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Self-Organizing Neural
Network As A Fuzzy Classifier

Sushinita Milra, Studem Member, (EFE, and Sankar K. Pal, Feltow, JEEE

Absiraer—This paper describes a self-orgarizfry artificial rew-
vl sretwnrk. hased on Kokoren s sadel of self-organization. which
is capable of handling tozzy inpul and of providing fuzry classi.
fication. Unlike conventional neural sl models, this algorithm
inrurporates fuzzy set-theoretic concepls at variows stages, The
input vector consists of membership vahes for faguicic prop-
erties alomg with some confexiual clgse merbersfip information
which is used doring self<organization to permit efficient mod-
eling of fuzzy (ambipucust pallecns. A new defloition of gain
factor for weight wpdating is proposed. An index of disorder
involving mean square distance between the input and weight
vectors s used to determine a measure of the ordering of the
outpil space. This contrals the number of sweeps required in
the process, Incorpovation of the concept of fuzzy partitioming
allows palural self-organlzation of the Inpot data, especially
when they have l-defiped Dooodaries. The outpol of unknown
test patterns i generated in terms of class membership vatues.
Incorporation of fozziness in inpuot and ontput is seen to provide
better performance as compared to the oripingd Kehonen model
and the hard version. The effectiveness of Lhis alyocithm s
demonsirated on the speech reeognition problem far variows
network array sizes, training sets and gain Factors

I, INTRODUCTTON

ETIFICIAL NEUEAL ncts [1]-[3] arc highly paralle] in-

terconnections of simple proceszing clements or neps
et Fumetion as a collecive system with nearons interacting
via feslback connections. There exist various problems in
pattern recognition and image processing that humans scem
mors efficicnt in solving as comparcd to computers. Neural
nels may be seen perbaps ax sn atiempl e emolale such hu-
man perlormance. These networks can be hiocadly categorized
a3 those that lesm adaptively by updating their conncction
weights durng iraining and thase whise paramelers are timne-
invariant. We consider a network of the tirst kind here.

Sebf-organization [4] refers w the ability of a neural nel
fo elucidate or reproduce some fundamental arganicational
proxperty of the inpul dala without beneliv ol supervised waining
procedares. [n Kohonen®s mode!, the network automatically
petforms 2 mapping tansformation from an mput space o
generilly a lower-timensional output space such that the Tatter
avguires the same wpological ordering s the former.

The benefil of nearal nets [1-[6] lies in the high com-
putatien race provided by their inherent massive parallelism.
This allows reul-time processing of huge datn seis with proper
hardware backing, All information is seoved in distributed

form among the various connection weights, The redundapcy
of interconnections produces a high degree of noboginess
resulting in a gracefid degradarion of performance in the cuse
of damage w0 a few nodes or links.

1 shuull be mentioned that humaen reasoning is somewhat
lowey in nature, The utility of fuzzy sets [7]-[9) les in their
ability., 0 4 reasonable cxtent, to modzl the wwreervain or
ambiguous data so often encountered in oreal life, Hence, (o
cnable the svstem to denl with the ambiguous {il-defined)
data in an elfecdve manner, one may InCorpoTats e comcept
of fugzy sels into the neural oevwork.

The present work discusses o self organizing nearal network
model that perfarms fuzey classification. 1o is an attempt
tr extend Kohonen's model [4] By incorporating fuzzy sct-
theoretic conwepls [7]-110] ot various stages. o the process, &
separale wesling phase is added to evaluate the perfommanee
of the proposed classifier in recognizing a sepurale sol of
test pattems. We consider a single laver two-dimeansicenal
rectangular ammay of newrons with shorl range lateral foedhack
inferconneciions helween neighboring unils.

The netwiork under consideration passes through rwo stages,
viz., self-orgamization and esting. In the first stage 8 sel of
training daea is used by the network to initially self organize
the connection weiahts and finally calibrare the oulpul space,
During rhis stape the weight vector most similar (o the inpat
palern vector is rozated toward the later. The neighboring
weight vectors are also rorated. but by a lower amount. Afrer
a mamber of sweeps through the traiming set the oulput space
becomes appropriately organized. An index of disorder is com-
puted W provide wn evaluglion ol this ordering. The network
i3 merwe sujpeesed to encode the input space informafion gmung
its connection weights, By calibration we refer L the labeling
of the nenrons, after self-organization, relative 1o the training
pattern chasses. This procodure also provides some qualialive
assessiment of the topological ordening of the output space as
compared o the nput data space,

Dwring training, the input vector also includes some con-
texmal information regarding the linite oot membership
of the pallern w ome or more classes. Compared to the
conventional two-state system, which assigns membership o
one class omly and uses no class information in the input,
the proposed lechrique produces a more cfficient modeling in
cases where the feamre space has overlapping or ill-defined
clusters, However, during scll organizaiion, this part of the
inpue voctor is assigned o lower weight to allow the linguistic
andfor quantitative inpul properties o deminace.
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During calibration, only the class mensbership information
in the input wector is wsed {in crisp form) while the inpue
feature information is kept clamped at zero. In the conventional
Kohoncn's model, after self-organization, the training pattern
veetors are uscd to label the neuroms to which they are
mapped, This gives the ordering of the pattern classes in
the cutput space. Tn the propesed model, the labeling of the
output neurons is delermined solely by the contextual class
information associated with the tmining pattern vectors. This
is termed celibration of the neurons. Esch newron is labeled by
the pattern ¢lass for which it generates the highest responsc.
This corresponds 1o a hend partiioning of the neurons. A fuzzy
partitioning of the curput space is also gencrated to produce
an appropriate topological ordering with fuzey data.

In the second stage a separate set of test patterns is supplicd
to the network and the resulting neuronal outputs verified
against the calibrated output map. This is an extension to
the conventional Kehonen's muodel which basieally performs
a ¢lustering operation. The proposed model, on the other
hand, i5 designed to be a classifier. The calibrated acirons,
self-organized by the traiming set, are used to evaluate the
recognition capability (using best match) of the said trained
nenral et on the test set. Now the inpur vector contains only
the featvre information, A confusion matrix is generated to
evaluate the classification performabce {based on best match)
of the netwark on the test ser, The owlput is generated in terms
ol fuzzy vlass membership valoes.

The proposed [eezy neural network model is capable of
handling input festurss presented in quantieative and/or lin-
guistic form. The components of the input vector may consist,
for instance, of the membership values to the overlapping
paditions of linguistc properties low, medium, and kigh cor-
responding to esch input feature. This creates the possibality
of incorporating linguistic information into the model, if
mecessary, and enhances its robustness in hundling imprecisc
or uncertain input specifications.

The effectiveness of the proposed model is demonstrated
on the speech recognition problem where the classes have
ill-defined, fuzzy boundaries. Compatison is made with the
stancdard Baves' classifier and the conventional Kohonen's net,
and the performance of the proposed model is found to he
quite satisfactory,

Given the burgeoning intersst in fuzzy self-organizing maps
[117-f13], it is worth highlighting the raajor contribution of
the proposed work. Basically, the Kohonen ¢lustering nelwork
is used here as a symbol map. There are phenomena which
arc inherently fuzzy but which are associsted with physical
manifestations that can be characterized guite precisely by
physical megsurements. Clustering or classifying solely on the
basis of these physical measurements is not usefal, however,
because meaningful clusters cun be constructed only with the
assistance of additional factots which cannot be clucidated
directly from these physical measurements, Human Janguage.
probably at all levels but especially in the area of phonology,
is perhaps the best example of such a phenomenon. Thus,
while a listener recognizes o phonerne from physical cues
alone, exactly which phoneme class a particular conflaton
of physical features is assigned to by a listener depends

on factors which are not inherent in these physical feanires
(e.g., the formant values used here), Bt which depend on
physically extrancous factors such as (in particolar but net
limited to) the language the listener assumes is being spoken.
There are also, for many reasons, variabdons among speakers
such as are evident in the data used in this paper. Thus,
pssignment of specch sounds to phonemes yields clusiers
which are fuzzy at the very least in the sense that different
listeners may disagree on what they believe themselves o
be hearing and that different speakers may produce different
physical manifestations of the same phoneme. The essential
properties of phoneme clusters, therefors, must be clucidated
by appeal to essentially psycholinguistic experimentation of
one kind or another, Now, bow can one boild a self-organizing
network which can perform this same classification? Simply
by doing exactly what we have done, which 15 10 replace the
arbitrary cocoding of the abstract portion of the data vectors
with fuzzy class memberships. Note that this viclates Rinmer
and Kohonen's “no information about similaritics betweoen
the items" condition (f14], p. 247), bt it does not matker,
because 8 kind of orthogonality is maintained by the fact that
%, (artribute part) and z, (symbol part) of the data vectors here
are characterized by different “levels” of description (phonetic
and phonemic), The value of this approach is manifested in
calibration (clustering, labeling) and in classification, since
the organized network yields a good fusey clustening of the
neurons after calibration and functions as an effective fozzy
clasgifier. Thuos, whers there is reason to believe that the
elements of x, and =z, relate to each other not so much as
purely arbitrary and purely physical (or at Jeast less arbilrary,
in some sense) but rather as two levels of abstraction, and
where there is regson to believe that at least one of the
levels (the “higher” one) is fuzzy, the fuzafication of the x,
is justifiable and yields excellent results. Atempis at crisp
calibration andfor the wse of purcly arbitrary class labels {as
in the pure Ritter and Kohonen approach, where the labels
(the semantic concepts) are not connected to each other excepl
through the data wectors they label) in such cases will prove
te be fruitless. Note that this does indeed amount to 4 kind
of partial sopervision as we have suggestsd, bur it is an
cxtremely interesting kind of partial supervision in that it
arises fom reasonable assamptions about the nature of human
language ilself {i.e., its mulii-leve]l propertics) and oot directly
from expert intervention (i.e., the learming is guided not by
intelligence but by intoition)!

. KOHONEN'S MEUEAL NETWORK MODEL

The essential constituents of Kohonen's neural network
model are as follows [3], [4], [15]-[17]:

= an amay of neurons receiving coberent inputs and com-
puting 4 simple outpot function,

» a mechanism for comparing the neurenasl outputs to select
the neuron prodocing meaximum oo,

* a local interaction between the selected neuton and its
neighbors,

v an adaptive mechamsm that wpdates the interconnection
weights,
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Consider the self-organizing network miven in Fig, |, Let A
inpul signals be simultaneowusly incident on each of an A& » &
array of neuromy, The cutput of the ith neuron is defined as

mlf) = o |l 2t + S g melf - A8 (1)
kes,
where i the Af-dimensional input vector incident on the
neuron along the connechion weight vector e, b belongs
to the subset S; of newrons having intereonnections with the
ith meuron, wg; denoltes tbe fixed feedback coupling hetwesn
the kth and ith neurans, =[] i3 a suitable sigmoidal output
fungtion, # denotes & discrete dme index and T atands for che
Iranspase.,
If the best match helween vectors my; anid & GCCUTS AF ewron
¢, then we have

[l = mg|| = wmin [|g =], +—01,-- A% (D
1
where ||| indicates the Enclidean norn
The weighl upduting rule is given by [£,13] as
’ . w0 e L1
it+ 1) = i HaE
m;t+ 1) {msﬂ]

m(l] Tord e A

othareise

(3)

whers o(f) is 3 pusitive constant that decays with time and N,
detines a wpological neighborhuod arovnd the maximally re-
sponding neuron o, such that it also decreases with lime. (Note
bl ev(t] is @ partienlar casc of the more pencral Gaussian term
Il 03 116]). Differen) purts of Ihe network become selectively
sensitized to different inputs in an ordered fashion s as
fisrm 4 contimueus map of the signzl space. After a number
nf sweeps through the training data, with weight updating af
each iteration obeving (3}, |be asymptotic valoes of my cause
the cutpmt space o allain proper lopologival ordeting, This

L

is busically 2 variation of wreseperivised learning, The self-
orgamzation using fraiming patterns enables the ordering of the
outpat newrins, These may then be calibraed with the class
information by appiving labeled training parterns at the inpot.
Kehonen's net, has already been spplicd to o phoneme
recopnition problem [15] and i image compression [18].

I PATTERM REPEBSENTATION (K LINCGLISTIC TROMM

In conventionzl statistical or syniactic classitiers, the input
pattcims arc quantitative (exact) in nature. The pattcIns pos-
spssing mprecise or incomplete mput features (say, due W
instrumental grror or noise comeplion) are generally ignonad
or discarded while designing these classifiers. Besides, the cost
of cxiracting the exact valne of a teature may sorctimes he too
high. Tn soch cases 1L may become convenient fu use linguistic
wariables and hedges [1¥] like foay, mediom, high, very, more
o less, etc, w0 describe input featwre informatien,

The proposed (uyey neural network modde] 15 capable of hun-
dling both exact and mexacl forms of the input feamres. Since
it i5 easier to convert exact information into lingwistic form
than vige versa, wo consider the major linguistic propertics
fove, medium, and Righ us input. Any input [esfure valie cun
be described in terms of some combinadon of membership
values for these properties. Hence any imprecise input may
alzo be assigned a set of membership values according to this
comeepl,

Fuzzy

In craditional two-state classifiers [20], [21] an cloment x
cither belongs o docs not belong te o given class A thus, the
wharaclerislic fupchon is cxpressed as

1 ifxed
(2 = { y
pralz) 0 otherwise,

Sety

Inreal-lile problems, however, the classes are often il-defined.
oveflapping, or furzy, and a patieen point may belong to
more than one class: in such situations, fuzzy set-theoretic
technigques [7]- [10] can be very vseful, In a fuzsy conext, the
pallern paint 1, helomging w the universe X, may be assigned
a characteristic function value or erade of membership value
pearm) (b < patm) = b} which represents ils degree of
membership in the fuzzy sel A, This may be represented as

A= {{palz)al}, {4}

7 Memiblership Funclion

The w-function, lying in the tange [0.1], with & & BR" is
defined as [22]

*
2-C1\" R L
J z

TlE e A = (31

?(1 =
2
| _‘2("_’;] for 0 e o = 2
il atherwise
where A = 0 s the radies of the «-function with ¢ as the
central point at which ®i{e;e, A) = 1. This is shown in Fig, 2
for 2 £ B*

A fuzey sct with membership lunclion {6 ) thersfore
Tepresents 4 sel ol peints clustersd around e 1o the proposed
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Fig. 1, w-funcrion when = € R
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Fig. 3. Coexistence strucmare of the eomaptibiline functions for the lingoise

propedtios fow, medism, and high.

model we use the sw-function {in the one-dimensional form) to
asyign membership values for the inpur featores,

Incorporation of the Linguistic Concept

Each input teamre F; (in quantitative and/or linguistic form}
can be expressed in terms of membership values indicating a
degree of belonging wo each of the linguistic propertics fow,
medinm, and Righ, Therefore an n-dimensional patiern X; =
[Fi1s Fig, oo Fin] may be represented as a2 dn-dimensional
[19] vector

X =[ttronoi oy (K b thmdinn 7 (X Bnigrer o[ Xk
-.f-'!'m'gh[ﬂ.__':[_xé-]]- (6

Hence in trying to express an input X; through its lingistic
propertics wo are cffectively dividing the dynamic range of
each feature into theee overlapping purlitions. The ssts low,
mediver, and figh for each feamre are represented by the
n-function {5}. Fig. 3 shows the coexistence structure of the
various compatibility functons (r-functions) for a particular
input feature F.

Choice of Parameters for the m-Funetions: Let Fy - and
Fy .. denote the upper and lower bounds of the dynamic range

of feature F, considering all L pattern points, Then for the

three linguistic properly sets we have

1
P a |
"]'-rrwmu:m{f';] = ;I:f'.'m.-.x - PJ‘;iu k)

Cruedivmn(d ;] = Fimm — Amedium(F) {7
Aowlen = mi‘#nedwm{f}] )

Mo Fil = Emedinm{F;) T 0.5= }'!PI-I'-'[I':|:' {S}
Aighir = —I—'r ey Em:-.r:'{m[F:"l
b fdemom * o

ChighlFyl = Cmedsurn (5,1 F 0.5 = -}-rny.'.-[F‘_;‘.\ i

where 0.5 < fdemom < 1.0 48 a parameter controlling the
exlent. of overlapping.

Unlike in [19], this combination of chedces for the A's and
'8 ensures thit cach quantitative inpul leakure value =) along
the jth axis for pattern X is assipned membership value
combinations in the corresponding 3-dimensional lingoistdc
space of (A) in such a way that at least one of j,l-g.:.w[j-'-i__l}(x{}.
HmeadiumiFy) I:XJ O MhighiF..) I:_X-‘] is grealer than {1.5. This
enables a more campact and meaningful representation of each
pattern point i terms of its linguishc propertics and cnsures
better handling both during the training and testing phases of
the proposed neural network model.

1V, INCORPORATION OF CLASS [NFORMATION
v INpUT VECTOR DURING TRAIMING

The input 1o the proposed neoral network model consists of
two portions. In addition to the linguistc proportics discussed
in Section I, there is also some contextual infurmation [14]
regarding the fuzzy class membership [71 of each pattern uzed
s lraining Jdate durieg self-organization of the network.

[n the traditional Kohonen's net model [3], {4], the input
vector consists of guantitative information only reganhng the
patterns. Generally the training pullerns used during self-
crganization are also used later for calibrating the output space.
This refers to a kand labeling of the outpul newron by the
patiemn class comesponding to 2 training pattern for which
it eliwils the masimom response. A gualitative measure of
the topological ordering of the output space may he abiained
from calibradon. Mote that during self-orgamization the model
clusters the training patierns, wheteas during calibration it
labels these Cluslers with some additional class information, So
the training phase is completely unsupervised while calibration
is now Then, we coutd add a testing phase o obtain a hard
classification of & set of test Jata by assigning 2 membership
value of 1 o only thal class corresponding, to the pantition of
the neuron {labeled during calibration) cliciting the maxitmum
rEsponse.

In many real-lile problems, the data are generally ill-defines]
with ovetlapping or furzy class boundaries, Bach patiern
used in training may posscss finile membership in more than
one class, To model such data, it ofien becomes necessary
to ineurporate seme conlextual information regarding cluss
membeership as part of the input vector, However during self-
organization this part of the input veclor is assigned a lower
weight so that the linguistic properties doeminate in determining
the crdering of the velpul. space. During calibraton we use
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the contestuwal class membentip information part of the input
veelar (n erisp form as i CL5R only for determining the hand
lebeling of the vuipul space, A scparate fuzey partitioning
thar allowes scupe Tor prinducing overlapping closters s also
mtrochoced, It has been observed that the inclusion ol This
conlexiual class membership informacion preduces more ef-
ficient self-orpanization aml is neecssary in handling fuzzy
ar imprecize data. This is perhaps because in addinoen o
the associsted higher input space dimensionalily, some sorl
al purtial supervision is used bere instead of the completely
unsupervised functioning of the more conventional Kohonen's
izl

While the tradivienal Eohonen's model was used for clos-
tering purpozes. the proposed mudel has been extended o
Functiom as g fueey clagsificr, Lo, a3 a mechanism for assigninge
input vecters e knosen ool classes, Woe use partial superad
gion im the form of assigning a lower weiphs b contestual class
rnernhership informalivn durdng self-organizacion. We alse use
a teating phase to evaluale the neeognition performanee of the
calirated nourons on a separite sel ol est data.

Clivsy Membersfln gy Contextual fnfavmanion

The patiern X; is considered 1o be presented a: g coneate-
nzrion of the lingwistic properties in (6 and the conlexiual
information regarding class membership. Let the inpuot vector
bar expressed ay

w=lz 2 =07 - =T (1
where £ contains the FHnguistic information in the -
dimensional space of (6) and 27 covers the class membership
imlvrrrmedion in an -dimensional space for an -ckass problem
domain. 5o the inpud vector x Ties inoan (34 D -dimensienal
spece. Both 2" and =" are expressed s membershipe values,
The representation of = has been discussed in Section [IL
Hore we consider the definiton of 27,

Wietglored eliveance: Lo the w-dimensional veetors £3 gl
¥y denote the mean and sandard deviation egspectively of
the maining data (uscd ducing sclf-organization) for the &ch
class, The weighled distaoce of o muining pailem X; =
Foy Fo-oo B |V from the fh class s defined as

“
=
=
=
5
SR,
!
-
=
7=
|

b

where: £;; s the value of the jth component of the &h patiem
mevint X The weighi 1. i wsed e Lk care of the varance
of the classes so that a feature with higher variance has less
wsigtht (sigmificanee] in characterizing o class, Note that when
all the feature values ol a class are the same, then the stangdard
deviation will be zero, In that case, we consider vy, = 1 such
that the waeighting coelMeient beeomes one, This 35 obvious
hecause any lzature covumring with dentical magmnitudes in all
members of a raining sel is certainly an Grgortans Teature off
the set and hence its contribution to the membership function
should not b reduced [7], [23]

Membership Funcriom: The membership of the ith parten
to clazs O 13 defined as 7]

el K= (1z)

where ;. is the weighted distance froim (117 and the positive
constants fyoand £, are the denominational and exponential
fueey senerators |71, [24] conmolling the amount ol Twecness
in this cluss-membership sel, Obviowsly el X0 les in he
imberval [0.17. Here (127 1 such that the higher the distance aof
a pattern from 4 class, the lower 13 ity membership value w
that clazs, 1t i to be noted that when the distonee s ceme, the
membership value is one (maximum) and when the distance
i nAnite, the membership value 15 fero (minimem),

It should be mentioncd that as the training data have fuzey
class separation, & pattern point X, may comespond o one
or move clusses inthe input foature space. So & pattern point
belonging to e classes (sav, Of%, and %) cencsponds o
two feved labels in che training daca, with X tagged to classes
(e, and . respactively. In other words, there are two oo
e pecurrences of point X in the fraining set soch that
stmmelirmnes QL is ygged o class Oy, oand sometimes te class
e Tocthis case X, is nsed in computing £, Oy, ¥y, and
V., only, Here the {-dimensional vector o0 X0 has only lwa
NON-ZETH compoenents correspomding fo zp, and s, However
in the hand cuse X comespomds o enly one hand Tabel in the
training dats, say Ch,such thal X s used o computing g
und Vo only, Note that [ X0 has { non-sera components
m the fuzziest case and only one non-rero component in the
harnd cuse,

Fuzoy Medifier: In the fuzziest case, wo may use the (ueey
modifier [NT to enhance corerasi in class membership [7].
We have

(X1
el X

for 0 < pei X, ) = 003

otherwise.
(13

This is neetied o increase the contrast within class membership
vitlues, Le, L decrease the ambiguity in making a decision

Appiving the Membervhip Concepd: For the $th pattern we
alexhing

¥ el
D I TR tP. SRR T e X
Pl in the fuzzicsr case
. A i
L [.l'-"l =._X$]: B |.X.-_]]
iherwise

{14)

where i1 = s = 1 is the scaling factor, To ensure thal the
norm of the linguistic part 27 predominates over that of the
class membership part =" in {10 doring self-organizalion, we
Chimpse & < 45

Woke thy| unlike the mode] in |14, we define the pat 2 of
the input veelor & in terms of membership fanctions that attain
values in the interval (0011 and provide a measme of belonging
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to the corresponding fuzzy set During self-orpanization we
allow partial supervision involving s{< (L5) times the class
memberstiup informeation, such that thay knowledye may also be
incorpotated into the contlection weight values, Thiz enables
a training pattern with membership, say, 0.9 in class Oy, to
be mapped perhaps to a neuron that is not the same as that to
which another wraining pattern with membership, sav, 0.5 W
class Oy, ow, say, 0.5 b0 class O, is mapped,

Mudification of fnpel Puring Colifration

Dhing calibration of the output space the input vector
chosen is z = [0, 7], where " is given by (14) such that

1 ifg=k

#“{Xij = {l} otherwise

{15)
for ke {1,---,i} aod 5 = 1, The N7 neuron oulpuls v are
calibrated w.r.L the | classes. Here the class information of the
training patterns is piven foll weight while the input feahre
information is suppressed. The primary objective of this stage
is to label ¢ach nevron by the class (pantition) for which it
glicits the maximom response, The resulting hand (labeled)
partitioning of the output space may be nsed to qualitatively
assess the topological ordering of the pattern classes wort
the tnpot featore spaee, MNote that while 2 containg class
membership information during self-organization, we use bi-
nary ' at the input during calibration. We also introduce a
Juzzy partitioning of the output space by labeling the outpul
neurons with the fozzy membership values of their outpot
responses. This helps generate overlapping partitions of the
output space which are thereby closer to the input feature space
representation in case of tuzey data. This coneept is explained
in detail in Section ¥-C.

Let us consider the following sitmation. A pattern having
class memberships of, say, 0.52 to class C%, and 048 o
class C%, may be mapped 10 o netron 4 {sliciting maxinum
response) that is calibrated as belonging to the herd partiticn
of class C,. However we should note that the lower yet
wignificanl membership of this patlern o class €y, ought not
be ignored. Herein lies the wtility of the fuzzy partitioning. By
this, the particular neuron § may be calibrated as belonging to
both the classes £, and Cf, , atbeit with different membership
valuas,

It should be noted that the traditional Kohonen®s net model
uses unsupervised leaming during self-organizaticn. Tuming
calibration, the training pattermns or some reference vectors
{in caxe of known sumples) ure used Tor the rerd labeling of
the neorons. This provides some insight into the topological
ordering of the output space thus pamtidoned, In the semanlic
mups [14], on the other hand, the class information is used
in this stage to penerate the hord labeling of the partitions
during catibration. We introduce a separate testing phase where
a different set of fuzzy test patterns (kept aside from the
original data set while mandomly selecting the training set
for self-oeganization) are classified osing the input featre
information of the test vector along with the above-mentioned
fuzzy partitioning information. This procedur: is explained in
detail in Section V-II,
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Fig. 4. Topological r-neighborhoods [1] . as festure maps are formed.

The neighbathood starts large and slowly decresses in size over dme fram
r=3mr =1

V. FUZZY EXTENSION TO KOHONEN'S ALGORITHM

Consider an [3r4-{}-dimensicomal input space with the input
veclor x = [n:’,ﬂ:”]:E of (100 being incident simulianeously on
the N x N aray of neurons.

Concept of r-Neighborhood: Bach newron »(il, j7) has a
topological r-neighborhood N(i, §7), as depicwed in Fig. 4,
whese 4, 4§ denote the row and column numbers respectively
of the neuron. We have

(it j) = {wlu,v)| max {|u — &, [v — jj[} = r}

1< SN (16)

where v = 0,1, - -, 3. Mowe thai the indices 42 and j7 will be
ommitted in future reference to avoid clutter,

Chutpiet of & Newron: The output of the ith reoron is com-
puted using (1), with the subset %; of neurons being defined
as its r-neighborhood V.. We choose

[0 ifg<D
a(g) = { g otherwise, a7
This transformation ensures that o{g) > 0. We also use
b forr=1
wk;={—% for r =% (13}
] otherwise.

Here b is the mutual interaction weight for the lateral coupling
Why.

Weight Updating
Initially the components of the sy's are set to small random
values lying in the range [0,005], Let the best match berween
vectors m; and £, selocled using (2), oceur at neuron <, Using
{3}, the weight updating expression may be staled s
mi(#) + bos - (2(2) — ()}
mit+1) = forie N,.,r=0,1,---,3
myit) otherwise
{19

where N, defines a r-neighborhood by (16) around ncuron
¢ such that v devreases with time. Here the pain Factor fuy
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is considered ta be bell-shuped like the w-function, such that
[fi| 15 the largest when ¢ = r and gradually decreases to zero
with increasing distance from e Besides, |hy| also decays
with fime.

i Factor: We define

i1 =r+ f)
[+ (s Y]

whore nt is the number of sweeps already made through the
entire set of training samples at any poinl. ol time, edenom
8 a2 positive constant {scaling factor) soitably chosen and
0« f < 1 The decay of |k with fime is conmolled by
nf, The slowly decreasing radins of the bell-shaped funclion
fqi anl the corresponding change in k| are controlled by the
parameters v and f, Due (o the process of selt-orpanization,
the randorly chosen indtial wa's gradoally attain new values
according to (2}, (19) such that the oupul spagc acquires
appropriate topological ordering.

fog = (200}

Index of TNsorder

An index of disorder 72 may be defined o provide & measurc
of this ordering. Let msd denote the mean square distines
between the input vector and the weight vectors in the »-
neighborhood of neuron ¢, We define (21) [sce top of pagc)
where |[trainset: refers to the nuinber ol inpul patlem vectors
in the fraining sct. This definition ensures thar neurons aearer
it [srmgller ) contribute more to msd than those farther away.
Also

1/4, D€ =3 for nent =1
13, 0<r<2 fornent =2
12, D<= r=<| otherwise.

f= (22}

Here || denoles the mumber of neuwrons in the -

neighborhood of neuron ¢ such that |¥] < 8 |Nz| < 16

and |4y < 24 depending upon the position of & in the

Lwo-dimensional array. Note that N implies newron ¢ itself.
The expression lor the index of disorder is given as

0 = madint — kn) — mad{nt) {23}
where msd(nt) denotes the mewsn square distance by (217 at
the cnd of the nith sweep through the training seL and ko is
u suitable positive inteper such that I is calculated relative to
an interval of £ sweeps. Imivally went is sct to 1, Then

i) e @
otherwise

suemnd 4|

Tl = {
newd

{24}
whene 0 < & < 0001, The process is terminated when
nesel = 4, s that in (23) we wlways have ¢ > 1. For
good self-organization, the valwe of wsd and herelore £F
should pradueally decrease. [t should be noted that the + amd
F parameters of (200 are determined by (22) and thos depend

it the yeemet parameter; nent, intum, is isclf determined by
(24} and thus depends on 12,

Parsitioning During Calibration

During calibration the input vector @ = [0, 2"] of (100 is
applied 1o the neural network. Let the {11],th neuron gencrate
the highest output e, o class (7p. We deline a membership
vabue for the output of newron ¢ when calibrated for class
simiply as

el = Biy fori=1, . 8% and k=1, ..
T

{23}

such that 0 < pelegd < 1and gl = 1 for d = {1,

Each ncuron ¢ may be marked by the output class .
among all { classes, that elicits the maximyl response w,,, This
generates a hard partitiening of the ouiput space and is used
in the more conventional model [14]. ’

Fruzry Partiionire: Cm the other hand, cach newron ¢ has
a finike membership () to class €0 by (25). We may
generate the crisp oundaries for e fuzzy partitioning of the
oweput space by considering for each of the I classcs the o
cul set {9]pee () = o}, 0 < o <1, where o % a soitably
choser value. This is done solely for the ease of depiction
of the vadoeus partitions in the output space. Note that the
generalion ol overlupping Mweey patitions [or the Tuoy inpol
data demonsoraes the utility of the process.

An ordered and unbroken map of the ourput space indicates
good self-urganization and henee growping of the patlerns
gecorling 1o similarity, In cases where the data are fursy
and overlapping classes exisl, The hand partitioning contains
apparent diserder andfor discontinuity: the incorporation of the
fuery membership concept alleviates this problern. The utifily
af the lurey approach may be appreciated by censidering a
point lving in a region of overlapping classes in the feature
space. Tnsuch cases ils membership o each of these classes
may be nealy equal, and to follow the hard approach of
celibrating relative only o the ncuron for which the poimt
clicits the maximum response is to ignore g significynt property
o the data.

Testiry Phase

After sclf oreanizaton, the proposed mesde] encides ll in-
pul daty inforrnation distibuoied among (s conpecrion weights.
The class membership of the training patterns is alse frarned
due to the partial supervisicn wsed in tbul stage. Turiog
culibralion, the newnens are lobeled By the pattern classes dnd
the corresponding membership values are assigned, This is the
desired fuzzy classifier. In the final stage. a4 sepanute sel of lesl
patterns 1y supplied as input W the newral network mode] and
s performance svaluated.

During this phase input test vectors & — &' 1]7, consisting
of anly the lingaistic information in the Jn-dimensional space



ko IEEE TRANSACTIONS UM SYETEMSE, MAN, AND CYBEENETLCE, VOL. 24, NO. 3, MARCH 1594

defined by (&), is applied to the network, Let the plth and
F2th newrons gencrate the highest and second highest outputs
7f, and m,, respectively, for tost pattern p. Farchermore,
let g, {mp, ) and pag (7, ) be the highest and second
highest output membership values generated during testing,
with respect to classes % and (%, respectively. It is to be
noted that k) = &z for both choices for pattern points not lying
in regions of overlapping classes and there is no ambiguity of
decision im such cases. We define

tiey (7p, ) = g (1p1)

1
= —pwa{Tpe) * T, {26}
05

and k]_ = k1, k&g = ﬁlz it Ir!.k'_l::rj'?]_:]

foses (Fapm }

= ﬁ“‘ﬁ?[’pr} * M,

Oherwise,
1
ttey (M) = o fhazltipa) * e,
$heg (Mo ) = st {7t } (27}
such that f; = &2 and &; = k1. Here k1 and %2 refer to

the putput chasses (hard partitions) €, and Clp that elicited
maximal sirength responses ut the plth and p2th neurons
respectively during calibration. Oy, and Oy, are dependent
both on the actval dutput responses during testing and the
membership valugs evaluated during calibration w.r.t. classcs
Cht and Oz, The membership values on the right-hand side
of (26}, (27) are defined as

\.P Lhgy
LF

from (25), where 57, and 1), are obtuined duting cali-
bration for class Cy;. Hence pattern p may be classified as
belonging to class Cy, with membership e, (ny,.,. ) Lying in
the inderval [0,1], wsing the first choice and to class O, with
membership px, (1, | using e second chofce, B is to bhe
noted that classes &y, and O, are determined from classes
%1 and Cgo by (26, (27). A confusion matriz [7] may be
generated to evaluate the performance of this fuezy classifier
on the set of test patterns.

It is worth noting that if we consider the calibrated mem-
hership values insizad of the calibratcd stength values on
the r.h.s, of (28) for substilution into (263, (27}, then we get
membership-based recognition instead of the strenpth-based
recognition scheme just described.

Mewun Square Distance for Test Set:
tance for test patterns is defined as

1
[testaet| z

Peteatsct

#ialyp1) = {28)

The mean sguare dis-

wady =

where |festset| comesponds o the number of pattern veclors
used during testing, and my,; consists of the first 3n compo-
nents only of the weight vector of the neuron pl generating
the highest cutput response ry, for test pattern p. This is a
measure of the amount of mismatch betweaen the two veclors
while classifying pattern p. The factor —+— is used to make
the value of msdy comparable to that of mad of (21).

VI IMPLEMENTATION AND RESULTS

The meural petwork deseribed in the previous secticns
was tested using a set of 871 Indian Telugu vowcl sounds
collected by traincd persomnel [24]. These were whicred in
g Consonant-Yowel-Consonanl context by three 3035 year
old male speakers. The simuladon was in C on a VAX-R650
computer. Figure 5 shows the feature space of six vowel
classes {8,2,i,0,6,0) in the F} — F; planc (for ease of
depiction); the actusl data set has three features £, Fp, und
£ vomesponding (o the first, second, and thivd vowel formant
frequencies obtained theough spectrum analysis of the speech
data, The dimension of the input vector is 15, Note that the
boundaries of the classes in the given data sel are seen o be
il-defined, overdapping, and fuzzy,

The model has been tested for two-dimcnsional networks
with varying numbers of neurons. Duning sell-organization,
different siwes of training sets have heen used by randomly
choosing pere % samples from each represensative vowel
class. The remaining (100 — pere) % samples from the origingl
daty st were used as the test set in cach case, We selected
Jdenom = 08 in ()9, 1y =5 and F, = Lin {12), x = 0.2
it {143, & = 0.2 in (18) and & = 0,001 in (24) after several
experimerts.

Chtput Map

After self-orpanization and calibration the resulting output
map is plotted using both hard and fuzzy partitioning, In Figs,
6 snd 7, (a) comesponds to the hard partitioning obained by
mapping each neuron i the vowel class to which it is most
sensitive. The class nwwber & (1 for &, 2 for a, 3 for 4, 4 for
#t, 3 for &, & for o) marks the neuron elicitng the roaximum
respomse 7y, for thet class € while the neighboring dot
indicates the nearon generating the second highest response.
Paits (b}-(d) of the same figures indicate the boundaries
for the fuzzy partiioning of the output space by (25) fur
the threc pairs (chosen to render the displays as clear as
possible) of the six classes using o' = 0.1 It is to be
noted that the topological crdering of the vowel clusses in the
twi-dimensional ouiput space (considering fuzzy partitioning)
bears much similarity, including the amount of overlapping,
to the original Fig. 5 in the two-dimensional feature space.
The wse of fuzzy partitioning iz found to help in faithilolly
preserving the mupping of fuecy or overlapping pattern classes.

Figore 6 shows the ouipot map generated for an 10 x 10
array of peurons with pers = 13, The hand partitioning
ilhstrates one discontineons mapping for class 3. However the
ineorporation of fuzey partitioming alleviales this problem and
we fing overlapping belween classes 1.2 1,5, 2,5; 2,6, 3,5, 4.5;
4.6; and 5.6, Thiz compares favombly with the overlapping
observed in the feature space of Fig. 5. It is to be noted that,
onlike in Tig. 5, the classes 3 and 4 are seen to be adjacent in
(a) here. This js becanse there exist no pattern paints belwesn
these two classes in the input feature space and in this sense
they may be termed adiacens,

Figure 7 shows the ougput for the corventional Kohonen's
net model {vsing the same parameters as in Fig, 6) with
a8 = 0 in (14) but also incorporating the furzy parlitioning
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concept as cxtension. The inpwt featne information part
aof (107 iz in the fueey lingoistic form of (6) for cuse of
comparison with the proposed model while demonsiraling the
ulilicy of the inclusion of the cenlesioal class membership
pat £ in the input vector. Wote the discontinuitics among the
hard partitions For clusses | oand 3, We also ohserve incormect
topolepical ordering of the voeel classes (as compared oo Fig.
3) In (ah, contrary o the desired situation, the partitions for
classes 25 and 3.6 are adjacent, while classes 26 and 4.5
are sepuraled, Furthermore, the neurens eliciiing the bighest
amd second highest responses have been observed to lie in
the wrong celibrated Aard partitions for classes 3 and 4, This
has an adverse cffcet on the recoenition perfommoanee over the

test set by (26)-(283. The use of fuzey patitioning introduces
discontinuities for class & in (d) while eliminating the preblems
for classes 1 and 3 in (h). However classes 1.3 und 2,4 are
found to be adjacent in {b) and ¢c). wnlike the caze in Fig.
5. A comparison of Figs, 6 anid 7 should make apparcnt the
value ol meoeporating contextual infermation inta the newral
nctwork.

Performerece on Test Sel

Az & fimal stop. 4 scpare se1 ol wsl patterns was applied to
the mode] under consideration and its perfermanee cvalualed,
In Tigs. B=10. [a} plows the percentage correct classilication
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while (b} shows the vanation of the mean square distance
rrad, of (291 along the ondinate. Tn (a), the class mimbers (k =
1,---,6) indicate the class-wise comect classification of the
test set. The variables £ and m comespond to the overall correct
classification of the entire test set using the strength-bascd
recognition by (26}, (27}, and the related membership-based
recognition schemes, respectively.

Figure % illustrates the effect of varving the size of the
network, The 10 x 10 array is observed to give hest recog-
nition tates in (a). A smaller size of the network is scen to
be incapable of handling all the information required while
a larger size may result in poor performance over the test

sel. However the msd; curve in (b} demonstrates that the
8 x B ammuy resulis in a moch poorer topological ordering as
compared to the other two network sizes while the 12 x 12
array yields a stighily lower value of muad, s compared to the
10 x 10 network.

Figure 9 demonstrates the effect of using the index of
digorder D of (213424) to controdl the number of sweeps
through the tradning samples during self-organization. This is
marked as “usual ferations” (ie., conrolled iteration count)
on the shecissa of the figure. In the traditional Kohonen's
medel, the network goer through a larger number of sweeps,
The effect of using 200 iteratdons without considering the
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imfluence of £} ix also plaiedd. The proposed mode] i Tound w
vield an improved perlormance (with only 90 derations) over
the more conventiong] design.

In Fig. 10 we compare berwesn (i} the proposed madel
{myrked “usual™ along the abscissa), Gi the “heed version
using a orfsp linguistic representation for the input veetor
with & = b and (iii) the “argingl” Kohonen's modi] with
4 = 0 in (14} bot using luecy Bpgoistic represcntation for
the mput wector along with the [uzey purlitioning concept s
an extension. The differen. leatures of these models are listed
in Fig. 11, In the hard model. the input feature information
part in the Jr-dimensicnal space is assizned cosp valoes such
thal comesponding (o a pattern X, along the b oagis, we
L‘]dl‘l‘l'p the J'.Li.ghESt af ,u,r,.,.,._.,-;.-f.;;[.x,-], H.I.,_,..I.h_.,,.:,:,;-:::_l"x.;_:, unil
Bhignisy b ) of (03 to 1 while the remaining two sre kept
clamped at 4. The gain Factor A from (200 15 not bell-shaped
and it5 feord wersion is defined us b — LS :1 + 'LF.I.:;EHT ]):.
The cantexlual class inlormation, thowgh present, is oot in the
form of graded membership values but @3 cxpressed in crisp
termis piving a membership of 1 to ouly ons class. The origingl
model (methmd (i} i osed with the dn-dimensional fozzy
linguistic represcntation for the input feature informmeation and
the Bell-shaped gain factor by of (200

Wote that the hard model is seen o have the worst reeng-
mition rate, while the proposed mosdel viclds the best overall
classificarion elficiency. Tnelusion of fuzey conceprs (as in

tronduced in methods iy and (G0 98 found te enhance the
perfurmance wrl. the hgrd version (methed {301), On rhe
other hand, the incorporation of class information with & = 1
erihles the proposed model (method (1)) to score over the more
conventional orieisal version (method (i), This nnderscores
the wmility of involving fuzzy concepts in conjunction with
partial class membership information in the proposed model.

It is obsorved that the wisd, curve in {b) cxhibits beteer
resuliant epoicgical ordering for the ard version as compared
bor the riginad model. This is In contrase to the findings for the
recognition rae (50 i Gapof the figure where il 15 s2en 1o have
pewrer performance. We should note that (e ford $emsion oses
pariiz] supervision x> 07 although with erfsp inpal, oo
andl puritioning, This contosiual class information genenies
g better ordenng of the o spuce (along with 8 lower
wad, valee) although the recognidon rare is poorer due to
the herd represcotation vsed, However the proposed model
has a superior performance w5t both the recognition raw and
#esdy, 48 It incorporates both fuzziness and partial supervision.

‘lable [ compares the recognicion score (on lest ety of the
proposed neural pet model o thae of the Baves® classifier [20],
{21 | and the standard Mully sopervised fozzy approach | 24]. We
have wsed the Baves™ clussilier for muolovaniae normal patterns
with the & prior probabilities g — F‘;—' where |7 indicates
the number of patreris in class O and & s the vetal nomber of
pattern points, The dispersion matrices are different for each
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TABLE 1
CordPaRrISoM oF RECOONTTION SoomE (%1 Brrween Bayns®
CLASSIFTLR, TR0 SUPFRVISED: FIwsy CLARSISIER, AND THL
Propnsil MEURAL MET Mone. wiTh perc = 10, Keukao
MErwWORK 15 OF Sas 10 = 10 Wi edstom = 20

Pelaxcles] Il Class [Iofurmalion Criin Clutpaul
Friture Scaie Factar Membership Fictor  Parition-
Intormu- ity
tion
Propused  lugey 5 =7 lor calibralion  fozzy hell- luezy
(o) limgistic O3 = s = for shaped
selt-culibrution
Hard crisp & =1 for calibration  crigp pitlse fuzmy
Linguastic b4 = 4 = 0 for
sell-calitwsation
Uil lweey rij nit el Pty
limppusstic shaped

Fie. Ll. The different feamres of the three models, wz., proposed (uguad),
the lard vorsien. and the sripdeal Kohonen's network.

punern glass, The ovemall performancs: ol the proposed misdel
is found oo be quite satisfactory. It is to be noted that the Bayes
classifier is the best that is theorctically possible and neural
ncts should not do better, A good statistical classifier. huwever,
requires a lod of sequential computalion amd a large sumber of
reference vecoors, The value of the proposed approach resides
in the face that a neurad nerwork is massively paralle] and can
generalize well with a smaller set of training patterns.

As a mle, test pattems are misclassified by che network
anly it one of the neighbonng classes in the vowel triangle
{Fig. 5). The correct classificarion rate for an 10 x 10 network
considering both che first and sccond chotces by (26027} is
illusirated in Table I1. The confusion matms {or this particular
sel of parameters, a5 shown in Table 11, also suppores this
claim.

Class Baycs Classifier  Stamdard Fuzey  Proposed Neral
Clussilier __ Model
fi] 44,6 514 1341
[} Lx ] B1.7 or3
i 5.9 TE.I} 4.8
o BR.4 Ler] TL5
EZ.8 T BE.7
o 717 788 926
Ol 704 734 79
TABLE 1L
HEYMANITHIN Scomk (560 witd cdenem = Bl
KD pere = 10 pok A 10 x 100 KerwdRE
Cluss First choice Second choies Mt scurs
i 538 T3 515
a 6.4 1o 47.5
i T3 ER B3z
u 6.0 132 .0
& 647 230 AT.T
o o), | 1.9 Oz
Dwerall T35 1.2 .7

In Table IV we counpare the performance of the proposed
model for various choices of the parametars + and f osed
in the computation of the pain factor f.,; of {20). Model A
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vefers to the case whene [ = L in (227 Tor all values of reend.

Although both |h,| dnd + decey with time. this comstitutes
n slight varmahon of the proposed meural net masdel £ (due
fo the constant value of . Nelwork B ouses 110 = < 3
and | = ;; for all values ol st i {220 Noe thal here
ooly |fes| decays with time by (200 while its radios remains
comstant, In mede] © the wnn {1 — v = F) §s eliminaed from
the nurierator of {20} and the nubos (0 < ¢ < 31 of the
guith function is kept constant {as in &), Here the fenctien
decs 15 no longer bedl-shoped and only [k decavs with time,
The significance of the proposed gain Factor in model 0.
where hoth |f,. ] and v decay with time, is obviows from the
results.

Table ¥ illustrates a compatison in the performance on the
testl sel (using Orst chodeed of the proposcd model with the
mewe canventional Kohonen™s mindel (wiith fuezy liagaistic
leature information =" of (61, (103 only at the inputh For various
sizes of training daga set peec, This 5 10 Jdemonsirae the
necessity of incorporating the contextual class membership
infovmation =" into the input of the proposed wetwork for
modeling fuzzy data. We observe that the proposed model has
d SUPCOOr Iceognition score cotrparcd (0 163 more conventional
countcrpart, Mok that sn incredsc in the size of the trmning ket
Cabunilance of slirnbute datn) Ter the veclory wnder anualysis Bus
no appreciable impact on the performance of the conventional
model. Om the other hand. the incorporation of the contexiual
class membership information, with 2 = 0, scems 10 boost
the efficicncy of the proposcd model (with wlentical paramelgr
values) in clissifyine the sume Luzey data. This lecther demon-
sratzs the wility of wang class membership mformation m the
Iputr vector.

Tn Tuble ¥ we demonstrate the effect (on the recogni-
tiem elliciency) ol using varions numbers of input alribaies
(dimensionsd an the standard Kohonen's net (with fuzzy lin-

TABLE ¥
Craaramsns oF RECONTIE S00R0 (50 Belweey Prarcsen Neuras NeT
Bimn anr e CrevENTIORAL KOHOSERN S NET Lo W akious Seey o
TRAMING SET prerve: VSIS 10 % 10 NETwosts AREAY WITH cofervorn = 100

Maoddel  Loaventiomal Kohenen's Ne I'ripuged Newral Mel
pare 10 20 an_ 40w 100 20 Bl Al Rl
A dRn 44 392 TTIOOEDS 4T 431 430 A13 412
a WS 652 W4 AnT D0 o 57 476 0 3
i e 264 317 365 ME ME TRY 5RO TEY 613
W ITR o adb4 QN 305 35 a9 72T 400 3RS 4RE
o A3 BAT OTaa TR TRE O M0 T2l Wi EALD uKD
o GhH THR O5TY 490 9zl M4 A2E B2 U955 430
Ahverall 503 598 332 553 65 T3S GH 604 6RO TL
TARLE ¥T

Conaparizom oF RECOGHMON SuoRe (%) Bureiey Prososes
EURAL NE Mo ave mHE COsvENTIONAL FUHOHEN S
MNLT FRR VaARKLE MUABRE UF INPUT AUTRIHUTEY USING
1] = 1] METWORE ARRSY WITH cdeione = LK) ane pere

_ _Madd  Coogventional Kohenen's el Fropased Meuril Net
foput Vewur Ty linguisue Teawres fuzzy linguistie foarres
Componsnts with x — il wilh 03 = a =10

Linnitenilon i L . | |« _
] LREY 523 100 47.7
I thi 3 on ] T
L LG [ 5.6 744
] i 713 [1.5% e
3 343 5 1.0 04
o S 075 110 G4
__ Urperall SIS fif.4 L84 TLE

guistic input Gealure inlormalion as an extension) and compae
wilth the proposcd model osing contextual class mmembershin
information st the input. A very high inpul feature space
dimensionalily with loo many attributes is found to hinder
the cficiency of the conventional network, Parmtioping the
primary linguistic propertics amonyg low, medinum, and fiph
vields nine artmbuies for 1he given data ser lncorporation
of the hedpe very (for each of the three linguistic wrms)
wields 14 attributes while further addition of the hedpe more
or less Ioads o 27 attobwes Tor the convestiona! medel,
The latter version is seen to be incapable of classifving the
given paltern sct. Mote that the ingorporation af the contexmal
class membeorship infomalien (with 5 = 1) in the proposed
model resulis in the best performance, both overall and cluss-
wise,

WIL ComCLUSIONS aNTy DISCUSSTON

A peural oelwork moedel based on oself oresnization and
capuble of pectorming fuzzy classification was presented.
Rasicallv, the Kohonen clustering network 15 used here as a
semantic map. The algorthm passed through twe stages, viz
self—orgunizalion aad testing. The model Bad the Pesibility of
wecepting linguistic input and could provide outpur decision
in terms of membership values. The input vector incorpurated
partizl class membership information during sclf-orzandzation.
An index of disomler was used to delermine 2 measure of
the prdering of the output space and conwol the mumber of
sweeps required in the process, Unlike Kohonen's conven-
ticnal model, the proposed net was capable of producing furey
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partitioning of the output space and could therchy provide
a more faithful representation for ill-defined or fuzzy data
with overlapping classes. Incorporation of fozziness in the
input and output of the proposed model was seen to result
in better performance as compared to the original Kohonen's
mmixdel and the hard version. The problem of vowel recognition
was used o demonstrale the efectiveness of the proposed
mnsdel for various network attay sizes, trining sefs and gamn
[actors,

Tt shaowld be noled that only three linguistic propertics low,
medium, and kigh were used here. Tneprporation of additional
input feature informarion in the form of fuzzy hedges like more
or less, very, nearly, ctc., may improve the performance of
the progased miodel, due o the esulting more detsiled input
description, but then the cost of nodes and interconnections
would also increase.

Representation of imput in termes of =-5es fow, medim,
and high also cnables the system to accept imprecisafvague
lentures #) in various forms, namely, F; is aboat 500, &} is
between 400 and 500, F; is low, medium, very low, more
or less YWow or F; s missing etc. In these cases F; needs
to be transformed inte 3-ditnensional vector consisting of
membership values comesponding to the primary properties
fow, medium, and high. A convenient hevdstic method for the
determination of these membership values may be found in
[1a].

MNeural net performance in {wezy classification of the speech
data was found to compare Favorably with that of the Bayes'
classifier trained on the same data. Tn the mode] described here,
tassively parallel interconnection links with simple process-
ing elementy {neurony) permoit the comoputational complexity
of standard statistical techniques o be ayvoided. Thereforc
with the necessary parallel hardwars backing the proposed
model should be able to perform mwch faster and hence more
efficiently.

It has been observed that a critice! sizge of the network was
required for satisfactory performance. The fact that a larger
size resulted in poorer recognition of the tost patterns was
favorable in the sense that more newrons would lead o an
ingreased cost

ACENCOWLEDGMENT

The authorms pratefully acknowledge the referec for his
elaborale consiruciive criticism, Prof, D, Durta Majumder for
hiz incevest in this work, Mr. 5, Chakeaborty for drawing
the diagrams and Mr. A Chosh for typing the final version.
My, 5 Mitma is grateful o the CSIR for providing her
financial assistance in the form of a fellowship. A part of
the work was completed while Prof. 5. K. Pal held an
NRC-NASA Senior Research Award at the Jobmson Space
Center, Houston, ’

REFERENCES

[1] E. k. Lippnanmm, “An introductam o computing with peurel oecs,” IEEE
Aggugtics, Speech and Fignad Processing, vol. 61, pp 4—22, 1947,

[2] Dn E. Rumelhart and J. L. MoClellardd, ofs., Porallel Disseibuned
Processing, vol. 1. Cambridgae, Ma: MIT. 1986,

(3] T. Xobonen, "An introduction in neutal wdnputiog,” Nearal Nepvarks,
vol. 1, pp. 3-16, 1948, )

[4] T. Kohonen, Seff-Organizsion and Assoclative Memory, Berlin
Sprinper-Yerag, 1939,

(4] T.C. Bexdek and 8. K, Pal, cds.. Fugry Models for Pamemn Recognidon;
Mintfeonds it Search for Structurey ie Dafa. WY IEEE Preas, 1992,

[6] D.J. Bur. “Experiments o neural neg recogmitivn of spaken and written
text,”” JEEE Frans. Acowsfics, Speeck and Signal Prucessinyg, wol. 30, pp.
1162-1168, 1944,

171 5 K. Pul awd T, Dutla Majumder, Fueny Methematical Appreach
Pattern Recognition.  New York: Wiley (Halsted Pressh, 1986,

|81 L. A Zadeh, "Fuzzy sety,” Infornstion aed Controd, vol. &, pp. 338353,
1963,

[9] G J Klr and T. Folger, Fazzy Seez, Urecertetiny and Trfrmarion.

Rembing, MA: Adifison Wesley, 1903

1. C. Beadek, Pattern Recogritior with Fuzoy Obfective Function Alpo-

rittrs,  MNew Yorke Pleoum Press. 1941,

T. L. Huntzheqger and . Ajjimarangszes, “Parallel selt-organizing featurs

maps for wiisapersised patern recopnition,” Ty J. General Syor vol.

16, po. 357-372, 1949,

1. € Bezdek, E. C. Tzao, and M. B Pul, “Fozzy Kobonen clusiering

oetworks,” io Prov. fet IEEE Conf on Fuzzy Systems. Sun Diego, pp.

10351043, 1592,

W, Pedrycz and K, C. Ciml, “Linguisic imlerpretation of sell-organizing

maps.” in Proc. Jo IREE Confl or Fleggy Spseems, San Dicgo, ppe

FTI-3TR, 1992,

IL. Ritter unid T, Kohonen, “Self-orpunizing semaolic mips,” Béiolmrico!

Cxbermn., wol. 6L, pp. 241254, 1989,

T. Kolwmen, "“The newral plonetic ypewriter,”" [EEE Compieter, pp.

11-22. Mar. 1988,

H. Ttiner amd K. Schulien, “Do the stadonary slate of Kehopen's self”

aeganlzing =enaoey mapplng,” Béiotegical Cvbese, vol. 34, i, 99105,

(LN

1171 T. Kehonen, “Aoulysic of a simple sell=mganizing process,” Sidogical

Culaern, vol. 44, pp. 135-140, 1952,

5. F. Lurtrell, “Imape compression osing o multilayer oevral netwerk,”

Parern Recog. Letr, wol. 10 pp. 1-7, 1939,

5. K. Pal and D. T, Mandal, “Linguistic recognition syatem baszd on

apgeoriniale fcagoming,” Infvmation el vol. 61, pp. 133161, 1992

R. Ducly, und #. Hent, Pattern Classjfication and Scere Aneivny,  New

Yurks Wiley, 1973,

L T. Tow and B. C. Gonzalez, Panen Recopndtion Principles.  London:

Addizon-Fosley, 1974

5 K. Pal and P. K, Pramanik, “Fuezy messures in detennining sced

Poatila in clusiering,” MPattern Becog. Leit, vol. 4, ppo 138162 19040,

i, 5 Scbesiyen, Decision Making Frseces in Palem Kecogrilion,

MY Bacmilhon, 162

5. K Pal apd D, Dtta Majumder, “Fozzy sets and decision rmaking

upprouches in vowel and speuker Tecognition,” [ESE Trany, Sysr, MWan,

Cyfern, vl 7, pp. 625629, 1977

F10]
[l

[12]

1134

1141
[15]
L16]

1)

ET
1219
[22]

[23]
[24]

Soshmits Mitra (5910 meceived he B Sc(Hons.)
depree in phyzics and the B.Tech and M, Tech. de-
prees in computer sisoce from Calowtta University
in 1984, 1987, and 1989, respectively,
5he war a Senior Rescarch Belbow of the Council
or Scientific and Induserial Fescarch from 198Y
o 1991, She ix & programmer in the Electronics
il Comeemicadons Sclences Unic of the Todian
Stetistivu] [nstitute, Culvuile, Her ceseasch interests
inclode pattern cecopoifion, [weey sets, artificial
: intellipence, and mevru] petworks, She is 2 swden
nsecwber of the INMS. Cocrently she iz st ELITE {Evropeun Labimaury
fow Totelligenr Techoiques Enginesring), Aschen, Germany, oo a {:omun
Acxlerdc Exchange Service Fellowship. -



MITEA AND PAL: SELP-ORGANTZING SEURAL NFTwWORK

Sanhar K. Pal (M'R1 SMED B received the
B_Sc. Huns. ) degice in physice sl the the B Tech,,
M. Toch., amt PhD. deprees 0 raliophysics and
electronics, from the Llniversily ul Calgulla, io 196%,
1972, 199, and 1979, respectively In 1952 be
recceived the PRI deprer in electricn] enginesring
wloig with 1IC Frome Impecial College, University
of Loaudun,

Il iz v Profossor in the Elecoronics and Com-
municabion Scicaces Thnit at the Indian Sraristical
Inatinte. Caleorta, In 19886 he was awaenlod a Ful-
bripht Pestdocroral Visiting Fellews=hip v work st the Univeraity of Califoania,
Berkeley. and the Tniversity of Marviand, College Park, T 1958 by mecerved
an WRC-NASA Scnior Research Awamd 1o work al the MASA Johnsoo Space
Center, Housion, T, He received rthe 19600 Shanli Swumupr Bhatnagar Prize in
Engmaeriu_q sclences {the masr govelesd and hiﬂ'lr:ﬂt el 1o g seientist in
Illd.ia"] Tur i cimibribation in patlem ml.'.n;;grlil'illn. Hie servedd os g Protessimr-in-
Chiange o the Py sical and Barth Seiences Drivision, lodian Soasisticnl Institete,
during L9RR-1990L He was alse o Guest Lectorer in coanpuler sciepce al
Calewtra Lndvessity froan 19831986, His mesearch joteresls mudely inclade
pallern recognibun, imyge processing, anificial melligeoce, neurnd nets, und
fuuzzy se1s wnd systems, He is w co-aushor of the book Fumry Markematios!
Approgeh te Pottern Becogrimos, which veveived the Bost Producticn Ararnrd
in Lhe Tth World Buook eir. Mew Delhi, snd a co-cditor of the book Fleesy
Muolels for Pafterr Recogrifien. He has more than ane hundeed fifiy rescanch
puperi—inctuding tem in cdited books and mare than winety in internacional
jonmals—o his credic He las olso kectorcd, on is resesnch, acdifferent LLS,
and Fapancae univessities and laboraeoecies. He s Gisted i Refiereoce Adiio:
Aafar's Wheo's Who of Men atd Women of Achicvemengs

Do Pal kv @ Fellow of huth the TEEE ard the TETE, He 15 o member ol
the Rditocial Boasds of TEEE Fremaehiony on Furmy Sestensy, Mmieruaiong)
Jowredd of Approcimete Bewmnieg, and Qe Fae Sasd dovand of Mathemotioe]
Lrigmeey. He is 2 meanber of the Keviewiilg Booml or IRRE Comperer acd
Macematicel Revievs I ALine, and Bxecutive Cpmoniles merber o
the TSFURMIT and TUTRAT. H ig alin 4 Pormanent Memher of e lodo-1015
Ferum far Cooperative Tesearch aind Techoolagy Transler (IFCR1T).

3o



	1...fsom.jpg
	2...fsom.jpg
	3...fsom.jpg
	4...fsom.jpg
	5...fsom.jpg
	6...fsom.jpg
	7...fsom.jpg
	8...fsom.jpg
	9...fsom.jpg
	10...fsom.jpg
	11...fsom.jpg
	12...fsom.jpg
	13...fsom.jpg
	14...fsom.jpg
	15..fsom.jpg

