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Rough Fuzzy MLP: Knowledge
Encoding and Classification

Mohua Banerjee, Sushmita Mitra, and Sankar K. Pal, Fellow, IEEE

Abstract— A new scheme of knowledge encoding in a fuzzy
multilayer perceptron (MLFP) using rough set-theoretic concepts
s described. Crude domain knowledge is extracted from the data
set in the form of rules. The syntax of these rules automatically
determines the appropriate number of hidden nodes while the
dependency factors are used in the initial weight encoding. The
network is then refined during training. Results on classification
of speech and synthetic data demonstrate the superiority of the
system over the fuzzy and conventional versions of the MLP
{involving no initial knowledge).

Index Terms— Fuzzy MLP, knowledge-based networks, net-
work design, pattern recognition, rough sets, rule generation, soft
computing, speech recognition.

L. INTRODUCTION

HERE has recently been a spurt of activily to inlegrale
Tdilfurcnl computing paradigms such as fuzey setl theory,
neural networks, genetic algorithms, and rough set theory, for
generating more efficient hybrid systems that can be classified
as soft computing methodologies [1], [2]. The purpose s
to provide flexible information processing systems that can
exploit the tolerance for imprecision, uncerainly, approximale
reasoning, and partial truth in order o achieve tractability,
robustness, and low cost in real-life ambiguous simations [ 3].

Neuro-fuzey computing [4], [5] capturng the merits of
fuzzy set theory [6] and arificial neural networks (ANN's) [7],
constitutes one of the best-known hybridizations encompassed
in soft computing. This integration promises W provide, 1o a
great extent, more intelligent systems (in terms of parallelism,
fault tolerance, adaptivity, and uncertainly management) o
handle real-life recogmuon/decision making problems. The
fuzzy multilayer perceptron {MLP) [8], [9] is such an example
which incorporates furzy set-theoretic concepts at the input
and output levels and during learning. It is found to be more
efficient than the conventional MLP for classification and rule
generition.
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Generally, ANN's consider a fixed wpology of neurons
connected by links in a predefined manner. These connec-
ton weights are vsoally imbahzed by small mndom values.
Knowledge-based networks [ 10], [11] constitute a special class
of ANN's that consider crude domain knowledge 1o generate
the initial network architecture which s later refined i the
presence of waining data. This process helps in reducing the
searching space and tme while the network traces the optimal
solution. Node growing and hink pruning are also made in order
Lo generate the optimal network architecture. In this paper, we
demonstrate how the theory of mough sets can be utilized for
extracting domain knowledge.

The theory of rough sets [12] has recently emerged as an-
other major mathematical approach for managing uncerainty
that arises from inexact, noisy, or incomplete information. [t
has been investigated in the context of expert systems, decision
support systems, machine leaming, inductive keaming and
various other areas of application. It is found 1o be particularly
effective in the area of knowledge reduction. The focus of
rough set theory 5 on the ambigmty cavsed by hmited dis-
cernibility of objects in the domain of discourse. The intention
15 Lo approxmmate a rough (imprecise) concept in the doman
of discourse by a pair of exact concepts, called the lower and
upper approximations. These exact concepls are determmined
by an indiscernibility relation on the domain, which, in tum,
may be induced by a given set of attributes ascribed o the
objects of the domain. These approximations are used to define
the notions of discemibiflity matrices, discemibility functions
[13], reducts, and dependency factors [12], all of which play
a fundamental role in the reduction of knowledge.

Many have looked into the implementation of decision
rules extracted from operation data using rough set formalism,
especially in problems of machine leaming from examples
and control theory [14]. In the context of neural networks, an
attempt of such implementation has been made by Yasdi [15].
The intention was Lo use rough sets as a tool for structuring
the neural networks. The methodology consisted of generating
rules from training examples by mough-set leaming, and map-
ping the dependency factors of the rules into the connection
weights of a four-layered neural network. Application of rough
sels in neurocomputing has also been made in [16]. However,
in this method, rough sets were used for knowledge discovery
at the level of data acquisition, (viz., in preprocessing of the
feature vectors), and not for structunng the network.

In this article, we have attempted o imtegrate rough sets and
fuzey neural network for designing a knowledge-based sysiem.
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Fig. 1. Three-layered MLP.

Rough set-theoretic techniques are utilized for extracting crode
domain knowledge, that is then encoded among the connection
weights, Methods are derived o model 1) convex decision
regions with single object representatives and 23 arbitrary
decision regions with multiple object representatives. A three-
layered fuzzy MLP [8] is considered. The input is modeled
in terms of the 3n-dimensional linguistic feature space while
the output consists of class membership values. The feature
space gives us the condition attributes and the output classes
the decision atributes, so as to result in a decision table. This
table, however, may be transformed, keeping the complexity
of the network to be constructed in mind. Rules are then
generated from the (transformed) table by computing relative
reducts. The dependency factors of these rules are encoded as
the initial connection weights of the fuzey MLP. The network
is next rained to refine its weight values.

The knowledge encoding procedure, unlike most other
methods [10], [11], mvolves a nonbinary weighting mecha-
nism based on a detailed and systematic estimation of the
available domain informaton. It may be noted that the appro-
priate number of hidden nodes is automatically determined.
The classification performance is found to be betier than the
conventional and fuzzy versions of the MLP. The model is
capable of handhing input in numerncal, linguistie and set
forms, and can cklke uncertainty due o overlapping classes.

A brief description of the fuzey MLP used is provided
in Section Il The basics of rough set theory are presented
in Section I, In Section IV, we describe the knowledge
encoding methodology, The model s implemented on real-
life speech data as well as synthetic data (in Section V)
for classification. Comparison is provided with the standard
Bayes® classifier, k-nearest neighbors (f-NN) classifier, clas-
sification and regression tree [17], and the conventional and
fuzzy versions of the MLP (involving no initial knowledge).
The paper is concluded in Section VI

II. Fuzzy MLP MODEL
In this section we describe, in brief, the fuzzy MLP [8]

which is used for designing the knowledge-based network.
Consider the layered network given in Fig. 1. The output of
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a neuron in any layer {A) other than the input layer (h = 0}
15 given as

1
y;h} f].::l
th 11 1k 1}
14 exge (— :iffh J'u'_r-; I )
-~
where ;c,r_,!;h * is the state of the ith neuron in the preceding
{h — 1ith layer and ?r,l;]:t_” is the weight of the connection

from the dth neuron in layer (it — 1) to the jth neuron in

. - [ . i)
layer (). For nodes in the input layer, -.J,r__;l corresponds 1o

| ’ thi
the jth component of the input vector. Note that o

(h—11 (k—11 ; P e ;
ooy J.u-j; . as depicted in Fg. 1. The mean square
ermr in outpul vectors 15 minimized by the backpropagation
algorithm using a gradient descent with a gradual decrease of
the gain factor.

A. Input Vector

An wo-dimensional pattem F; = [I3, Fa. o) Fla] s
represented as a 3In-dimensional vector [18]

=— E : : .Y
F-‘ o L'I"l'l'--:--:l.;l:_Fq _II:F‘?:I'- | !r?saghi_ﬂ-,_} '-F'!_."]

i "l T
= ['-'.I,'ri“.l : :"JIEU? . F UZ.I%I:L.] (2)

where the g values indicate the membership functions of the
corresponding lmguistic w-sets fow, medium, and high along
each feature axis and y;m, e y@ﬂ” refer to the activations of
the 3n neurons in the mput layer. The three overlapping m-sels
along a feature axis are depicted in Fig. 2.

When the input feature is numercal, we use the ©-fuzzy sels
(in the one-dimensional form), with range [0, 1], represented as

s e Al
2

z(l—llf%) : I'ur%i’ |, —ef = A

- 2
— Pl . Y (3)
1 2(” = r-)  for 02t el 25

1, otherwise

where Al=0% is the radius of the w-function with ¢ as the
central point.

When the input feature £ is linguistic, its membership
values for the msets fow (L), medium (M), and high [H)
are quantified as




BANERIEE er al: ROUGH FUZZY MLP

1.0

—

]
Ln

mermbership

ﬂ 1

1205

Jmin EIuw[Fj'}

t:n"uau:liurn [Fj}

.. F.
high (F}) Jmax

p—— Amedium(€;) —]
fo— PowlF;)/2 —'4**""?‘highl!:jjf2 —

£

Fig. 2. Owvedapping linguistic TT-sets,
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where ey, Ay, e, Ay op. Ay, indicate the centers and

radii of the three linguistic properties along the jth axis,
and LR85/ L0, P08 M Y, FHOS5/H) denote the cor-
responding  feature values I at which the three linguistic
properties attain membership values of 0.95.

For example, the linguistc feature fow 1s represented
by three components comesponding o the membership
values of the three w-sets fow (L), medinm (M) and high
() (Fig. 2). 045/L means a membership of 095 for
foowi b 005 L0 e L A UM refers o the membership
attained by the s-set M for that I which caused -
set. L 1w have a membership value of 095 Similady,
a{ P08 0 vy Ay 1/ H refers to the membership attained
by the w-set I for that I; which caused m-set L to have a
membership value of (.95,

S

B. Output Representation

Consider an [-class problem domain such that we have
{ nodes m the output layer. Let the sn-dimensional vectors
o |emz Ko - tgn] denote the
mean and standard deviation, respectively, of the numerical
training data for the fith class oy . The weighted distance of
the training pattern F; from the Eth class o, is defined as

£ [

'!.3_?;_-.;
where I5; is the value of the fth component of the tth pattern
provnt.
The membership of the ith pattern in class &, lying in the
range [0, 1], 15 defined as [19]

- g ] and vy

fork=1, -, (4

1

in Fe
L+ l)
(.J'a:

#

palFe) = (5)

where positive constants [y and [, are the denominational
and exponential fuzey generators controlling the amount of
fuzziness in this class-membership sel

Then, for the ith input pattem, the desired output of the jth
output node is defined as

iy = pig(Fy ). (6)

According to this definition a pattern can simultaneously
belong o more than one class, and this 15 determined from
the tramming set used during the lkeaming phase.

III. ROUGH SET PRELIMINARIES

Let us present some requisite preliminaries of rough set
theory. For details one may refer o [12] and [13].
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An information system is a pair & = {7, A}, where 7 is
a nonempty finite set called the wniverse and A a nonempty
finite set of artribwres. An atribute o can be regarded as a
function from the domain L7 o some value set 1.

An information system may be represented as an artribute-
value table, in which rows are labeled by objects of the
universe and columns by the attributes.

With every subset of attibutes H A, one can easily
associale an equivalence relation g on U

oy ={lw v e o for every ooz I ale) =y}

Then Ig = ﬂucB I

If X C & the sets {o € £ [r]y © X} and {r £
7 |w|lg X/ B}, where |v|g denotes the equivalence class
of the object & < {7 relative 1o {5, are called the B-fower and
L-upper approximation of X in & and denoted X, DX,
respectively.

N{C L is Meexact or H-definable in 5 if BX = X,

It may be observed that B.Y is the greatest B-definable set
contained in X, and BX i the smallest B-definable set
containing Y. Let us consider the following simple example.

Consider an information svstem (U7, {a}}, where the do-

main {/ consists of the students of a school, and there 15 a
single attribute a—that of “belonging 1o a class.™ Then 7 is
partitioned by the classes of the school.

Now take the situation when an infectious disease has spread

in the school, and the authorities ke the two following steps.

1) If at least one stwdent of a class is infected, all the
students of that class are vaccinated. Let B denote the
union of such classes.

2) If every student of a class is infected, the class is
temporarly suspended. Let £ denote the union of such
classes,

Then B © B. Given this information, let the following

problem be posed: Tdentify the collection of infected students.

Clearly, there cannol be a unigue answer. But any set £ that

15 givien as an answer, must contain M and at least one student
from cach class comprising I,

In other words, it must have £ as its fower approximation

and 7 as its upper approximation.
£ is then 8 rough concept/set in the information system
f s

Further, it may be observed that any set I' given as another
answer, is roughly egual w £, in the sense that both are
represented (chamctenzed) by £2 and i3

We now define the notions relevant o knowledge reduction.

The aim is o obtain irreducible but essential parts of the
knowledge encoded by the given information system—these
would constitute rweducts of the system. 5o one is, in effect,
looking for maximal sets of atributes taken from the initial
sel (A, say), which induce the same partition on the domain
as A. In other words, the essence of the information emains
intact, and superfluous attrbutes are removed. Reducts have
been nicely characterized in [13] by discernibility matrices
and discernibility functions. A pnncipal task in our proposed
methods will be o compute redocts relative o a particular
kind of information system, and relativized versions of these
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matnices and functions shall be the basic tools used o the

computation.
Let &7 = Ja. ) and A = {a: s} IN the
information system & — (L7 4}, By the discernibility matrix

[denoted M{&] of & is meant an n x r-matrix such that

e = {a € A elay) # efa)], tog =100 m ()
A discemibility function i is 8 Boolean function of m
Boolean vanables wy, - - -, iy, comesponding o the attributes
@1, ', g, Tespectively, and defined as follows:

T = ',:"l\ {vtﬁjjf lsg=wisn o & [-".l}
(#)
where Yie; ) is the disjunction of all variables & with a £ o).
It is seen in [13] that {ay,, oo, 0} is a reduct in 5 if and
only if g, A --- A, is a prime implicant (constitent of the
disjunctive normal form) of [s.
The next concept that we shall require during rule gener-
ation, is that of dependency factor. 1L may well happen for

-

B0 A that O depends on B, ie, fp T fo—so0 that
information due to the attrbutes in CF is derdvable from that
due to the attdbutes in 8. This dependency can be partial, in
which case one introduces a dependency factor Af, 0 < of <1

i turd[PDEi;_:f\I;C;l}
card{7}

Tata.

(9

where POSp{C = | Jy ;. BX. and card denotes cardinality
of the set.

We are concerned with a specific type of information system
S = {7, A called a decision table. The attnibutes in such
a system are distinguished into two parts, vizo condition and
decizion attributes. Classification of the domain due 1o decision
attributes could be thought of as that given by an expert. One
may now want o deal with consistent decision tables, such that
a decision attnbute does not assign more than one value 1o an
object, or for that matter, to objects indiscernible from each
other with respect o the given (condition) attributes. Formally
we have the following.

Let &0 C A be the sets of condiion and decision
attributes of S, respectively. The rank of a decision attribute
i = L) w(d), is the cardinality of the image A{{) of the
function « on the value set ¥, One can then assume that
Ve = {1, -, vicdh}h

The generalized decivion in & corresponding to o is then
defined as a function dg: 7« P{L, - ridl}) such that
tele) = {it 2" g [l and dl=) = d}. P denoting
the power set. A decision table & with I = [d} is called
consistent {deterministic) if cardidsz{x}) = 1 for any r £ {7,
or equivalently, if and only if POS~(d) — U7 Otherwise, & is
inconsistent (nondeterministic).

Knowledge reduction now consists of eliminating super-
fluous values of the condition attributes by computing their
reducts, and we come o the notion of a relative reduct.

An attribute & £ O(C &) is D-dispensable in I, if
POSE(LY = POSg. 13370 otherwise b is D-indispensable
in /1 every attdbute from §7 is D-indispensable in 14, 1 is
Di-independent in &. A subset B of O is a D-reduet in & if
His Deindependent in & and POS {127 = POS {10,



BANERIEE ey al: ROUGH FUZEY MLP

Eelative  meducts can be computed by using a f)-
discernibifity matriv. 1If I7 {w - ma b i is an
ox o omatrin [denoted M 5080], the fjth component of
which has the form

ey — dee Cralw) F aley ) and {y,:,) & Int (107
for i,j — L, -

The relative discernibility function [ is constructed from
the f)-discernibility matrix in an analogous way as fo from
the discernibility matrdx of & [cf. (7) and (8)]. It is once more
observed that [13] [a; -+, e, ) isa D-reduct in S if and only
if e;, A--- A is a prime implicant of fr.

-y T

IV, NETWORK CONFIGURATION USING ROUGH SETS

Here we formulate two methods for rule generation and
knowledge encoding for configuring a network. Method |
works on the assumption that each object of the domain of
discourse corresponds o a single decision atnibute. On the
other hand, Method 11 1s able o deal with muluple objects
corresponding 1o onge decision attnbute. From the perspective
of pattern recognition, this implies using a single prototype Lo
model a (convex) decision region in case of Method 1. For
Method 11, this means using multiple protolypes 0 serve as
representatives of any arbitrary decision region.

The crude domain knowledge, so extracted, 15 encoded
among the connection weights, leading to the design of a
knowledge-based network. Such a network is found o be
maore efficient than the conventional versions for the following
reason. During leaming an MLP searches for the set of
connection weights that comesponds o some local minmma. In
other words, it searches for that set of weights that minimizes
the difference between the targel vector and the actual output
(obtained by the MLP). Nowe that there may be a large
number of such minimum values comresponding o various
good solutions. If we initially set these weights so as to be near
one such good solution, the searching space may be reduced
and learning thereby becomes faster. The architecure of the
network becomes simpler due 1o the inherent reduction of the
redundancy among the connection weights.

A block diagram in Fig. 3 illustrates the entire procedure
for both the methods.

A. Method I

Let & == 64, A » be a decision table, with €7 and ) 1s
sets of condition and decision attributes, respectively. In this
method we assume that there s a decision attnbute «f < £
comresponding to each object x, & L in the sense that all
objects other than o; are indiscemible with respect o ;.

I} Rule Generation: For cach frreduct #f = {h-. -, b}
(say), we define a discernibility matnix [denoted M 2] from
the {-discernibility matax [given by (10)] as follows:

ois = [a € B alx) # alz) (11

for i,j =1, .+, n.
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Now for each object x; of £, we consider the discernibility
function (7, which s defined as

£ = A{ Moy 155 5m, 5 £ 0 £0)

where V{0 is the disjunction of all members of ;.

F5 18 brought to its conjunctive normal form (CNF) I For
i=1, -, n, f}i then gives rise w0 a dependency rule vy, viz
P — o, where i; £ £ corresponds to the object ;.

It may be noticed that each component of I induces an
equivalence relation on £ as follows. If a component is a
single attribute b, the relation [y, is taken. If a component of
the CNF is a disjunct of attributes, say by, -+, by, © B, we
consider the wansitive closure of the union of the relations
i, .--- L. Let I; denote the intersection of all these
equivalence relations.

The dependency factor Af. for »; is then given by

eard (POS (1)
eard {47

(12}

dfi = (13)
where POS; () = U.‘L'-:I.._-‘ XD and LYY is the lower
approximation of X with respect o J;.

2) KEnowledge Encoding: Here, we formulate 4 methodol-
ogy for encoding initial knowledge in the fuzey MLP of [8],
following the above algorithm.

Let us consider the case of feature Iy for class o in
the {-class problem domain. The inputs for the fth repre-
sentative sample 1; are mapped o the comesponding three-
dimensional feature space of ey (el B 1 0ES ),
and g o (Fi ). by (2). Let these be represented by £,
M. and IT;, respectively. We consider only those attributes
which have a numerncal value greater than some threshold
Th (0 = Ph o« 1) This implies clamping those features
demonstrating high membership values with a one, while the
others are fixed at zero. In this manner an = 3n-dimensional
attribute-value (decision) table can be generated from the -
dimensional data sel

As sketched in the previous section, one gencrates the
dependency rules for each of the I eclasses, such that the
antecedent part contains a subset of the 3w attributes, along
with the corresponding dependency factors.

Let us now design the mitial structure of the three-layered
fuzey MLP. The input layer consists of the 3 attribute values
and the output layer 1s represented by the £ classes. The hidden
layer nodes model the disjuncts (%) in the antecedents of the
dependency rules. For each digjunct, corresponding 1o ong
output class (one dependency rule), we dedicale one hidden
node. Only those input attributes that appear in a disjunct are
connected 1w the appropoate lidden node, which in um s
connected 1w the cormesponding output node. Each conjunct
{n0 is modeled at the output layer by joining the comrespond-
g hidden nodes. Note that a single attnibute (involving no
disjuncts) 1s directly connected Lo the appropriate outpul node
via 4 hidden node.

Next we proceed to the description of the initial weight
encoding procedure. Let the dependency factor for a particular
dependency mule for class o be o by (13). The weight
ftu:;'_:;’ between a hidden node ¢ and output node k15 set at
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Fig. 3.

af{ foeh | o, where foc refers to the number of conjunctions
in the antecedent of the rule and ¢ 15 a small random number
taken W destroy any symmelry among the weights, Note that
fue = 1 and each hidden node is connected o only one output
node. Let the initial weight so clamped at a hidden node be
denoted as &, The weight i

. between an atinbule o [where
o comesponds to low (L1, medium (M} or high (H}] and

hidden node § is set to 3/ feed) | o such that facd is the

Block diagmm of the mle generation and knowledge encoding procedure, (1) Method 1. {b) Method IL

number of attributes connected by the cormesponding disjunct.
Note that faed = L The sign of the weight is set 1o positive
(negative) if the corresponding entry in row E, column e
is 1 (0). Thus, for an f-class problem domain we have at
least £ hidden nodes. All other possible connections in the
resulting fueey MLP are set as small random numbers. It is o
be mentioned that the number of hidden nodes 15 deemmined
from the dependency rules.
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The comnection weights, so encoded, are then refined by
training the network on the pattemn set supplied as input.

B, Method II

Let &
fr={d. -
respectively.

1) Rule Generation: We divide the decision table S =<
(A = ino w tables & =< U, A =0 = 1 -+ n,
comresponding w the n decision attributes oy, - -, i, where

{d: |-

The size of each S 6 = 1, --+, ) is first reduced with
the help of a threshold on the number of occurrences of the
same pattemn of atribute values. This will be elicited in the
sequel. Let the reduced decision table be denoted by 7, and
{0y . oo g, b be the set of those objects of {7 that oceur in
Ta=1 5

Using (11) and (12}, for each d;-reduct H (say), we define
the discemibility matdx (M (D)) and for every object @) €
{ei, . &4, ). the discermbility function _1'1,.’ Then _."(:' is
brought to its CNF One thus obtains a dependency mle r,,
viz. I, — d;, where I3 is the disjunctive normal form (DNF)
of f;°. j g {#, -, ip). It may then be noticed that the
dependency factor of; for each v 15 one [by (13)].

2) Knowledge Encoding: The knowledge encoding scheme
is similar W that described in Section IV-A. As this method
considers multiple objects inoa class (unlike Method 1), we
generile a separate vy * 3In-dimensional attnbute value able
for each class ¢ (where vy, indicates the number of objects
in ol

Let there be m sets (3, ---. (3, of objects in the able
having identical attribute-values, and card{J;7 = ng,, 1 =
1, -+, om. such that wg, = o0 = gy, and E?_L g, = Mg
The attribute-value table can now be represented as an e
Fooamray. Let vy, wge, 0, migy, denole the distinel elements
among g, o-oc. kg, such that Tepl o Tqg Dxover IR o We
apply a heuristic threshold function defined by

= =

I A = be a decision table, with O and
oty ] its sets of condition and decision attributes,

i=dq - 100, and A, =00 L

T

Z :
Thpt g
| e

T I e 4 14
"' T (9

All entries having frequency less than T'r are eliminated from
the table, resulting in the reduced attribute-value table. Note
that the main motive of introducing this threshold function lies
in reducing the size of the resulting network. We attempt to
eliminate noisy pattern representatives Chaving lower values
of g ) from the reduced attrbute-value table. The whole
approach is, therefore, data dependent. The dependency rule
for each class is obtained by considering the corresponding
reduced attnbute-value table. A smaller table leads wo a simpler
rule in terms of conjuncions and disjunctions, which is then
translated ino a network having fewer hidden nodes. The
objective 15 o sirike a balance by reducing the network
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complexity and reaching a good solution, perhaps at the
expense of not achieving the best performance.

While designing the initial stucture of the fuzey MLP, we
consider the union of the rules of the [ classes. Here the
hidden layer nodes model the first level (innermost) operator
in the antecedent part of a rule, which can be either a conjunct
or a disjunct. The output layer nodes model the outer level
operator, which can again be either a conjunct or a disjunct.
As mentioned earlier, the dependency factor of any rule is
one 1n this method. The minal weight encoding procedure 15
the same as described before. Since each class has multiple
objects, the sign of the weight is set randomly.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Here we implement the two methods on real-life and
artificial data. The initial weight encoding scheme is
demonstrated  and  recognition  scores are presented. The
data sets are available on the mmternet at hup:sical.acan/
sushmita/data/vowsy html.

The speech data Vowel [20] deals with 871 Indian Telugu
vowel sounds. These were uttered in a consonant-vowel-
consonant context by three male speakers in the age group
of 30-35 years. The data set (depicted in two dimensions
for ease of understanding) has three features: £, Fh, and £
corresponding o the first, second, and third vowel formant
frequencies obtained through spectrum analysis of the speech
data. Fig. 4 provides the projection in the £7-F4 plane,
depicting the six vowel classes—d, a, ¢, u, ¢, o. These over-
lapping classes shall be denoted by oy, o0, o, Tespectively,
in the sequel.

The synthetic data Pat consists of 880 pattern points in the
two-dimensional space Fi—FL, as depicted in Fig. 5. There
are three linearly nonseparable pattem classes. The figure is
marked with classes 1 {o) and 2 {r), while class 3 {0y
corresponds o the background region.

The training set considered 306 of the data selected rmn-
domly from each of the pattern classes. The remaining 509
data constituted the test set. It is found that the knowledge-
based model converges o a good solution with a small
number of training epochs (iterations) in both cases. Note
that the Vowel data consists of convex classes which may be
modeled by single representative pomts (objects). However,
the synthetic data set Pat consists of concave and disjoint
classes that can only be modeled by muluple representative
points (objects). As Method 1 considers single object classes
only, the synthetic data could not be used there. On the other
hand, both data sets are vsed i Method I which considers
multple objects inoa class.

A. Method 1

The rough set-theoretic technigue 15 applied on the vowel
data to extract some knowledge which is initially encoded
among the connection weights of the fuezy MLP. The data
is first transformed ino the 3 -dimensional linguistic space
of (2). A threshold of ¥ = (1% is imposed on the resultant
input components such that 1.-‘;‘“" = 1if -Ii,r;:n" = 0.5 and zero
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Fig. 4. Vowel data.
Lo = 082, My =07, Hy = 0.4 Application of Tk yields
B2ar- 1111111131111 111111111111 a mine-dimensional vector (0, 1, 0, 1, 1, 0, 1, (0, (). Let class
liﬂ:ﬂ;ﬂﬂ:ﬂl lﬂiﬂﬂﬁﬂﬂh e consist of wy pattem vectors. Each of them is transformed
111122211311113211211111111321111111 o this mine-dimenswonal form with binary components. We
111311133311 1133311421311 3323111111 : P .
1113271713 111111111 1111111111 select the most epresentative template, Le., the one with the
11111311 1111131 11111111 . : : :
1111111 11111 1111111 maximum number of occurrences, from this set of n) templates
1111111 111t 111111 S ot
113111 2222 11%  2@Eer 11111 ¥0- gerve =3 ”hJ“_'l F1. N _
F, }?J-g-g-i 2§§§:§ iy mmas :ﬂﬂ- L7 consists of six objects @y, - - -, @g, the condition attributes
11111 FPrEE] 111 z1z22% 11111 are fop, Lo fop, ML M, Aes H- L He, Ay and the decision
11111 2223 111 i . Z : g
113111 23 iin T attribute set D consists of the six vowel classes o, -+, oy
5 : ; : ()]
i::ﬂﬁ e :ﬁﬁ} Each entry m row 3, column i corresponds o the input 7
14111113 311111111 1111111 for class ;0 Note that these mputs are used only for the
1I11111331113111331334111321112321711111 . : =
1171131311112111231112211211333111173 knowledge encoding procedure. During the refinement phase,
11111 5 ; . o
300 IATITHTIIIAL lﬂ'ﬁ:;‘ﬂi;:iﬁl [ the network leams from the onginal 3n-dimensional training
1] | O ool e )
RO F2 2750 selwith 00 = 37 £ 1 (2)
’ The decision tablke 1s abbreviated by putting all the decision
Fig. 5. Synthetic data Pat attributes i one column [this does not resull in any ambiguity,
as we assume that object =, cormesponds o the decision
TABLE 1 attribute o; only {v = 1, -+, 61
ATTRIBUTE-VALUE TABLE {VOWEL) The f2rreducts obtained are as follows:
e B T z S A e A faad F e A fa A ALY L A AT A
[ Ty ihrl‘[ H [ L2 TM | 7, | L [Ma | H; D} VoA M b Dl A b A My, DR A M A H
w | @ 1 0 1 i 1 o] 1 o 1 0 | e AHaA M e A M A MY (L A M A Ly A Hy)
| fzesy : :
e | O 0 1 1 j 0 o 1 1 Q | oz ; VA A H A L A M TH A L oa Mo My
| 1io|ololo|l1rlolo 1 !eg!
[ = P, q. ) i A o )
x, | 1 o o 1 g a 5 o ; 0 foet CAL AT A M A Y, (o Moo Ha oo My
g i | 1 ] o EI 4] 1 ' 0 1 : Q o E' [_1.{'_ M II‘_ M _-rL'Iz M J‘Irf;;::l._ [_1.{'_ i L‘g M _-EL'IE i .I.'H )
T (1 1 1 |0 1| 8 [0 210 [0 Jes} (hynddynlynddy, (M AMAH, A Ly

otherwise. The resulung iformation 1 represented in the form
of a decision table & =< {7, A = as in Table L

Let us explain this tmnsformation by an example. Letl a
sample pattern from class ¢ have numerical components
o GO0, I 1500, £ 1200). This is mapped to the
nine-dimensional hnguistic space with components £ = (L4,
iy = 083, Hyp = 07, Ly = 08 My = 08, Hy = 0.4,

(Mg A Ha A Ly A M), [M
L SRPLRH & S P _H;_g,:l. g
(LA Lo AMa A Lan Ha),
tLe A A A TTe A Ly 2 010,
v o My A Hy o Ly A HL

Sl s L a My

AH AL AL H ;_!.:'

LA H A Han Lo ot H:

(I o Lo My oA Ly o 003

(M A Hy A Mo & Ly & H).
Let us consider the reduct set B — (L) » M) » Mz). Then

the discernibility function {75 (in CNF) for i = 1, ..+, 6,
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L]
Fig. 6. Initinl weight encoding for the class co by Method | remuaining weights are initiolized to small random valves.
TABLE 11
REcoaymion Scores (%) mk VowEL
By | Fuomzy Rough-Fuzzy MLF
Altribs. i u MLP o Ty
ifier E : AL oL, [ O y, | ML M, | T W, | M L | LM | L My

B Mo, Hy, Ly,

T I3, Mz Iq, Hy La A Ly, Hy Hy., My La, My L Ha
2 Tinks - R -+ 16 16 16 1B 18 18 3] )
# inpute - - ] 5 5 5 4 4 4 a3 3
Trataing - - d0bE | BOES FERT) 7906 | E3dl ¥ 70.5 65 £387 |
T o 156 BLE 1.6 241 2.2 FEE] 7.8 51 R e 405
2 a o] Tha ] 5.9 822 EE.2 LER ] HE_F 3] ES.D Fi4.4
I3 1 Wk .5 G4.1 41 B2.4 a5.3 .1 k3.9 a4.1 E2.4 F4.7
t B e T YE.3 BY.4 a0.2 Erd B7.8 7.8 E1.8 Lrg) V.8 oL
£ " Tr.1 4.6 s88.7 6§ 0.6 ary W.A .3 M5 a97.2 562
L] I 7l.] HE.T 5.1 yio 431 351 e d 5.1 =K R | 931 3.0
1 et 783 774 | B4dd Bh. 12 HE T4 H5 56 EEOG | dr.a0 F5.4] B5.5 5

obtained from the discernibility matrix M8} [using (11)

and (12)] are

fﬁ' =1{q A ffl-f'_ v JIL'I;{;':, .f::::{ =1L A {_4'1-.'{'_ W Jll'j:i-}
_:::,:‘I = ‘I-.?| M ."I-'.?_'j._ Rt .Il.-| M .'1|'ir'| M .'1|'ir;_!_

i3
_.'__E-]'E =M A M. i _:-}'-' =Lypa M A M,
The dependency factors df; for the resulting rules v, @ =
1o, Gare 208, 2753 1, 101, 1, using (13).

In the same way we consider the memaining £2-reducts and
find the corresponding rules and their dependency factors.
These factors are encoded as the imitial connecuon weights
of the fuzzy MLP. Let us now explan the process by an
example. Consider the rule va, viz. Ly A (M v M) — o
with dependency factor df, = 273, Here we require two
hidden nodes corresponding o elass ¢ o model the operator
A, The two links from the outpul node representing class oo
to these two hidden nodes are assigned weights of {#fy) /2
o keep the weights equally distributed. From Table 1 we find
that the entries for f.), A, Ay in case of class oy are 0, 0,
1, respectively. The attributes Ad; and Ads, comnected by the
operator ¥, are combined at one hidden node with hink weights
of —{dfah /4, [dfa) /4, respectively, while the link weight for
attribute L) is clamped to —(off>} 72 (since there is no further
bifurcation). The resultant network is finally refined during

tramming using a triamnming sel. The performance of the network
15 tested on the remaining test set. Fig. 6 illustrates the weight
encoding procedure for class o,

Table 11 shows the results obtamed with a three-layered
knowledge-based network whose connection weights are mi-
tally encoded as expluned eardier. It 15 observed that this
method works more efficiently with a smaller network. There-
fore, we demonstrate the mesults corresponding o six hidden
nodes (the lower bound in this case) only. The pedormance
(at the end of 150 sweeps) was compared with those of a con-
ventional MLP and a fuzey MLP [8], having the same number
of hidden nodes but with no imitial knowledge encoding. It
was seen that the conventional MLFP with six hidden nodes s
unable to classify the data. Hence this is not included in the
table. The performance of the Bayes™ classifier for multivariate
normal patiems, using different covanance matdces are for
ecach pattern class, 15 demonstrted. The choee of normal
densities for the vowel data has been found to be justified [21].
The performance of the package Quest [17], implementing
classification and regression trees [22], is also provided. The
rough-fuzzy MLP is observed 1o generalize better than all the
models for the test set, considering the overall scores (Net).
It may also be noticed that this method generated D-reducts
of different sizes. In the table, [, n = 3, 4, 3 indicates a
collection of fJ-reducts with » components (attributes).
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TABLE 11
ATTRIBUTE-VALUE Tamlk ror CLass O (VoweL)

| [ [ [H [ Ta [ My [ Ha [ Ly | M5 [ Hs |
Ti—zm | 1] 0 |0 1] a]f]ol1]alo]
£y 2w |1 | 1 Ol 4t ]otlolr]o| o0
m—ti | L | 2 jo]l1tlo|lo|lo] o |1
T4y — T4y 1 i Q i Ie] 4] Q 1 4]
v IR I T O+ T A O+ O O+ O A O I 1
-t | L j 0o lo|lrlo oo 1] 1
pa— e 1 o 1 o o | o 1 1
Taa— Ty | O 1 o 1 o a 1 0 o
e C I O R O I I I O I O O
Tag ol 1 lofli1t|lole|lol| o] 1
Tk 1 Q Q 1 o o I+] o 1

TABLE IV
REDUCED ATTRIBUTE-VALUE TaBLE FoR CLASS {?;- {VOWEL)

[ [ 7 [ [ [ L W [T [ L [ 6 | B
Ti—Twm ;) | 1] 0 |0 1] 0o |i]al]e
Ty cawan sy | 1 1 [ | o o |1 o o
T —Tacfw) | 1P L o |1 o|lo o] o 1
Tar Tpilpe) 11 41 g |1 ] ool a1 o

B, Method 1T

This method 1s apphed w both the data sets Vowel and Pal.
A threshold of T 0.8 was used for the Vowel data. 1t can
be observed from Fig. 5 that the synthetic data set is uniformly
distributed over the entire feature space. Therefore, setting a
threshold greater than 005 caused problems here, such that for
certain objects all three mputl components comesponding 1o a
feature became clamped at zero. To circumvent this, we set
Th at 0.5 for Pat

1) Vowel Data: Each class had a separate attnibute value
table consisting of multiple objects. Let us consider class oy
as an example. The first column of Table U1 corresponds 1o
the objects which have the atmbute-valoes indicated i the
respective rows. We observe that the rows comespond o 20,
9.7.5. 4, 4,2, 2, 1, 1. 1 objects, respectvely.

Adter applying the threshold T'r of ( 14), objects wop—ry; are
eliminated from the table. Hence the reduced attdbute-value
table (Table IV) now consists of four rows only.

The discemibility matrix for class og is

| Ly bz W L
(0 e,
2 fa}
i IM). Lse Hal o g, Ha) i
W {.’I-'f]_._ .[-_'5._ _'il-"f:i_lr {L;;. Jlf;;} {_"l'f_'g_, II;I‘ o

The discernibility function f for e is
My A (MY La v Ha) AT v Had A {M v Ly v M)
AlLaw Ma) A iMa v Had
=M ALy Ha) A{Ls Y M) M v Ha).
The disjunctive nommal form of f is
P A L & M T A L s Hy)
WM A My A HY Y (M A La A M A Ha,
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The resultant reducts are

Mopc by o My My oA Ly A H;;_,
Mo f]-'f:j_ o H;_!__. My .IlJ_ M .'1|'ir;_!_ M H;}.

The reduced attnbute valoe table for reduct A4, AL A M5 18

R T s
W i | il
s | 1 L
i 1 il il
M 1 ] 1

The reduced discernibility matrix for M) A Lg A Ay is

i iz i i
i ol
2 {ad:} i
i { a"Lf-_ . L;;} {Lg} o

we | M, Ls, Ma) [La, Ms) {Ms} o

The discernibility functions [, for each object w, i
1,2.3. 4 are

_|"‘.,rI =M AiMp wEginiM v Lyv Mah = M,
_I"‘._l~ . Ao LA IZL;J; i _]Irf:gjl Ay A Ly
.fy,_. = (_'\'i]_ W L5:| B .L:1 B _'1-'1:1 = _-"Lf:i i .L':1

_f_,_..._ = |:.'1"i"| W L.'_; W .'1"?.'_;) i |:.|l.-;} W .'1'?1;}} M .'11'.?'5 = .'11'.?_'_3.
A dependency rule thus generated for class o is

.'1|'ir| W I:.-‘I-'L N Jr.-:j:: W I: .'1".?_'_; M f.-_'_;:l W ﬁ-]r:j — Oy

Le, Moy — g,

The other rules for o are

A v Hy g
Ady v My Iy — e,

Similarly, we obtain 1, 2, 1, 1, 2 dependency mles for
classes o, 0o, oy, 0g. 03 mespectively. The dependency Factor
of each rule is one. So, considering all possible combinations
we generale 12 sets of rules for the six classes. This leads to
12 possible network encodings.

A sample set of dependency rules generated for the six
classes 1s

.H] M .|r.-2 M Jr.-_'; —in,
Mo Ha
M

HE AT I.-:j — .
v, aldy W Hy oy
_'Il-ir]_ i _"Hla = Uh.

03,
This comesponds o the network represented i column 1 (of
rough-fuzzy MLFP) in Table V.

To encode the rule for class o we require one hidden node
for modeling the comunct. The corresponding output node
is connected to the hidden node with initial link weight of
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TABLE V
RECOGRITION SCORES (%) FoR VOWEL

Ankribikes for Fough-Fuzzy MLP

1403, 04 Horlym Ly, My v My, Mz vy

o2 Hy v ila I M v 3

o5 i [ FEE]

o8 My My TM v v [ My wlds [ MivAy [ M v, | M) v Hyw I
[ # links 4 19 id 15 13 19

Training [T ED.G5 d1.11 B0 T A [NF]

T E] 514 216 ah.8 41.2 a1 595

e [ B4 58.9 E2.Z BE.9 FLE 5.8

[ ' u4.1 859 853 85.9 4.1 A7.1

L u 502 b6 B7.4 E7.8 o0z 87.8

R [ B4.0 4.2 8.3 93.4 E2.2 4.9

] -] 93.% iy 95.3 939 830 948

L et [1#H H5.73 [N BT | BRBL R dd

Fig. 7. Initial weights encoding by Method [, remaining weights are initial-
ized to small random values.

TABLE VI
ATTRIBUTE-VALUE TaBLE For CLASS C{PaT)

FPYESEATIENE

Ty = X5 1 1 4] 1 1 0
Ty — T | 1 1 Q Q 1 1
Towg — g7 o 1 1 1 1 0
ww—Tes | 0| L |2 O | 1|1
Ly — T4E 1 1 Q 2 0 1
X4 — F5n O 1 1 o o 1
Ts1 1 1 Q 1 o] ]

dfe = L. Then the input attribute pair -, 0,0 is connected
to this hidden node with link weights (fph/20 0.53) A
sample network 1s illustrated i Fig. 7.

Table V demonstrates sample results oblained by the three-
layered knowledge-based network, at the end of 150 sweeps.
Unlike Method L oin all the cases Method 11 constructed
a network with six hidden nodes and six input nodes. Iis
pedformance improves on that of the fuzey and conventional
versions of the MLP, Bayes™ classifier, Quest and Method |
(as observed from Table 1),

2) Svnthetic Dara: The attdbute-value table for class ry is
depicted in Table VI The mows correspond w0 16, 12, 9, 8, 3,
2, 1 objects, respectively. Application of (14) results in the
elimination of objects xyp — wiy. The frreducts generated
are Lo A L Hp A feos HooA Hel £ A Hyo We oblain four

D-reducts for each of the other two classes. Considering all

possible combinations, we generate 64 sets of rules for the

three classes. This results in 64 possible network encodings.
A sample set of dependency rules for the three classes s

::_JT_-_]_ M J‘Ir.'!g M II-z'I W [L'_ i _-EL'I'_ .-'"‘\..ﬂ-gll —F €1, II]_ i II'z —

and

() A Hv PH A Ma oA Haw L SR & S Hg} e
This corresponds to column 2 of Table VIL

The subnetwork for class oy consists of three hidden nodes,
cach with initial output link weight of {df33/3{= 033}, The
input attribute pair 45 Hp) is connected to the first of
these hidden nodes with link weights {eff35/6(= 0,173, The
remaining atiributes [H-. Ay, H.) and (M, M, Ha) are
connected 1o the next two hidden nodes with link weights

Table VI1 provides a sample set of results obtained by a
three-layered knowledge-based network. Note that we have
stmulated all 64 networks. In all cases the algorithm generated
six hidden nodes. The performance was compared with that
of & conventional and fuzzy MLP (all at the end of 1000
sweeps), -NN classifier and Quest [17]. The conventional
MLP failed to recogmeze class og (e.g., the scores for classes
vy, e, and oy oare 871, 00, 51.6, respectively, for the test
set). The mugh-fuzzy MLP generalizes better than the fuzzy
MLP (with one hidden layer having six hidden nodes) for the
test patterms considermg the overall scores (Net). However,
the 5-NN classifier and Quest (classification and regression
tree) are found o provide better performance. Note that the
L-MNN classifier is reputed to be able 1o generate piecewise
linear decision boundaries and is quite efficient in handling
concave and linearly nonseparable pattern classes. It may
also be mentioned that the fuzzy MLP with more hidden
layers/nodes provides results better than that of the b-NN [23].
However, we are restricted here in using six hidden nodes for
maintaining panty with the rough-fuzey MLP. It 15 revealed
under investigation that the method of knowledge extraction
using rough sets can lead to over-reduction for the data shown
in Fig. 5.
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TABLE VIl
RECOGNITION SCORES (%) FoR PaT

] Q F Rrugh-Foezy ML
r cinssifier 1 T [T A My » HoY [Hy &My s Hyd v (3 A A TG THL fleg & Mg
E 7 VL, A My & HS) viMy A Hp A Lg)
3 g z A~ g I iy FEIEEL]
3 T Y [N ALY L A M [ nH))
k= MLE | WIHp A My A He) b oW A Mz A B | WE ALz A MY | w[H; ALy s M)
S S - VMG A My HY | My s M A EY | My AL A M) | WM ALy n M
= ks 5 -5 - (=] 7] ] ] 2
# inpis & = x B 5 5 [ 5 i
Teain - - - E2.0 B4.05 T ED.AT . Ei.&3
T[] a1 598 | 942 | 865 | G506 O3.08 E1.97 EAI3 L1654
¢ g 545 | ER5 | T4.5 | F9.23 fR.73 £1.54 Ba.38 5769
¥ 3 F18 | BT | B35 | EE5D £8.39 BI.E5 5184 67.1
R G 2 I EFAT] " RIIT R BOL05

Remarks:

1y Method 1 is based on the assumption that there 1s ong
decision attribute corresponding to cach object, e, the
classes are considered o be convex with single represen-
tative points. This method 1s not a special case of Method
I1, though the latter deals with multuple representative
points for each class. For example, in Method 1 we
simultaneously generated six rules corresponding 1o six
vowel clauses from the same attnbute-value table. On
the other hand, Method 11 mvolves separate attnbute-
value tables for each of the six vowel classes. Therefore,
a rule comresponding o one class 15 generated at a ume
from one such table. This cannot be boded down o
Method 1 as a special case.

20 We have transfommed the decision table constructed
from the initial data by dividing it into subtables, each
corresponding Lo a decision attribute of the given system.
The mital table gave nse o discemibility funcuons
[computed by (12)] with too large a number of com-
ponents and hence, a network with a huge number of
hidden nodes. The computational complexity of such
a network was not considered w be feasible. On the
contrary, the subtables resulted in the generation of
discemibility functions with less components and thus
finally, a less cumbersome (more efficient) network.

3) Each decision table considered so far is cleady consis-
lenl.

4) Any comparative study of the performance of ow model
should consider the fact that here the appropriate number
of udden nodes 15 automatically generated by the mough-
set theoretic knowledge encoding procedure. On the
other hand, both the fuzzy and conventional versions of
the MLFP are mequired to empirically generate a suitable
size of the hidden layer(s). Hence, this can be considered
to be an added advantage.

V1. CONCLUSIONS

A methodology integrating rough sets with fuzey MLP
for designing a knowledge-based network is presented. The
effectiveness of rough set theory is utilized for encoding the
crude domaim knowledge through concepts ke discermibility
matix and function, reducts, and dependency factors. Two
algonthms, applicable to convex and concave decision regions,

are derived. This investigation not only demonstrates a way of
mtegrabng rough sets with neural networks and fuzzy sets, but
also provides methods that are capable of generating the ap-
propriate network architecture and improving the classification
performance. The incorporation of fuzziness al various levels
of fuzzy MLP also helps the resuliing knowledge-based system
to efficiently handle uncertain and ambiguous information both
at the input and the output.

As was remarked earlier, a study of an mtegration, in-
volving only neural nets and rough sets, was presented by
Yasdi [15]. However, only one layver of adaptive weights was
considered while the input and output layers involved fixed
binary weights. Max, Min and Or operators were apphied at
the hidden nodes. Besides, the model was not tested on any
real problem and no comparative study was provided o bring
oul the effectiveness of this hybrd approach. We, on the other
hand, consider here an integration of the three paradigms,
viz., neural nets, rough sets and fuzzy sets. The process of
ruke generation and mapping of the dependency lactors o the
connection weight values 1s novel o our approach. Moreover,
the three-layered MLP used has adaptive weights at all layers.
These are imitially encoded with the knowledge extracted from
the data domain in the form of dependency rules, and later
refined by raining. Effectiveness of the model is demonstrated
on both real-life and artificial data.

Our objective was to demonstrate the effectiveness of the
rough-fuzey MLP on difficult classification problems. The data
sel used mvolves the overlapping classes of the Vowel data
and the lneardy nonseparable, nonconvesx, disjoint classes of
the Pat data. Both cases could not be suitably classified by
the conventional MLP. The furzy MLP splits the feature
space into 3" overlapping linguistic paritions, thereby han-
dling more local information about the input. The output is
modeled o terms of class membership values, appropriately
taking care of fuzzyoverlapping classes. This accounts for
the suitability of the fuzey MLP in classifying these data.
Incorporation of rough set-theoretic concepts for encoding the
initial knowledge of the fuzzy MLP enabled the generation of
the approproate network topology using nonempirical means.
Certain benchmark problems like the classification of Fisher's
Ins data [24] have also been attempted. As the conventional
MLP was sufficiently accurate in classifying this data, there
was no noliceable improvement in the network performance
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by incorporating the more complicated rough-fuzzy concept.
This suggests that the rough-fuzzy MLP can be effectively
used for handling cases where the conventional MLP fails.

Rough set-theoretic technigques are easily applicable 1o
attmbute-value tables with binary entries. This encouraged us
Lo transform the continuous-valued data wo this form. However,
we are currently engaged in extending the algorithm o work
directly on real numbers lying in [0, 1]. This fonnms the next
part of our research.

There are several other related approaches for classification,
other than neural networks. These include the 1D3 algorithm
[25] and classification and regression trees [22], [17]. 1D3
can be very effective under certain conditions, specially if the
data consists of nonnumenc feature values [25]. Numenc data
needs w be opuimally quantized to become applicable. This 1s
not a tivial problem. Application of 1D3 1o the 3n-dimensional
linguistic feature space is an inleresting allernative, 1o the
neuro-rough approach, for fure investigation. Handling of
noisy classification problems, where the distributions of ob-
servations from the different classes overlap, is difficult using
the classification and regression trees [26]. This is evident from
Table 11 Another interesting direction of future research would
be o incorporate the fuzzy membership concept in such tree
structures, o cireumvent this problem.
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