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Abstract—In this paper, a novel feature selection algorithm,
which is governed by hiological knowledge, is developed. Gene ex-
pression data being high dimensional and redundant, dimensional-
ity reduction is of prime concern. We employ the algorithm cluster-
ing large applications based on RAN-domized search (CLARANS)
for attribute clustering and dimensionality reduction based on gene
ontology (G0} study. Feature selection with unsupervised learning
is a difficult problem, with neither class labels present nor any
guidance available to the search. Determination of the optimal
number of clusters is another major issue, and has an impact on
the resulting output. The use of GO analysis helps in the automated
selection of biologically meaningful partitions. Tools such as Eisen
plot and cluster profiles of these clusters help establish their coher-
ence. Important representative features (or genes) are extracted
from each correlated set of genes in such partitions. The algorithm
is implemented on high-dimensional Yeast cell-cycle, Human Mul-
tiple Tissues, and Leukemia microarray data. In the second pass,
clustering on the reduced gene space validates preservation of the
inherent behavior of the original high-dimensional expression pro-
files. While the reduced gene set forms a biologically meaningful
gene space, it simultaneously leads to a decrease in computational
burden. External validation of the reduced subspace, using various
well-known classifiers, establishes the effectiveness of the proposed
methodology.

Index Terms—Attribute clustering, clustering large applications
hased on RAN-domized search (CLARANS), feature selection,
gene ontology (GO} medoid.

I. INTRODUCTION

NE of the important problems in extracting and analyz-
O mg mmformation from large databases 1s the associated
high complexity. Feature selection is helpful as a preprocessing
step to reduce dimensionality, remove irrelevant data, improve
resultant leaming accuracy, and enhance output comprehensibil-
ity. Unlike other dimensionality reduction methods (involving
feature extraction), feature selection preserves a subset of the
original features. Search is a key issue in feature selection, in-
volving search starting point, search direction, and search strat-
egy. One also needs to measure the goodness of the generted
feature subset. Featre selection can be supervised as well as
unsupervised, depending on the class information availability in
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data. The algorithms are typically categorized under filier and
wrapper models [ 1], with different emphasis on dimensionality
reductuon or accuracy enhancement.

Featre selection has been widely vsed in the supervised
framework 1o achieve better generalization on unseen data [2],
[3]. Genetic search [4] and boosting [5] have also been used for
efficient feature selection. However, there has been compara-
tiviely less attention toward feature selection with unsupervised
learning [6], [7]. The main reasons include 1) a lack of under-
standing about assessing the relevance of a subset of features,
without resorting 1o class labels; and 2) the choice of the optimal
number of clusters, which can in tum have a major mmpact on
the partiioning and fealure selection.

Gene expression data being typically high dimensional, they
require appropoate data minimg strategies such as clustenng,
feature selection, and biclustering for further analysis [8]-[ 10].
Clustering is prevalent in any discipline that involves analysis of
multivariate data. Clustering large applications based on RAN-
domized search (CLARANS) [11] efficiently partitions large
data in terms of medoid-based panitive clustering. It is found
to outperform algorithms such as partitioning around medoids
(PAM) and clustering large applications (CLARA) in terms of
accuracy and computational complexity, and can handle outliers.

Biological knowledge about coexpressed genes has alsobeen
mcorporated m clustering [12], [13], to determine gquality-based
partitions. Gene ontology (GO) annotations have been used 1o
extend the b-medoids algorithm such that genes with known
function getclustered together [ 14]. The use of GO in hierarchi-
cal clustenng 15 reported in [15]. Fuzey c-means clustering has
been enhanced with GO annotations as prior knowledge while
euiding the process of grouping functionally related genes in
terms of fuzzy membership evaluation [ 16]. The incorporation
of biological knowledge provides a direction toward the ex-
traction of meaningful groups of genes [17], [ 18]. Computation
of parwise distances between gene annotation similarities has
been used [19] to develop a fast software.

In this paper, we focus on feature selection from microarray
data by attribute (or gene) clustenng while uahizing the lolog-
ical relevance of these genes. We employ CLARANS 1o cluster
the attnbutes, and select the representative medods (or genes)
from each biologically emriched cluster. For this purpose, we
compute the biological relevance of these clusters in erms of
the statistically significant GO annotation database. The clus-
ters are guakitatively evaloated in terms of Eisen plot and gene
profiles. The reduced gene space keads to a decrease in com-
putational burden. In the second stage, CLARANS 15 wsed 1o
cluster the expression profiles to evaluate the significance of the
reduced subset of genes. External validation of the clustering
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is done in terms of classification accuracy (%) with standard
classifiers [20]. We used the publicly available WEKA [2]1]and
DTREG [22] software implementations of k-nearest neighbors
(§:-INN), decision ree C4.5, random forest, multilayer percep-
tron (MLP), support vector machine (SVM), and naive Bayes
(NB). It is observed that the performance is, in general, better
in the reduced subspace. This establishes the effectiveness of
feature selection algorithm using biological knowledge.

The rest of this paper is organized as follows. Section 1
describes algorithm CLARANS. The proposed algonthm for
feature selection, incorporating biological knowledge in erms
of GO study, is described in Section L1 It results in the au-
omated extraction of biologically meaningful subspaces. The
expenmental results on Yeast cell-cycle, Multiple Tissues, and
Lenwkemia data, along with the vahdation, are presented
Secuon IV, Finally, Section V concludes this paper.

II. CLUSTERING LARGE APPLICATIONS BASED ON
RAN-DOMIZED SEARCH

Large datasets require the apphication of scalable algonthms.
CLARANS [11] draws a sample of the large data, with some
randomness, at each stage of the search. Each cluster is repre-
sented by is medoid. Multiple scansof the database are required
by the algorithm. Here, the clustering process searches through
a graph (7, where node ¥ is represented by a set of ¢ medoids

(or centroids) {m], ..., il b Two nodes are termed as neigh-
bors if they differ by only one medoid. More formally, two
nodes v! = {mi,. .., ml}and® = {mi,..., m- b are termed

neighbors if and only if the cardinality of the inersection of 1!
and v* is given as card (v' [)v* ) = ¢ — 1. Hence, each node
in the graph has ¢+ (N — ¢) neighbors. For each node o7, we
assign a cosl function

I = Z i:n”_l (1)

rrell; i=1

where dy, denotes the dissimilarity measure (Euchdean dis-
tance) of the Eth object zp from the dth cluster medoid m! in
the jth node. The aim is to determine that set of c-medoids
{m},....m!} at node +", for which the comresponding cost is
the minimum as compared with all other nodes in the tree.

The algorithm considers two parameters numlocal, repre-

senting the number of iterations (or runs) for the algorthm, and
marneighbor, the number of adjacent nodes (set of medoids)
in the graph (5 that need to be searched up W convergence.
These parameters are provided as input at the beginning. The
main steps, thereafter, are outlined as follows.

1) Set iteration counter { — 1, and set the minimum cost
maneost 1o an arbitranly large value. A pointer bestnode
refers 1o the solution sel.

2) Start randomly from any node v**" """ in graph (7. con-
sisting of ¢ medoids, Compute cost JEU ™ by (1)

31 Set node counter § — 1.

4) Select randomly a neighbor + of node v** "™ Compute

the cost JI by (1)
If the criterion function improves as J7 < Joorren!

tn
Pt
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Then set the cumrent node o be this neighbor node
by current «— j, and go to Step 3 1o search among the
neighbors of the new g et

Else increment j by 1.

6) If j < mazneighbor
Then go to Step 4 1o search among the remaining allowed
neighbors of e

Else calculate the average distance of patiems from
medoids for this node; this requires one scan of the
database.

7y IF Jevrrent = nineost
Then set mincost — J"" and choose as a solution
this set of medoids given by bestnode — current.
8) Increment the number of iterations [ by 1.
If! = nuwmlocal
Then output be strode as the solution set of medoids and
halt
Else go to Step 2 for the next iteration.
Note that maxneighbor can be computed as

mazneighbor = pihof {c+ (N —e)} (2)

with p being provided as input by the user. Typically, 1.25 <
p=15[11].

The clustering algorithm described here 1s partiive, requiring
prespecification of the number of clusters. The result is, there-
fore, dependent on the choice of ¢. There exist validity indices
to evaluate the goodness of clustering, corresponding 1o a given
value of ¢, A commonly used measure is the Davies—Bouldin

(D) index [23].

III. FEATURE SELECTION aND CLUSTERING LARGE
APPLICATIONS BASED ON RAN-DOMIZED SEARCH

We employ attribute clustering, in terms of CLARANS, for
feature selection. This resuls in dimensionality reduction, with
partcular emphasis on high-dimensional gene expression data,
thereby helping one 1o focus the search for meaningful parti-
tons withm a reduced attnbute space. While most clustering
algorithms require wser-specified inpul parameters, it is often
difficult for biologists to manually determine suitable values for
these. The use of clustering validity indices for an automated
determination of optimal clustering has been reported in the
literature [24], [25]. In this paper, we mcorporate biological
knowledge, in terms of GO, along with the DB index, to auto-
matically extract the biologically relevant cluster prototypes.

A. Gene Ontology

We determined the biological relevance of the gene clus-
ters for the Yeast cell-cyele' and Human® (Multiple Tissues,
Leukemia) data, in terms of the statistically significant GO an-
notation database. Here, genes are assigned to three structured,
controlled vocabulanes (ontologies) that desenbe gene prod-
ucts in terms of associated biological processes (BP), cellular
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components (CC), and molecular functions (MF) in a species-
independent manner. Such incorporation of knowledge enables
the selection of biologically meaningful groups, consisting of
biologically similar genes.

We have measured the degree of enrichment, i.e., p-values?
using a cumulative hypergeometric distribution, which involves
the probability to observe the number of genes from a particular
functional GO category (i.e., ME BPF, and CC) within each
feature (or gene) subset. The probahility p to find at least &
genes, from a particular category within a cluster of size n, is
expressed as

— 0ed)
; ()

where fis the total number of genes within a category, and g is
the wotal number of genes withim the genome [26]. The p-values
are caleulated for each functional category in each cluster. Sia-
tistical significance is evaluated for the genes in each of these
partitions by computing p-values that signify how well they
match with the different GO categories. Note that a smaller p-
vilue, close to zero, is indicative of a better match. A p-value
closer 1o zero indicates high confidence that the associated cal-
cgory represents the correct annotation for a cluster, whereas
a value closer to | implies low confidence in the annotation.
Our algorithm uses the p-value as a selection criterion o ex-
tract “biologically meaningful™ clusters of genes from a large
collection.

p=1-— (3

B. Algorithm

The proposed algorthm focused on the feature selection from
microarray data by attnbuote clustenng, while utilizing the bio-
logical relevance of the genes. The main objective is o demon-
strate the utility of incorporating biological knowledge in featre
selection procedure for improved classification performance as
will as reduced computational complexity. The concept o select
the medoid (the most representative gene) of each biologically
enriched gene cluster 1o constitute a reduced set of features, on
the basis of GO-based biological knowledge, is new.

In the first-pass clustering toward feature selection, the con-
ventional algorithm CLARANS is employed as a tool 1o handle
the large gene space. The GO study has been used to find sig-
nificant clusters that are generated in lemms of enrichment of
the functional categories in individual clusters. The p-value has
been used to filter out the significant clusters. Clusters with at
least one significanty enrched GO term are considered as bio-
logically significant clusters. The percentages of GO knowledge
have also been meorporated to evaluate the biological elevance
of the clusters. Medoids are selected only from such biologi-
cally significant clusters. These are subsequently used as the
most representative genes for the reduced feature set. Thus, the
first-pass clustering involves atiribute clustering for featre se-
kection using biological knowledge. The second-pass clustenng

*The p-value of a statistical significance test represents the prohability to
obtain values of the test statistic that are equal to or greater in magnitude than
the ohserved test statistic.
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on the reduced gene or feature set, over the lime points or sam-
ples, mainly validates the claim for preservation of the class
information over the reduced gene space. Thus, working on this
reduced set one can attain improved visualization and better
interpretability of the results.

First, we perform clustering for feature selection, with ¢ =
v [27]. The prototype (medoid) of each biologically “good™
gene cluster (measured in terms of GO) is selected as the rep-
resentative gene (feature) for that cluster, and the remaining
genes in that cluster are eliminated. Thereafier, the remaining
set of genes (in the “not-so-good” clusters ) are again partitioned
with CLARANS, for ¢ = ¢y which minimizes the validity in-
dex. Finally, the goodness of the generated partitions is biologi-
cally evaluated in terms of GO, and the representative genes are
selected.

Upon completion of gene selection, the gene expression
dataset is transposed and reclustered over the reduced gene
space. The cluster validity index s vsed to evaluate the gen-
erated partitions. The gene expression patiems are studied 1o
brodogically justify the generated partitions. This leads o di-
mensionality reduction, followed by partitioning into biological
relevant subspaces. The steps of the algorthm are outlined next.

1) Initialize g «— number of genes, N «— number of samples

Initialize number of medowds n,, — 0.

2) Transpose the gene expression army.

3) Cluster set of genes using CLARANS for ¢ = /5.

4) Use GO to detect coregulated genes in terms of process-,

component-, and function-related p-values <= &%,
5) If any biologically meaningful cluster is detected
Then perform Step 6 for each such cluster
Else go to Step 8.
6) Replace each set of coregulated genes g, by its medoid,
memement 1, , and decrement g — g — g...
7) Repeat Steps 3—6 until no more good clusters can be
found.
2l a) Cluster the remaining set of genes g with

CLARANS  while mummizing vahdity in-
dex DB for c=ry ower c=2,..., N
by Test the p-values for these o clusters.

¢) Compress each of the biologically meaning-
ful clusters by its medoid, such that g — g — g.
and ny, — ngy + 1.

9) Biologically validate the selected genes (medoids of en-
rched clusters) using publicly available databases and an-
notations. Visualize the selecled clusters vsing melevant
wols such as Eisen plot and cluster profile.

1y Retmnspose the gene expression array 1o cluster the gene
expression data in the reduced space of g genes come-
sponding 1oy, medoids.

11) Use cluster validity index 1o evaluate optimal partition.
12) WValidate the generated subspaces qualitatively, in terms of
the original gene expression data.

The grouping of genes, which is based on GO analysis, helps
to caplure different aspects of gene association patterns in lenms
of associated BP, CC, and MF. The mean of a cluster {which
need not coincwde with any gene) 15 replaced by the medoid (or
most representative gene), and deemed significant in wennms of
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TABLE 1
MICROARRAY DATASETS

ata # (Cnstars for Mo, af genes
unerneen dex [ oceinl T educed
Feam - 3RE4 55
Muoleinde Tiziias 1 SEAG 12
Lewkenita Z 71259 44

ontology study. The set of medoids, selected from the partitions,
contain useful information for subsequent processing of the
profiles. The smaller number of such significant genes leads toa
reduction in the search space as well as improved performance
for clustenng.

1V, EXPERIMENTAL RESULTS

We have implemented the proposed feature selection algo-
fthm on microarray data consisting of three benchmark gene
expression datasets for 1) Yeast [26]; 2y Multiple Tissues [28];
and 3) Leukemia.® Extemnal validation was done using the pub-
licly available WEK A and DTREG® software packages to eval-
uate the qualitative subspaces.

Yeast data are a collection of 2884 genes (attributes) under
17 conditions (bme points), having 34 null entries with —1 in-
dicating the missing values. These are categoneed as two broad
phases, each mvolving G1, 5, G2, and M subphases [29]. All
entries are integers lying in the range of 0 to 600, The miss-
ing values are replaced by random numbers between O to S00.
Multiple Tissuwes data comprise 103 samples with 3565 genes
from four normal tissue types of humans, viz., breast, prostate,
lung, and colon. The Lewkemia dataset is a collection of 7129
zene expression measurements (atiributes ) of 72 leukemia sam-
ples, from high density oligonucleotide micmarrays, belonging
o two ypes of the disease, viz., acute lymphoblastic leukemia
(ALL) and acute myeloblastic keukemia (AML).

Table [ presents a summary of the feature selection process
for the three datasets. The optimal numbers of partiions, m
terms of DB index, are indicated in column 2 of the table.

Tables 1L, ¥, and V11 illustrate the first-pass clustering, for the
three datasets, respectively, where genes with similar expression
pattlems are grouped together across all the conditions. The
selected clusters are marked n bold.

The GO stwdy has been employed to find significant clusters
that are generated in terms of enrichment of functional cate-
gories within the individual clusters. Thus, to find biologically
ennched clusters, the genes in each cluster are mapped o the
functional categories that are present in Saccharomyces genome
database (SGD), Munich Information Center for Protein Se-
quences (MIPS), and FauGO genome databases. Tables 111, VI,
and VI demonstrate the biological validation of sample clusters
that are selected from the respective datasets. Table 111 summa-
rzes the biological validation results for some of the selected
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clusters of Table Il in terms of enrichment of functional cate-
gories in the MIPS comprehensive yeast genome database” [30].
It was determined, from the SGD'™ [31], that the selected open
reading frame (ORF) in the first column of the tables have more
meaningful biological annotation in terms of their belonging
to a larger number of GO categories (viz., ME BP, and CC).
Tables W1 and VI present the biological validation of sam-
ple clusters of Multiple Tissues and Leukemia datasels using
FauGO'" [32] which is a functional enrichment tool in Babe-
lomics. Here also the selected clusters (and their medowds in the
first column) were found o have more biological significance,
as estimated from the rat genome database!? [33]. in terms of
more meaningful annotations with reference o a larger number
of GO categories. We then referred 1o the Universal Protein Re-
sonrce (Uniprot) ' database for cross-validating the significance
of the selected gene subset.

Sample clusters are pictorially depicted in Figs. 1, 2, 4, and
5in lerms of Eisen plot and gene profiles of Yeast and Mufriple
Tissue datasets. The dots in the cluster profiles correspond to the
mean expression values of genes along different time points.

A. Yeast

The OREs" of the genes (or medoids) coresponding to the
attnbute clusters that are selected (with cardinality marked in
bold) in Table 11, by Steps 3-6 of the algorithm for Yeast, are as
follows:

YDRI165W. YDL164C, YDR3ESW, YKLI9OW, YGROUZW,
YMRO76C, YEROIBC, YOR234C, YGRIS2C, YLR325C,
Y FLOOEW.

We were able 0 determine the role of the clusters that are
presented in the tables from the yeast cellcycle context, and
correlate this o the average profiles of the clusters. The per-
centages of the GO knowledge of the clusters were also sdied.
AL609% GO threshold, selected clusters were found o have more
number of significant terms in different GO categories. Here,
the GO% are mostly found to lie between 70% and 100%. This
highlights the biological relevance of these clusters, as well as
their corresponding medmds (ORFsgenes). Fig. 3 depicts the
bar chart of the percentages of the GO knowledge of a cluster.

Next the medoids (or representative genes) of the selected
clusters were analyzed wsing SGD, 1o evaluate the biological
significance of these genes. 1t was found that all medoids { genes)
selected o constitute the reduced feature set are annotated. Let
us discuss the functionality of some of the genes with reference
to column 1 of Table 111

The gene YDL164C is a DNA ligase found in the nucleus and
mitochondria. It acts as an essential enzyme that takes part in
DNA meplication as well as takes part in nucleotide excision re-
pair, base excision repair, and recombination. YDR3ESW 15 an
elongation factor 2 (EF-2) that catalyzes ribosomal translocation
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TABLE Il
FRST-PASS CLUSTERING FOR DNMENSIONALITY REDUCTION, BASED ON GENE ONTOLOGY STUDY, ON Feasr DATA
Ircratinn Mo of chisters {3ncs W cach chister 7 Compreased
clusters sy
AZADELTL2T 14 A7 53 32,40 87 52 A5 25 80,70 45, 10971 52, 530,81 .55 56,65 35,17,
1 VIR — 54 46 2237 424096062 54 503875 86,3945, 171 56,4044 5432 60, 32,34 27 43,12 11
4024 37 AT A T2 36, 17 35 20 29 35 20 79 55 02503045 65,65 -2 13,
i W ERTH — 44T — % LEROSTAZAT R0 To 27 25 00 67,74 50,55 42 50, 30,60 44 53 )G 91 55,4450 i
TABLE Il
BIOLOGICAL VALIDATION OF SAMPLE CLUSTERS FOR Feasr DATA
Medoid & MIPS funclianal caleirnmy / subculerery
# (MiF: CArCg Y SVl AT R # ORFs  povalue
RAEREETS CRELT CYCTFE AN 7 2 e
DMA PEOCLESSIMNG D3A svnthesis and replicalion 2 R 1)
15 (hialogical proeess) cxtension/poly merizarian activity 3 3a5%cIZ
TOIOEAY | PROTLIN Y STIILATS 3 B e
(hiclogical procesy) rihosome hingenesis 27 351e-21
56 ribosornal proteins 27 6.3 5e-24
wranalatinn almgation 3 Hele-dl7

aenes

Parceniage

time poink ln- -
Fig. 1. Feass data Eisen plot having 15 genes. 1 3 3 s 5 8 & i & W 4
Mo, of GO Terms
400 Fig. 3. Percentages of GO knowledge of sample cluster of Feas cell-cycle,
having 56 genes,
350
= . 3
e B o - ) = r- dunng protein synthesis. YERO18C 15 a component of the evo-
e Y _F:'_-) -'.:-"L"_ lutonarily conserved kinetochore-associated Nde 80 complex.
250 ’_.:"-- w E-. 7 "“\, It 15 involved in chromosome segregation, spindle checkpoint
g N e ';’ :H{‘-_ —a activity and kinetochore clustering. YOR234C 15 a nbosomal
0| T “io= 1 protein L37 of the large (60S) ribosomal subunit, and is in-
i volved in structural constituent of nbosome and translation.
150 The medoids, e, genes, of the selected clusters are then taken
as the reduced atribute set for the second stage of clustermg (by
100 CLARANS) in Table IV. Here, the time points are shown being
grouped together to identify the existing hiological classes over
- . the reduced feature set. The original biological class informa-
£ 4 B & L 12 " L tion of the dataset i1s compared for the purpose of validation. It
Y. 15 observed that the opumal partitioning corresponding 1o two
.2 Feasr data cluster profile plothaving 15 genes. clusters (time points 1-8, 9-16), at minimum value of DB,

15 biologically meaningful as evident from the onginal biolog-
ical class mformation of these cell-eyele data. Note that these
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TABLE 1V
SECOND-PASS CLUSTERING USING VALIDITY INDEN ON YEAST

Mo af Tirnc: points Index
clusters i each cluste: value
2 1-29-17 .05
3 1. 2-8, %9, 10-12, 15, 14-17 1.27
4 L2-8, 90 L1101, 12-13, 1417 188
5 1-23-F AR 11T, 122133, 1417 1.003
L] I 23365889, 12 15 {10 1114 17} 121
¥ 1-22-56-89. 10, 12-11, 'I I.'I"—I'."_I- 1.1%
5 1238659, 10, 11-12, 13, 14-15, 16-17 | 741

genes

Muliiple Tizzue Tvpec

Fig. 4.  Multiple Tissves data Eisen plot having 22 genes,

partitions comrespond 0 a reduction in the number of genes from
2884 o 15,

B. Multiple Tissues

The medoids (ORFs) of the selected clusters are ndicated
next:

RPL3, PRPE31, RPL13A, RP53, RNP24, DLST, PUMI,
TRIM33, FBXOY, HIPK3, CCT7, NACA, S5100A2, RPL3I,

NPPA, OAZ], FBXWI1., MT1H., ZWINTAS, KHDRBSI,
MFN2, EEF1G, PR5S11, TNFRSF25, MYLK, PFDN5, ZFR,
SFTPB, ENOI1, TMEMI, PCBF2, CUL1., LEREPO4, HLA-
DPAL, RECK, HNRPC, ILTR, COL6A3, UBC.

The results are found to match with the comesponding aver-
age profiles depicted in Figs. 4 and 5. The percentages of GO
knowledge of the different GO calegonies in the significant clus-
ters were found o be lying between 80% and 100%. The sample
cluster 15 illustrated in Fig. 6.

All the selected genes found to be annotated. We present here
the findings that are related w some of the genes of Table VI
m detail. The gene EEF1G s defined as a eukaryolic transla-
ton elongaton factor 1 gamma which takes part in response 10
virus, protein biosynthesis, and translaton elongation factor ac-

15495
18000 :
14000 | ! . !
| '
" { e
1:5:-::0 | i i}, i
B 4 nlol
0000l k) b A g - ] ik
¥ p g Yy Bt | I AR W
I .II_.;_I :I{ i il T ] B Ilil.
sooo R AL by 1 T I'Ii J]f[.;,,. {
T* I'.“ bl i TR A j th i 'r‘ Y
il 4 Ll | .r-_~l f X ¥ j-f | i
eooo | RURMRENALIA Y ) V810 TSR T
) 1]“ 1. £ N X s T
i i i i I,
acoo ! [ENETN | l‘.:i £ i
'I,IJ: ! i j | |
2000
o
e 2 3 40 0 & ™ & W WO
Muttipke Trous Tvpec
Fig. 5. Multiple Tissues data cluster profile plot having 22 genes.

Farcan Lo e

:
il

Ho. of GO Teame

Fig. 6.  Percentages of GO knowledge of sample clusters of Multiple Tissues,
having nine genes.

tvity. It was found that EEF1G mRNA was expressed at higher
levels m 7 of 9 pancreatic tumaors than in the comesponding nor-
mal tissues. RPL31, which is defined as nbosomal protein L31,
Lakes part in structural constitvent of ribosome and translation
regulator activity.

C. Leukemia

The medods (ORFs) of the selected are as follows:
M26311_s at, HG2E87-HT3031_at, LO7633_at, Mo3435_
s_at, L06d99 at,
AFFX-HSACOT/X(0351_5_at,
UR3239 & at, URT7459 _at,
ARNGOES at, JOO105_s_at,
Z8472] _eds]_at, D26598_at,

HG3597-HT3800_{_at,

KOO0437_s_at, XO6617_at,
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X56997_mal_at, Z4B9350_at, X62691_at, U23B52_s_at,
JO4130 s _ar, M11147_at,

M33600_1_at, MI9507_at,
19554 s at, M14483_rnal_s_at,

M27783_s_at, Ul0323_at, M95627_at, M28130_rnal_s_at,
MI5395_at.

The percentages of the GO knowledge of all the selected clus-
ters were found to lie between 60% and 90%, thereby exhibiting
the biological relevance of the clusters. Fig. 7 demonstrates the

M26602_at, UBO98T_s_at,

results of such a cluster. The study of the selected medoids
(genes), using Uniprol, also demonstrates their significance in
terms of meaningful annotation. Gene US7459_at is defined
as an L-antigen family member and nkes part in protein bind-
ing. Moreover, it is found w be expressed inoa wide variety of
cancers. The gene XO0437_s_at associates with IL12B o form
the IL-23 mterleukin, which agam is an beterodimenc cywokine
functionmg in situations of mnate and adaptive immunity.

0. External Validation

The biologically meaningful subspaces, which are generated
qualitatively in terms of GO, were next vahidated using vanous
standard classifiers. These included the &-NN, C4.5, random
forest, MLF, 3VM, and NB (using WEKA and DTREG imple-
mentations). The gene setsin the onginal and reduced subspaces
were examined for all the three microarray datasets of Sections
IV-A-1V-C on the basis of their classification perfromance. Ten-
fold cross validation was done in all cases. The E-NN classifier
was implemented for k=1, 3, 5, 7, the MLP was used with one
hidden layer having three hidden nodes, and the SYM employed
the radial basis functon kernel.

MNext, we made a comparative study with the perfor-
mance of attribute clustering algonthm (ACA) [34]. The com-
pared algonithm ACA is able to group genes based on their
mlerdependence, so as o mine meaningful patterns from the
gene expression data and select significant attributes for subse-
quent classification. No biological knowledge is involved dunng
attribute selection. Table IX depicts the comparative study for
the Lenkemia datasel, where the selected gene subsets (by ACA
and our algonthm) were vahdated using some well-known clas-
sifiers. For each classifier, the first column refers o ACA while
the second comesponds to our algorithm. In the case of ACA, the
five gene subsets were of sizes 10, 20, 30, 40, and 30, selected
based on a ranking threshold vsed. Our algonthm, on the other
hand, automatncally selects a partncular subset of genes using
ontology-based biological knowledge. [0is evident from the re-
sults that our algorithm 1 able to select a better subset of genes
from the Lenkemia data, due to the meorporation of biological
knowledge, and resulted in an improved classifier performance
(entries marked in bold in the table).

Finally, we present an experimental comparison with the case
of not including bhiological knowledge in the first pass of our
algorithm. Table X depicts the results on the three microarray
datasets. In the case of each data, the first row refers to the
situation where we do not use the p-value to select only the
biologically good clusters (marked in bold in Tables 11, V. and
VII). Instead, we have taken the medoids (genes) of all the
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clusters o constitute the reduced feature set. The third row
corresponds to the gene subset after reduction using biological
knowledge by our algonthm. This, therefore, serves to highlight
the utility of incorporating biological knowledge (here m terms
of GO in Steps 4-6 of the algonithm. The second row refers
o a random selection of genes, such that this number equals
the number of medods (involving bwological knowledge) n the
comesponding third row. Again, a set of well-known classifiers
are used for the extemal validation,

We observe that the incorporation of biological knowledge
resulted in an improved performance for classifier NB over all
three datasets. We have marked in bold all the cases where ever
this reduced subspace yielded better classification performance.
Owerall, the performance of the algorithm 1s found o be com-
parable and often beter after the imcorporation of biological
mformation during reduced feature subset selection.

Moreover, the peformance of the proposed algonthm is com-
pared with those of some biomarker extraction methods, " such
as the empirical ebayes t-statstic (eBayes) [35], [36], ensem-
ble [37], partial least-squares cmss vahidaton (PLSCY) [38],
random forest feature selection (RFMDA) [39], and the sigmifl-
wcance analysis in microarmays (SAM) [40]. Results of the NB
and decision tree are presented in Table X1 for the three datasets.
Here, the classification accuracy of our algorithm is found o be
better in most cases. In this connection, 1t may be noted that
the biomarker extraction methods use statistical measures W se-
lect differentially expressed genes. As such, the computational
complexily mereases. Our algonthm is simple, yet comparable
in performance.

15 by pefiarana arraymining. net.



MITEA AND GHUOSH: FEATURE SELECTION AND CLUSTERING OF GENE EXPRESSION PROFILES

TABLE V
FIRST-PAsS CLUSTERING FOR DIMENSIONALITY REDUCTION ON MULTIPLE TISSUES DaTa

[renes in cach clnster

# Unmpressed

Ko ioof chisery
clusters o,
Jee 4251152141 25418205 259 135 452,45 10,41 1,1.5.%,1 94,3, 318.4,1.73, 10
1 W EERR — TA LLL L322, L% 280 0 52 2415245 253 205 5060 482722, L 16, 1 2.1 ¢, k3
L1260 8T A6 IR 24381004, 1.6
2 GEERR — 31— 14 LI TN L o R ) B P A 3
TABLE V1
BIOLOGICAL WALIDATION OF SAMPLE CLUSTERS FOR MULTIPLE TISSUES [MATA
Midoid & Fari{io tunctional catezary 7 subeateenry
« QRS Caleyriry Tevel  subcuterory i-vellue
LCLTIG baalugricul poucess 3 biosynlhelic process F 1020
22 Al collnlar Biasyntherie procsss 43,2221
cellular macrommolscule metaboliz process [ 286212
prostein metabolic process 130012
3 e seielessule biosvolliee poscess
collular prolein retaholic prscos-
(x Liurslatisn
el finetion A seructiral constituene of rihosome
4 B2 Tandiog 233a 1
] thAA hinding EX*ERIH
TABLE vl
FIRST-Pass CLUSTERING FOR DIMENSIONALITY REDUCTION ON LEUKEMLA [DaATA
S Mioof clusrery [renes inosach closter # {omoresaed
CIUSLELS flay
QLI L I93 AT LA TEITE 0TI S5 Le03 29 [ TE8 TIL LI 71006,
1 A T120 — g3d UL TEIS L2 636 5,17 232 101,14, 12 1 S5 L 1%L 2181, 32
21.1,36.56.1.1,1.42005,1 41 A5 17121202 350,27 1842
& GTTI - BTN — 14 M 17321131713 A6 2000 11 5,6, HESA 605 12

TABLE VIl
BIOLOGICAL VALIDATION OF SAMPLE CLUSTERS FOR LEUKEMIA DATA

Wedaid & Fatilan funcrional carcgory & suhcarcgony
L OREs culepory [ewel T ~ubculezery -value
27 s a1 | bioloncal process 3 respuse Lo externul stimulus 2 1eE
celhlar developmental process 4. R
Tespunse L sloess 1. 24e06
ThE regnlation of bialogical process 1. 2016
vell pralilecalion 231eda
Tegnlation of uly Mids 2016
4 pesitive pesulation ol Diolosical prooess L&ac 8
nementve revulalinn of hiolomeal process P deHlR
cell diffore nriarion O Hede U7
cell-vell signahine .5 0e-G
srstem develapmgnt (3 386¢ A
nleculur Tunclaon 3 praein brnding ENERS]
tranzeriprional acrivacor acrivity 402 AT

TABLE Ix

COMPARATIVE STUDY OF VALIDATION BY DNIFFERENT CLASSIFICATION ALGORITHMS ON THE REDUCED (GENE SET FOR LEUKEMIA DATA

# Crenes Clussilicalion Accuracy (%]
Seleetod ANMN E [N T “NR
ACA | Proposed | ACA | Proposed | ACA | Propnsed ACA | Proposcd
mieLhenl el bod roeLhud meLhenl
1n XN I R34
n [T BN ThIE
30 Moo [T LR b - E _alE 9E.6
BN Wil vl.2 HlH
ki L oTx alk




1594

TABLE X
COMPARATIVE STUDY WITH AND WITHOUT BIOLOGICAL KNOWLEDGE

Ihatazet [ Merthod # Accuracy (%)
Gepes | NN 43 . MLF | NE
Yeusl Witk 34 Oh.R ad. 0l | 94l £ 9111
{Ched 15 HAKEZ (R B EE N BN
MN=I7 With 15 a7 8402 | w412 9407 | w412
=
bl Without 5 74405 fe3.21 w30 LA TR
Tiszue 42 TII 0 ddn | TRA5 0 8931 | Eh3z
MN-T0% [ Wik 3z RLOE 6301 | R0 RO | 9REIY
w=d
I cuke Withour EE] E51 0 WAAY | B33 bddd | EHES
Ml EE) EER TRV B S RO RV
MN=71 With 24 HILH3 H3.33 ML Al Y722
=2
TABLE X1
COMPARATIVE STUDY WITH BIOMARKER EXTRACTION METHODS
Dala W Metbods! AvCuTace )
sCT [rencs Aldgarithms B Dzzisinm Tros
FRayes i LI
ENSLRDLE | .11 ERRE
AL 1 HESCY R T
(Char EIMDA JEL] 100
Nahd 1M 100
~ Troposed ® 12 o113
EBayes #4952 T0ET
EMSERBLE | W29 ol
Multi 47 TLECY 932 T0ET
Limsue HIALA P25 I i)
RAahd HU.52 TEY
I Propoaseld LK ] HAT)
CRayes G588 .27
FMEEMBILE | 9563 RUNRCE
Leukeunuy 34 TLECY PN dIERS
RFMIA AR W27
5aM B452 93,03
Priypased w732 T365

V. CONCLUSION

In this paper, we have proposed an algorithm for feature
selection using biological knowledge. Here, biological knowl-
edge implies the statistical significance of the enrichment of GO
terms in the clusters as represented by the constituent genes.
The concept to select the medoid (of most representative gene)
as a feature from each biologically enriched gene cluster, in-
corporating biological information, was unigue. The algorithm
CLARANS wasemployed asa tool for attribute clustering in the
large gene space. The clusters were evaluated in terms of GO,
and pictorially depicted in terms of Eisen plot and gene pro-
files. Subsequent partitioning of the reduced gene space over
the conditions validated the significance of this reduced subset
of genes.

The main objectve was to demonstrate the uality of incorpo-
rating biological knowledge, in the form of annotation from the
GO study, for enhanced dimensionality reduction by atribute
clustering. Since the selection of genes was based on statisti-
cally significant biological meaning, therefore some potentially
useful clusters could have been overlooked in the process. How-
ever, the algordthm improves the interpretability of the results
by providing the biologist with clusters that are based on genes
selected using background knowledge. Extraction of subsets of
genes, from the high-dimensional gene space, lead to reduced
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computational complexity. External validation demonstrated
that the classification accuracy in the reduced subspace was,
in general, betler

Extensive comparison was provided with related algorithms,
mcluding biomarker extraction methods [35]=[440]. Other preces
of hierture, mvolving set-kevel techmgues, melude [41] and
[42]. The use of differentially expressed genes is also being
currently imvestgated by us.

It is to be noted that a computationally efficient globally op-
timum measure of evaluation does not necessarily converge o a
bicdogically meaningful solution. The objective was, hence, not
a faster or more efficient clustering. Rather, the algorithm was
expected o serve as an automalted ad w hiologists by enhancing
visualization, freeing them of the need for manual intervention,
and allowing them scope for refinement according to their focus
of mterest. A biologically meaningful subspace can also lead
to the discovery of valuable pathways of genes. This, therefore,
holds promise for biologists o interpret and analyze various
subspaces according w therr mdividoal requirements.
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