximum and
minimum gene expression values for attribute a; over all
samples. Thisconstitutes the normalieed gene dataset, 1.e.,
(continuous) attribute value able.

2) Choose thresholds Th; and Thy, based on the idea of
quantiles [10]. Let the N patterns be sorted in the as-
cending order of their values along the jth axis. In order
to determing the partitions, we divide the measurements
in a number of small class intervals of equal width &
and count the corresponding class frequencies fr.. The
position of the Eth partiion value (&= 1,23 for four
partitions) 15 caleulated as

) T W _f::f’*"‘ x 8 (6)
*.
where [ 15 the lower limit of the cth class interval, &, =
% is the rank of the kth partiion value, and cfr._; is
the cumulative frequency of the mmmediately preceding
class interval such that ofr,._y < By < cfr,.. Here, we use
Th; = Thy and Thy = Ths.

3) Convert the attribute value table to binary ((¥1) form as

follows:

Ifa'{z) < Th; Thenput “0",
Elself a'(z) = Th; Then put “1",

Elseput “ + " (don't care).
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TABLE | I ' ' ' :
UsAGE DETAILS OF THE TWO-CLASS MICROARRAY DaTA

Lrata uzed woALLbLes Classes W Sanples 12 I".
Cedon RIEATE Colon ey 40
RYEIET 22 .
T mphoma A0 TWher pe LR A
T-cell Tvinphico EN] £
Lewle iz TII% AlL 47
AMI. 23

4y Find the average occurrences of “*7 over the entire at-
tribute value table. Choose this as the threshold Thy, .

5) Remove from the table those attributes for which the num-
ber of “#'s" are = Th,. This is the modified (reduced)
attribute vafue wable A, =R

Nl Lt

B. d-Distinction Table Y = w o w L 1 31
Mdlzc ansHoodan =

For a decision table 4 with N condition attributes and L)
a single decision attrbute d, the problem of finding a
d-reduct is equivalent 1o finding a minimal subset of columns
R(C 1.2 --- N} inthe distinction table [cf. Section 11, Def-
mition 3, (4)], satislying e+ 1

Wik, j)Fie R:b((k,j),i) =1, wheneverd(z,) # d(z;).

So, in effect, we may consider the distinction table 1o consist of
N columns, and rows comesponding 1o only those object pairs
(zp.2;) such that dizy) # d{z;). Let us call this shortened
distnction table, a d-distinction table. Note that, as .4 is taken
o be consistent, there is no row with all zero entries in a d- i
distinction table, . e
Accordingly, 1o find d-reducts in the present case, the reduced )
attribute value table A, (as obtained in Section 111 s vsed for
gsenerating the d-distinction table. As mentoned eadier, o has T
the two output classes as the only members in its value set V. _ .
® Ag object pars corresponding o the same class do not ¢ &0 m 150 e = 0 350
constitute a row of the d-distinction table, there is a T
considerable reduction m its size, thereby leading o a de- ()
crease i computational cost. :
* Additionally, N
If cither of the objects in a pair has “**
an attribute in table A,
Then in the distinction table, put “07 at the entry for
that attribute and pair. i
® The entnes 17 in the matrix comespond o the attnbutes I
of interest for ariving at a classification decision.
Let the numberof objects initially in the two classes be mey and
1ia, respectively. Then, the number of rows in the d-distinction

T T N (R ——
o

as an entry under

(=

v

[ T pp—

¢ ek e —1
table becomes (g #ma) < ——% ], where my + ma = n.

This reduces the complexity of fitness computation o O N
Ty * g ).

O Using MOGA

Algorithms reported in literature, eg., in [22] and [23], vary 1 ! A f s
more or less in defining the fitness function and typically use : w & 2 El =
combined single-objective functions. Upon closely observing
the nature of the reduct, we find that one needs to concentrate
on generating a minimal set of attributes that are necessary  Fig 2. Parewo optimal front, with o cenain random seed, for (a) colan, (b)
and sufficient in order to arrive at an acceptable (classification)  lymphoma, and {¢) leukemia datasets.

Wistbaslca g -————

)
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TABLE Il
CLASSIFICATION OF GENE EXPRESSION TEST DaTA WITH SELECTED LOw-CARDINALITY SOLUTIONS FROM THE BEST FRONT
Drangset Papu Mo, ol L-nzaest neigibors classileation (%0 o0 1250 sel

Latien alli- L] & — E—3 2
| siTE Ttes ¢l | o= Mt [ [ Mt [ [ el [ T Net
Colan: 30 I T K il | OTAD [ ELE ) VR4 Y500 YAT O T4l
4 Cienes 2001 1141 G WG 00 R0y | a0 PR DOV R - 1 - S - LNV X S
Rechice o 1102 0 kS ERD| w0g | ET Qa0 314 L Qe | S0a w0 BLE | 403
200 B TRL | TR M2 Bl T2 T4 Gi6 | 722 | BLD [
Lynipdicnee: a] 2 Gag | 005 | 87 | w6l 052 058 Gal | Ga R 055 | 93 93l
# {romey 20 T1H) 3 W20 WS 7 i3 a2 L3N 952 | wal ] AT UAK
Reduce 1y LBST 240 kS 0e3 ORI K S = 052 058 Gal | 43R 053 | 93 93l
A1) 2 W20 HilLS 7 A, ws.2 L3N 9052 | 98H L] W ARE
| Laenkarua Rl g} 1THLE T EEW T00ET) TH bz TORTY | TR | w2 T 7 h 2
 Genss 7129 Lo a Lo | #8a  9l2 | 830 857 gl2 | ol0og | ves [ L2 1200 | TEa  al2
Heduee o ATHE 1501 2 LR 714 H2A RN ] 118l 4. ] S0 wa 7 wh.2 AN H AT R
130 2 o500 | FL4 | 353 ) 1000 | TI4 | k2 ) 1000 [ TL4 | BRZ ) 1000 L4 BEZ

decision. These two characteristics of reducts, being conflicting
o cach other, are well-suited for multobjective modeling. This
wleawas explored and a preliminary study vsing simple datasels
was done in [26]. In order 1o optimize the pair of conflicting
requirements, the fitness function of [22] was sphit in a two-
objectve GA setting. We use these two objective functions m
this paper in a modified form.

The reduct candidates are represented by binary strings of
kength NV, where N is the number of condition attributes. In the
bit representation, 417 implies that the corresponding atribute
15 present while 07 means that it s not. 50,11 there are three at-
tributes . aq, a5 (e, N =3), ¢ = (1,0, 1) inthe search space
of the GA would actually indicate the reduct candidate {a;, ag}.
As we are looking lor the minimal nonredundant atnibute sets,
an objective then is 1w obtain a minimal number of 17 in a so-
lution. We note that a reduct 15 a minimal set of attributes that
discerns between all objects(4). Now, ¥ would discern between
an object pair (&, §) (say), provided at least one of the attributes
present in @ assigns a 1 1o the pair, i.e., in the d-distinction table
bk, i1,4) = 1 for some a; in @ Thus, the second objective is
W maximize the number of such object pairs for a solution.

Accordingly, two fitness functions f; and f5 are considered
for cach individual. We have

N-L;
fl{ﬁJ=T“
£,

<

—m) /2

(7}

fa(®) = (8)

(m?
where i is the reduct candidate, L represents the number of 17s
in &, m is the number of objects, and O indicates the number of
object combinations & can discem between. The fitness function
fi gives the candidate credit for containing less attributes (fewer
L's), while the funcinon f; determmes the extent o which the
candidate can discern among objects.

Thus, by generating a reduct, we are focusing on that min-
mal set of attnbutes, which can essentially distinguish be-
tween all patterns in the given set. In this manner, a redoct
is mathematically more meaningful as the most appropriate
sel of nonredundant features selected from a high-dimensional
data.

Crowding binary tournament selection of Section 1I-B3 s
used. One-point crossover 15 employed with probability p. =
(1.7, Probability p,,, of mutation on a single position of individual

wis laken as 0,05 Mutation of one position means replacement
of 17 by “0,7 or 07 by * 1.7 The probability values were chosen
after several expenments.

. Algorithm
In this paper, NSGA-1Lis modified wo effecuvely handle large
datasets. Since we are nterested i ointerclass distinetion, the
fimess function of (8) 1s modified as
y Ce
fa#) = —2—

My * Ma

()

where 1y and s are the number of objects in the two classes.
The baske steps of the proposed algonthm are summanzed as
follows.

Step 1) Redundancy  reduction 158 made for the high-
dimensional microarray data, as described in Section
1A to get the reduced attribute value table 4,
d-distinction table is generated from A, for the two
classes being discemed.

A random population of size n s generted.

The two fitness values f; and fa, for each individual,
are caleulated using (7) and (9.

Nondomination sorting 15 done, as discussed in
Section 1I-B1, to identify different fronts.

Crowding  sort based on crowding  distance 15
performed 1o get widespread solutions.

Offspring solution of size n is created using fitness
tournament selecton, crossover, and mutalion opér-
ators. This 1s 4 modification of crowded wurnament
selection of Section 11-B3 with f; being accorded a
higher priority over f5 during solution selection from
the same front. Specifically, for v, = r; we favor so-
lution i if f;, < fi, (instead of d; < d;).

Select the best populations of size /2, each from both
the parent and offspring solutions, based on nondom-
mated sorting o generate a combined population of
size n. This modification enables effective handling
of larger population stzes mn the case of large datasels
along with computational gain.

Steps 4)-7) are repeated for a prespecified number
of generations.

Step 2)

Step 3)
Step 4)

Step 5)
Step 6)

Step 7)

Step B)

Step 9
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IV, EXPERIMENTAL RESULTS

We have implemented the proposed mmimal feature selec-
tion algorithm on microaray data consisting of three differ-
ent cancer samples. Availability of literature about performance
of other related algorithms on these datasets, as summarized
in Table 1, prompted us to select them for our stwudy. All re-
sults are averaged over several (three o five) runs mvolving
different random seeds. No significant change was observed in
the performance vsing different seeds.

The colon cancer data are a collection of 62 gene expression
measurements from colon biopsy samples. There are 22 normal
iclass '2) and 40 colon cancer (class ('1) samples having 2000
genes (features). Fifty percent of the samples (20 + 11 = 31)
wis considered as the tmining set, while the emaining 50%
(20 + 11 = 31) constituted the test set.

The fvmphoma dataset” provides expression measurements
from 96 normal and malignant lymphoeyte samples, containing
42 cases of diffused large B-cell lymphoma (DLBCL) (class
('2) and 34 cases of other types (class (C'1). There are 4026
genes present. Here, also, 30% of the samples (27 + 21 = 48)
wias considered as the tmining set, while the remaming 50%
(27 + 21 = 48) constituted the test set.

The lewkemia dataset” is a collection of gene expression mea-
surements from 38 leukemia samples. There are 27 cases of
acute lymphoblastic leukemia (ALL) and 11 cases of acule
myeloblastie leukemia (AML). An independent test set, which
composed of 20 ALL and 14 AML samples, was used for eval-
uating the performance of the classifier. The gene expression
measurements were laken from high-density oligonucleotide
microarrays containing 7129 genes (attribules).

After the mitial redundancy reduction, by the procedure out-
lmed in Section 1I-A, the feature sets were reduced 1w the
followmg:

http:ffmicmarny. princeton sdufoncolo gy
hitp:illmpp.nih. gov/lymphoma/data/figure | ffigurel cdt
hitp:ffwrww, genome wimit edwMPR
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TABLE I

COMPARATIVE PERFORMANCE A5 NUMBER OF MIBCLASSIFICAT KNS
Daraset Tatiaketiin Cirlenel
# {mones: 2 i H “ 1Tk
# Mizclassification for;

Evolutiominy-Fougl s 2 3 3 3
# {ones 2 4 2 4 4
# Misclassification Far; RSA [ 4 2 EEE [ eax RO E

0.58 1.72 141

colon dataset: 1102 attnibutes for the normal and cancer
classes;

lymphoma dataset: 1867 attributes for normal and malig-
nant lymphocyte cells;

leukemia dataset: 3783 atnbutes for classes ALL and
AML.

A, Reduct Generation and Classification

The MOGA of Section [11-D is run on the d-distinction table
by using the fitness functions of (7) and (8), with different
population sizes, o generate reducts upon convergence. Here,
the two fitness functions f; (#7) and f2 (&) offset each other, such
that the prionty accorded w fi(#) i step 7) of the proposed
algonthm of Section H1-D allows weaker redocts (with less
than 100% discrimination on object pairs from the d-distinction
table) to appear in the best front. This can also be observed from
the Pareto optimal front provided in Fig. 2. Note that reducts
of sizes 9-14, 11-13, and 67 for the aforementioned three
datasets are capable of 100% discnmination, while some of the
other weaker reducts (consistung of less number of attnbutes)
are incapable of pedect discrimination.

Sample results are provided m Table 11 on the three sets of
two-class microaray gene expression data after 15000 gener-
ations. The corresponding recogniion scores (in percentage)
{on test set) by the powerful -nearest neighbors (E-NN) classi-
fier [ 28], for different values of &, are also presented in the table.
We do not use other classifiers such as decision-tree that Lypi-
cally deal with symbolic (nonnumenc) data. Newral nets wene
not explored since our objective was 1o focus on the classifica-
tion ability of the reducts generated and not to further improve
upon the recognition at the expense of increased computational
complexity.

As the number of atributes decreases, it is observed that the
i-MNN performance on the test set improves. This is mainly
due o the elimination of the existing large redundancy in-
herent in gene expression data. However, this classification is
different from the discrimination over the d-distincion table,
as shown in the Pareto optimal front of Fig. 2 for raining
data.

It is observed that the number of features get reduced consid-
erably with the evolutionary progression of reduct generation.
A larger mitial population size leads to a smaller size of reducts
faster, and hence, a comespondingly higher fitness value, This s
depicted in Fig. 3. However, the associated computational com-
plexity also mmereases with a larger size of population, thereby
resulting ina imitation in terms of available space and time.

Fig. 4 shows the effect on reduct length as MOGA progresses
on celon data, for nine runs with different seed values, over
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TABLE IV

COMPARATIVE PERFORMANCE ON GENE EXPRESSION Dara UsinG SINGLE-ORIECTIVE GA
Dranased Mkl f-nearesl aelahbess classiicaiien (%) o lesl ##l

ruaduct =1 =1 w="h L =7

Ak T [ CF T Nt TT [ o= Mt [N (] Mt [ v el
Colea 15 TR0 eda | TLO | A0 | d84 | AR | 730 0 a0 &4 Q0 9.1 fl3
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different number of generations involving a sample population
size of 10 chromosomes.

The Pareto optimal front, with a population size of 100
chromosomes, 15 dlustrated in Fig. 2 for the three datasets.
Here, we plot the reduct size versus the number of misclas-
sifications over the training set (as obtained from the object
pairs in the d-distinction able) at the end of 15000 genera-
nons. As mentioned earlier, the best front contains minimal as
well as weaker reducts based on the formulation of the fimess
function.

We found that with an increase in the number of generations,
the fi (&) component of {7) gains precedence over the faf i)
component of (8) inthe fitness function. Thereby the number of
minimal redocts (having 100% discrimination between traiming
samples) decreases, as compared o those having kess number
of attributes but incapable of perfect discrimination.

Fig. 5 depicts sample normalized gene expression values of
a setl of three genes for fewkemia data. The partitions Th; and
Thy of (6) are marked parallel to the abscissa. The samples
are listed classwise and sequentially, such that one can observe
the marked change in gene expression values of these attdbutes
comesponding 1o the two output classes. This also serves 1o
highlight the importance of these selected feawres (in reduct)
in arriving at 4 good discriminatory decision,

B. Comparison

Feature  selection has been reported in the  hiterature
[13]415]. Huang [13] used a probabilistic neural network for
feature selection based on correlation with class distinetion. In
the case of the fewkemia data, there is 100% comect classifi-
cation with a ten-gene set. For the colon data, a ten-gene set
produces a classification score of 79.0%. From Table 11, we
obtain a comect classilication of 903% with a nne-gene set,
whereas the reduced attribute size comes down Lo two or three
for the lenkemia data.

Chu et af. [15] employ a f-test-based feature selection with
a fuzey neural network. A five-gene set provides 100% cormrect
classification for lvmphoma data. We determine from Table 11 a
misclassification on just two samples from the test data using a
two-gene sel for lvmphoma.

Cao et al. [14] apply saliency analysis 1o support veclor ma-
chines for gene selection in tissue classification. The importance
of genes is ranked by evaluating the sensitivity of the output
to the imputs i terms of the partial denvative. The recursive
saliency analysis (RSA) algonthm i developed to remove ir-
relevant genes in the case of fewkemia and cofon data. Table 111
lists a comparative study of RS A with the proposed evolutionary
rough method in terms of the number of misclassification on the
Lest data.

We also made a comparative study with some other logically
similar fitness functions [22], [23], involving combinations of
. |

1|1 )= —

h@)=1-

18

(10}

'
[ faa’
£(7)= i(_m r;l:r:l..f_% ,

— e
(m?—m)/2 2

if Cp < (m* —m)/2
(11}
) *3, if Cp=(m?—m)/2

as adapled to the multiobjective framework. There was no ob-
servable improvement in performance here while using the mul-
tobjective alzorithm, as compared to that employing the func-
tons of (7)) and (8).

Reduct generation with a single-objective (classical) GA [22]
was also investigated for different population sizes. The fitness
function

.F,l = rllfll::ijl'j + flgfgl::?-_"j f].z::l

was used, intermsof (7)and (8), with the parameters oy = s =
1. Additonally, we investigated with () << o, 0 < 1 for ay =
1 — ez, Sample results are provided in Table IV for population
size of 100, with optimal values being generated for o = 0.9,
It is observed that, for different choices of o and o, the size
of the minimal reduct was 13, 18, and 19 for colon, lvmphoma,
and fewkemia data, respectively. This 1smore than the redoct size
generated by the proposed multuobjective approach illustrated
in Table 11. Moreover, the classification performance in Table 1V
15 also observed 1o be poorer.

The variation in reduct size with generations and different
populations, vsing single-objective optomization, 15 depicted in
Fig. 6 for the three datasets. Comparison is provided for the
same sel of parameler initializations, with runs over the same
number of generations, using similar objective functions. It is
observed that the plots stabilize at a larger reduct size in the
case of single-objectives, as compared 1o the case of multi-
objective optimization. Momeover, there 15 4 convergence 1o
notceably homogeneous solutons in the populaton, i the
case of the single-objective GA, resulting in stagnation of
pedformance.

A prancipal component analysis (PCA)-based [28] data re-
duction technigue has been very popular in data mining [ 10].
Eigenvectors of the covarance matrix of a dataset identify a lin-
ear projection that produces uncorrelated features. PCA allows
extraction of the most relevant eigenvalues and eigenvectors,
which provide a good approximation for the discrimination.
We employed PCA 1o generate an optimal set of n,, ransformed
features (eigenvalues), subject to a threshold of 99% approxima-
tion for the decision function. These features were subsequently
evaluated using a &-NN classifier (for k=1, 3, 5, 7) on the test
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Fig. 6. Plot of minimal reduct size versus generations, with different popu-

lation sizes, for single-objective optimization on (1) colon, (h) lymphoma, and
{2} leukemia datasets,

sel. The best pedormance (percentage recognition scores) for
the three cancer datasets were as follows:
1y colon: b= 1 with n, = T eigenvalues, 'l = 900,02 =
66.7. Net = B0.T;
2) tymphoma: k=3 with n, =85 eigenvalues,
95.5,02 = 063, Net = 95.58;
3) fewkemia: k=1 with n, =8 eigenvalues, 1 =
0.0, 2 = 643, Net = 86.3.
Our evolutionary rough strategy is found 1o work better in all
the cases.

M =

V. CONCLUSION

We have described an evolutionary mough feature selection
algorithm using redundancy reduction for effective handling of
high-dimensional microaray gene expression data, This serves
as an interesting study in bioinformatics. The NSGA-1L has been
modified o more effectively handle large data.

Since microarray data typically consist of a large number of
redundant attributes, we have done an initial preprocessing for
redundancy reduction. The objective was 1o retain only those
genes that play 4 major role m disceming between objects. This
preprocessing aids faster convergence along the search space.
Moreover, a reduction in the rows {object pairs) of the distine-
tion table was made by mesoicting comparisons only between
objects belonging to different classes—giving the d-distinction
table. This is intuitively meaningful, since our objective here
15 1o determine the redocts that can discern between objects
belonging to different classes. A further reduction in computa-
tional complexity 1s thereby achieved.

Selection of the most frequently occurdng attributes amongst
the reducts may prove significant for biologists. This is because
the attributes in the core [17] (the intersection of the reducts)
could be the relevant genes responsible for a certain medical
condition. For example, let us consider the results presented in
Table 11 1o illustrate selection of important attributes (or genes)
in the reducts. It is found that generally gene 1Ds Hsa 8147 and
H 5010839 occurred most frequently amongst the reducts in the
case of colfon data. Similar analysis on {fymphoma data led o a
focus on genes 1659.X and 1637TX | Inthe case of fenkemia data,
the genes 746499, M 258130, and Y 0O0TST are found to be in the
core. In the next phase, we plan to collaborate with biological
experts toward validating these findings.

Microarray biomfommatics has aided i a massive paralleliza-
tion of experimental biology [1], and the associated explosion
of research has led 1o astonishing progress in our understand-
g of molecular biology. Future hybrid approaches, combining
powerul algorthms and interactive visualization tools with the
strengths of fast processors, hold further promise for enhanced
performance.
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