Pattern Recognition 43 (200107 1282-1201

Shadowed c-means: Integrating fuzzy and rough clustering

Sushmita Mitra®*, Witold Pedrycz®, Bishal Barman €

* Machine Intefligence Unit, Indion Sraristical nstituce, Kolkata 700 108, India

" Eloctrical and Computer Engineering Department, University of Alberta, Edmonton, Canada T&G 267
* Electrical Engineering Department, 83 Natonal Institure of Technology, Suwrat 385 007, indio

ABSTRACT

A new method of partitive clustering is developed in the framework of shadowed sets, The core and
exclusion regions of the generated shadowed partitions result in a reduction in computations as
compared to conventional fuzzy clustering. Unlike rough clustering, here the choice of threshold
parameter is fully automated. The number of clusters is optimized in terms of various validity indices. It
is observed that shadowed clustering can efficiently handle overlapping among clusters as well as
madel uncertainty in class boundaries. The algorithm is robust in the presence of outliers. A
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1. Introduction

The goal of clustering is to partition N patterns into ¢ desired
clusters with high intra-class similarity and low  inrer-class
similarity while optimizing an objective function. It pertains to
unsupervised learning, when data with class labels are not
available. In the partitive approach one needs to provide the
desired number of clusters ¢ The traditional c-means algorithm
| 18] represents each such cluster by its center of gravity. There
exist several other variations, like partitioning around medoids
(PAM) [5] and c-modes clustering [4)]. differing mainly in the
manner of choosing their cluster prototypes,

Saft computing is a consortium of methodologies that works
synergistically and provides flexible information processing
capability for handling real life ambiguous situations [20]. Its
aim i5 to exploit the tolerance for imprecision, uncertainty,
approximate reasoning, and partial truth in order to achieve
tractability, robustness, and low-cost solutions. The main con-
stituents of soft computing, at this juncture, include fuzzy logic,
neural networks, genetic algorithms and rough sets. The use of
soft computing in clustering large data has been reported in
literature [9]. Fuzzy sets and rough sets were incorporated in the
c-means framework to develop the fuzzy c-means (FCM) [1],
rough c-means (RCM) [7.10,15] and rough-fuzzy c-means (RFCM)
[10,8] algorithms, respectively, While membership in FCM enables

comparative study 15 made with related partitive approaches. Experimental results on synthetic as well
as real data sets demonstrate the superiority of the proposed approach,

efficient handling of overlapping partitions, the rough sets [12]
deal with uncertainty, vagueness and incompleteness of data in
terms of upper and lower approximations,

Questions have been raised about the modeling of a vague
phenomenon with precise numeric membership values. In order to
disambiguate and capture the essence of a distribution, recently
the concept of shadowed sets has been proposed in the literature
[13]. It shares a close relationship with Lukasiewicz's concept of
three-valued logic [ 1G], as it tends to partition the distribution into
three distinct zones, viz., core, shadowed and exclusion zones,

Refinement to the existing fuzey and rough clustering ap-
proaches, based on the concept of shadowed sets, is proposed in
this article. Shadowed clustering serves as a conceptual and
algorithmic bridge between the FCM and RCM, thereby incorporat-
ing the generic merts of both these approaches. Originally,
shadowed sets were introduced to characterize fuzzy sets. In this
sense they were induced by fuzzy sets., and hence they were
algorithmically implied by fuzzy sets. If used as stand-alone
constructs in clustering, they are different from fuzzy sets as they
introduce [0.1) intervals to denote only those points for which we
have no information regarding belongingness. This uncertainty
among patterns lyving in the shadowed region is efficiently handled
in terms of membership. On the other hand, the contrast between
the core and the exclusion zones is enhanced; thereby reducing
computation in these regions which are modeled as {1,0}. While in
fuzzy sets we use membership values [1, 0] for the entire region, in
shadowed sets the membership calculations are restricted to the
shadowed region only. Analogously, in rough sets, it corresponds to
regions outside the lower approximation and within the upper
approximation. However, in rough sets we have an added burden of
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several user-defined parameters. The issue of automated threshold
selection in shadowed sets is analyzed in this context.

There is a strong motivating factor behind the use of shadowed
sets in pattern recognition. The three-valued logic along with the
detailed algorithmic setting, showing how shadowed sets are
constructed, are crucial to the design of classifiers and interpreta-
tion of classification results obtained in this manner. In addition to
the binary yes-no classification results, we are also provided with
a region in the feature space with the ‘don't know” quantification.
This description is crucial to the prudent generation of the class
assignment. In the third, ‘don't know” scenario, the classifier is
self-flagging—which means that in such cases we are at position
to examine the existing evidence about the pattern under
discussion before proceeding with making decision about assign-
ing class label,

The salient features of the algorithm include: (i) reduction in
the number of user-defined parameters and (ii) robustness o
presence of outliers. The Davies-Bouldin [2], Xie-Beni [19] and
Silhouette [17] clustering wvalidity indices are employed (o
generate the optimal number of clusters ¢ The superior
comparative performance of the proposed algorithm is estab-
lished on four sets of real and synthetic data.

The rest of the paper is organized as follows. Section 2 outlines
the existing partitive algorithms in the soft computing framework.
Walidity indices, to optimize the number of clusters, are also
described. Section 3 presents the central idea of shadowed sets
along with the proposed shadowed c-means clustering algorithm.
Comparative experimental results on synthetic as well as real data
demonstrate, in Section 4, the effectiveness of the proposed
clustering method. The article is concluded in Section 5 with a
discussion on the applicability of the obtained results,

2. Soft partitive clustering and validation

In this section we describe a few soft computing-based
partitive clustering algorithms. These include the fuzzy c-means
(FCM), rough c-means (RCM) and rough-fuzzy c-means [RFCM)
algorithms. The objective is to contrast the essence of each of
these algorithms in a unified fashion,

The conventional c-means algorithm [18] proceeds by parti-
tioning N objects %, into ¢ non-empty subsets, During each
partition, the centroids or means of clusters are computed as

3 Ext - U:“k
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where |g;] is the number of objects in cluster U,. The process is
repeated until convergence, i.e., there are no more new assign-
ments of objects to the clusters.

2.1, Fuzzy c-means (FCM)

This is an extension of the c-means algorithm, as proposed by
Bezdek [1]. in the sense that we allow for partial membership of
patterns to clusters, It partitions a set of N patterns {x,) into ¢
clusters by minimizing the objective function

N &
T= 3% )" lx, — vl (2
k=1i=1
where m = 1 is the fuzzifier, vy 2 [0, 1] is the membership of the k
th pattern to cluster center v, and .1 is the Euclidean distance,
such that
M ]
v, = E.i; L :J.: 3
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and
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U = 2im=1 i4)
s (%)
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wi, with dy =%, —wl* subject to %°_,up=1, wk, and

0= }:L".. 1 U = N. The object assignment and mean computation
are repeated until Jug(t) — Ut — 1) < £ at iteration t. Note that
for ug e (0,17 the objective function of Eq. (2] boils down to the
hard c-means case, whereby a winner-take-all strategy is applied
in place of membership values in Eq. (3).

2.2, Rough c-means (RCM)

In rough sets [12] we approximate a rough (imprecise) concept
by a pair of exact concepts, called the lower and upper
approximations. The lower approximation is the set of objects
definitely belonging to the vague concept, whereas the upper
approximation is the set of objects possibly belonging to the same,
Fig. 1 provides a schematic diagram of a rough set X within the
upper and lower approximations, consisting of granules coming
from the rectangular grid.

In RCM, the concept of c-means is extended by viewing each
cluster as an interval or rough set [7] X, It is characterized by the
lower and upper approximations BX and BX, respectively, with the
following properties: (i) an object %, can be part of at most one
lower approximation; (ii) if x, = BX of cluster X, then simulta-
neously %, e BX: and (iii) il %, is not a part of any lower
approximation, then it belongs to two or more upper approxima-
tions. This permits overlaps between clusters.

The right hand side of Eq. (1) is split into two parts. Since the
patterns lying in the lower approximation definitely belong to a
rough cluster, they are assigned a higher weight that is controlled
by parameter wy,,. The patterns lying in the upper approximation
are assigned a relatively lower weight, controlled by parameter
Wy during computation. The centroid of cluster U; is determined
[10,15] as
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Fig. 1. Lower and upper approximations in a rough set
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where the parameters wy,, and wy, correspond to the relative
importance of the lower and upper approximations, respectively,
Here |BU;| indicates the number of patterns in the lower
approximation of cluster U;, while |BU; — BU;| is the number of
patterns in the rough boundary lying between the two approx-
imations. Let dy. be minimum and dj. be next to minimum.

If dy, —dy; is less than some threshold

then x, = BU; and x,  BU; and %, cannot be a member of any
lower approximation,

else x, ¢ BU; such that distance dy is minimum over the ¢
clusters.

The mean computation is repeated until there are no more new
assignments of objects. Expression (5] transforms to (1) when the
lower approximation is equal to the upper approximation,
implying an empty boundary region.

It is observed that the performance of the algorithm is
dependent on the choice of Wi, wup and threshold, The parameter
threshold measures the relative distance of an object x, from
a pair of clusters having centroids v; and v, The parameter wi,
controls the importance of the objects lying within the lower
approximation of a cluster in determining its centroid. Hence an
optimal selection of these parameters is an issue of reasonable
interest.  We allowed wyp=1-Wye 05<wy, <=1 and
0 = threshold < 0.5.

2.3, Rough-fuzzy c-means [RFCM)

A rough-fuzzy c-means algorithm, involving an integration of
fuzzy and rough sets, has been developed [10], This allows one to
incarporate fuzzy membership value uy, of a sample x;, to a cluster
mean v, relative o all other means vvj = I, instead of the absolute
individual distance d;; from the centroid. This sort of relativistic
measure, in terms of Egs. (3] and (4), enhances the robustness of
the clustering with respect to different choices of parameters. The
major steps of the algorithm are provided below.

1. Assign initial means v; for the ¢ clusters,

2. Compute wy by Eq. (4) for ¢ clusters and N data objects.

3. Assign each data object {pattern) x;, to the lower approxima-
tion BU; or upper approximation BU;, ELII- of cluster pairs U, U;
by computing the difference in its membership w; —uy to
cluster centroid pairs v; and ;. Distances dy,. ¥i, are normalized
in|0,1].

4. Let uy. be maximum and wy, be the next to maximum.

IF uy, — vy, is less than some threshold

then x; e BU; and %, = BU; and x, cannot be a member of any
lower approximation,

else x; = BU; such that membership wu;, is maximum over the ¢
clusters.

5. Compute new mean for each cluster U;, incorporating (3) and
(4] into (5, as
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G, Repeat Steps 2-5 wuntil convergence, i.e., there are no more
New assignments.

As in the case of RCM, we use wiyp =1 — W, 05 =Wy <=1.m =2,
and 0 - threshold = 0.5, Analogous to (5), here the terms on the

right hand side indicate computations in the non-empty lower
approximation and boundary region, respectively. Additionally,
the membership concept is incorporated in the rough-fuzzy
formalism.

3. Shadowed c-means

Extending the concept of c-means algorithm, a novel clustering
algorithm called shadowed c-means (5CM) is proposed here.
Shadowed sets come as an interesting formal construct in
Granular Computing in the sense that they help ‘localize
uncertainty of membership grades in some selected regions of
the universe of discourse and elevate or reduce membership
grades in some other regions. In this sense, we arrive at a
construct in which the resulting uncertainty is reflected in the
form of the unit interval. The underlying algorithm offers a well-
defined way of forming a shadowed set on a basis of the detailed
numeric membership grades of fuzzy sets, [t is able to efficiently
handle overlaps among clusters, while modeling uncertainty at
the boundaries. The algorithm is robust to the presence of outliers.
Cluster validity indices are used to determine the optimal number
of clusters.

At the onset we present the central idea of shadowed set
theory [13.3] and its inherent three-valued logic [16]. The
optimization equation to automatically determine the threshold
parameter is delineated. Various cluster validity indices, like
Davies—Bouldin, Xie-Beni and Silhouette, are also outlined. A few
analytical questions are finally discussed, regarding the optimum
threshold computation,

3.1 Shadowed sets

Comventional uncertainty models like fuzzy sets tend to
capture wvagueness exclusively through membership wvalues.
This poses a dilemma of excessive precision in describing
imprecise phenomenon. The notion of shadowed sets tries to
solve this problem of selecting the optimum level of resolution in
precision,

The motivation behind the debate on excessive precision of
fuzzy sets is the conceptual shortcoming associated with precise
numeric values of membership used to describe vague concepts.
While there is hardly any difficulty in assigning membership
grades close to 1 or 0, a lot of uncertainty prevails during the
assignment of membership grade of 0.5. Based on this central
idea, Pedrycz [13] developed the concept of shadowed sets to
improve the observability and interpretability of vague phenom-
N0,

Consider a fuzzy set J as depicted in Fig. 2. We attempt to
modulate the membership values [MVs) on the lines of three-
valued logic by elevating and reducing some MVs and balancing
the uncertainty thus introduced. The elevation, reduction and
balance of uncertainty is quite radical. We try to disambiguate the
concept represented by the original fuzzy set by promoting a few
of the MVs to one and reducing a few other MVs to zero, Such
enhancement of contrast reduces the number of computations as
compared to the fuzzy framework, In order to maintain the overall
level of vagueness, some other region is defined as the zone of
uncertainty. Provision is made so that this particular area of the
universe of discourse has intermediate membership values on a
unit interval between |0, 1], but left undefined, Rather than a
single value, the entire unit interval can be marked as a non-
numeric model of membership grade, Mote that to induce a
shadowed set, a fuzzy set must accept a specific threshold level.
Effectively, this transforms the domain of discourse into clearly
marked zones of vagueness. This mapping is called a shadowed
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Fig. 2. The fuzzy set | inducing a shadowed set via a threshold.

set, and is defined as
JX—{0,1,[0,1]).

Here elements with grade equal to one constitute the core, while
the elements with J(x)=[0,1] lie in the shadow of the mapping;
the rest form the exclusion, These zones are clearly demarcated in
Fiz. 2. Originally, shadowed sets were introduced to characterize
fuzzy sets.

The most appealing question concerns the computation of the
threshold. Pedrycz proposed an optimization based on balance of
vagueness. Reduction of some MVs to zero and elevation to one
should be compensated by marked indecision in the other zones,
or increased uncertainty in MVs in the form of a unit interval [0, 1]
over particular ranges of J. A particular threshold £ is selected for
the gquantification process and is expressed in terms of the
relationship

Ly = Lz
f J:x}dx+[ (1 —J[xndx—f dx
s La L

where A =(0.4) such that ¢4)=0. The three terms on the right
hand side of Eq. (7) correspond to regions Ay, A; and A; in Fig. 3.
The parameters Ly, and Ly denote the boundaries in the integral,
delineating the regions in the figure where the membership
values are below the threshold 2 and above the threshold 1 - 4

Shadowed sets reveal interesting relationships with rough sets.
Although conceptually similar, we must remember that the
mathematical foundation of rough sets is very different. In rough
sets, approximation spaces are defined in advance and the
equivalent classes are kept fixed. On the other hand, in shadowed
sets the class assignment is dynamic.

In the discrete domain, Eq. (7) gets transformed to

Q= ' i

A= E Uy + Z (U, — i) — card{xy |4 =
Ry lng = & Byl & Wy =
< (M. _*‘-':-l]]!- (8]
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Fig. 3. Computing the threshold A via an optimization: A1 +A2 = card{A3].

such that
A = Aggr = argmin O(,), i
g

where uy, u;  and u;  denote, respectively, the discrete, the
lowest and the highest membership values to the § th class.
Computation of the threshold - for common membership
functions, such as the triangular and Gaussian, has been reported
in the literature [14]. The minima of ¢ <) leads to the evaluation of

Aogr.

3.2, Shadowed clustering

Based on the concept of shadowed sets, we develop here the
shadowed c-means clustering algorithm or 5CM. The gquantization
of the MVs into core, shadowed and exclusion region permit
reduced computational complexity [13]. We believe that the
elements corresponding to the core should not have any fuzzy
weight factor in terms of its MV, In other words, unlike uniform
computation of MVs as in FCM, here the MY should be unity for
core patterns while calculating the centroid. The elements
corresponding to the shadowed region lie in the zone of
uncertainty, and are treated as in FCM., However, the members
of the exclusion region are incorporated in a slightly different
manner. Here the fuzzy weight factor for the exclusion is designed
to have the fuzzifier raised to itself, in the form of a double
exponential. The centroid for the i th class is evaluated as

- Lt — m"
v = ?’f--m_:lnr..= = [y = ﬁ.l“k+1-ll|5| = By < |||,,LM--.-’.l':t’ldh’-I “'ﬁ+}-:glnr..= = 4.[ulk:' X

ety = Ky
(1)
where
quz.=r:ard {xHL!,'J,-E':ur',,H. _;"‘”’ {11]
0= % (W)™ "
Xl = My =AM, — 44
h= ¥ W, w

t AT

and 4; is the corresponding threshold. This arrangement causes a
much wider dispersion and a very low bias factor for elements
which can generally be considered outside the class under
discussion or most definitely, the exclusion members. This
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prevents the mean from getting drifted from its true value. It also
minimizes the effect of noise and outliers, The threshold to induce
the core, shadowed and exclusion region is automatically
calculated through a functional optimization using Eq. (8)

The mean in Eq. (10} basically tries to first get a coarse idea
regarding the cluster prototype (using the first term in the
numerator and denominator, respectively] and then proceeds to
tune and refine this value using data from the shadowed and
exclusion region, This enables a better estimation of the actual
cluster prototypes. The major steps of the algorithm are outlined
below.

1. Assign initial means, v, i=1,..., . Choose values for fuzzifier,
m and fpae. Set iteration counter f=1.

. Repeat Steps 3-5 by incrementing ¢ until no new assignment
is made and t < tinas.

. Compute uy by Eq. (4) for ¢ clusters and N data objects.

5 Mitra er al. / Pattern Recognition 43 [2010) 1282-12971

The range of feasible values of 4; for the i th class could be taken
as [y, Uiy, + Uiy, (2]

3.3 Validity indices

Partitive clustering algorithms typically require pre-specifica-
tion of the number of clusters. Hence the results are dependent on
the choice of ¢. However, there exist validity indices to evaluate
the goodness of clustering, corresponding to a given value of c. In
this article we compute the optimal number of clusters o in terms
of the Davies-Bouldin cluster validity index [2], Xie=Beni index
[19] and Silhouette index [17].

1. The Davies-Bouldin index is a function of the ratio of the sum
of within-cluster distance to between-cluster separation. The
optimal clustering, for ¢ = oy, minimizes

3 €
1 | i 1 d, {Uﬂ'}' d, {U,l]
4. Compute threshold 2; for the i th class, in terms of Eq. (8). DB = = Z T_ﬁéﬁ{w 14y
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Fig. 4. Synthetic data X32: (a) original, and after clustering with: (b) HCM; (¢} FCM; (d) RCM; {e) RFCM: and (1] SCM algorithms,
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for 1=k l=c In this process, the within-cluster distance Table 1
dy iU is minimized and the between-cluster separation Cluster validity indices, for tweo clusters, on synthetic data X332,
dl.{l'.»f_k,lm} is malxjmlzed. T_he distance _-:an be chosen as the L T = i S TE
traditional Euclidean metric for numeric features.
2. The Xie-Beni index [19] presents a fuzzy-validity criterion Davies-Bouldin 06550 05973 05034 05973 0.5611
based on a validity function which identifies overall compact Kie-Beni 05210 04560 04572 04477 0.3996
Silhouette —-0.G0EY 02233 —0.2411 02384  —-0D20N3

and separate fuzzy c-partitions. This function depends upon
the data set, geometric distance measure, distance between
cluster centroids and on the fuzzy partition, irrespective of any
fuzzy algorithm used.

We define y as a fuzzy clustering validity function

—, r
1_11,]_1u ey — x5l

N min;;lv; — vj.ll

i

51

In case of FCM and RFCM algorithms, with m = 2, (15) reduces
o

N
S_m. (16
where 7 is the fuzzy objective function of (2) and

dinin = minIv; — \rJu!. The more separate the clusters, the
larger dyy, and the smaller . Thus the smallest ¥, correspond-
ing to ¢ =cy, 15 indeed indicative of a valid optimal partition.

. The Silhouette statistic [17], though computationally more
intensive, is another way of estimating the number of clusters
in a distribution. The Silhouette index, 5, computes for each
point a width depending on its membership in any cluster. This
silhouette width is then an average over all observations. This
is expressed as

e parL

where N is the total number of points, a; is the average distance
between pattern x; and all other points in its own cluster, and
b; is the minimum of the average dissimilarities between x;
and patterns in other clusters. Finally, the global silhouette
index, 5, of the clustering is given by

-1ys
k—l

The partition with highest 5 is taken to be optimal.

b —

17
maxia;, by’ L

(18)

34 Salient features

The proposed shadowed c-means (SCM) clustering algorithm
evaluates the centroids in a manner 5o as to minimize the

influence of outliers as well as patterns having minimal typicality
with the concept under consideration. Some of the characteristics
of 5CM, that make it unique as compared to the better-known
FCM, RCM and RFCM algorithms, could be identified as follows;

1. For elements having MV above the calculated threshold, the
algorithm does not attempt fuzzification as in FCM. This
philosophy provides a much stronger bias to core members
and prevents the most-likelihood estimate for a given cluster
from drifting away, This is expected to reduce the computa-
tional burden.

. A comparison with the RCM and RFCM algorithms exhibits the
absence of external user-defined parameters, such as wi,.
Wipper ancl threshold, in 5CM clustering. This completely
eliminates the idea of tuning an algorithm before its actual
execution. The removal of this initial trial and error factor
makes SCM more robust as well as insensitive to the
fluctuations in the incoming data.

. The radical elevation and reduction of the MVs to 1 and 0,
respectively, results in a marked contrast enhancement in the
observability of the incoming data. During the clustering
process, this helps in filtering out a lot of insignificant
information in the initial stages of the iteration, thus focusing
on the ambiguous boundary region and thereby gaining in
terms of the quality of the results.

The proposed way of forming of shadowed sets dwells upon the
ariginal FCM method and provides a clear way of delineation
between core, shadow and exclusion range. It is of significant help
in the interpretation of clustering results, It also makes it clear as
whether to proceed with further processing of data or just make
decisions on the basis of the already reported results. Like any
other mean-based partitive clustering approach (say, HCM and
FCM), the results of 5SCM are dependent on the initial choice of
means. Therefore, an average over several runs needs to be
computed. Analogous to HCM and FCM, algorithm SCM has
limitations with non-convex partitions. Moreover, when the
clusters are well-separated and disjoint the HCM is likely to
perform more efficiently.
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Fig. 6. Synchetic data X45: (a) original, and after clustering with; (b} HCM; {c] FCM; (d) RCM; (e} RFCM: and [F] SCM algorithms for © = 3,

SCM, to some extent like the possibilistic approach to
clustering [6). tries to minimize the influence of the position of
the centroids of other clusters while calculating the mean v; for a
given cluster, It represents the extent to which a data point
belongs to a particular cluster, and has an exponentially decreas-
ing nature as the point drifts further away from the prototype.

There are several essential parameters of the clustering
method; however, the choice of their values does not cause any
substantial hesitation. As usual, the number of clusters is very
much implied by the nature of the problem at hand. Here with the
shadowed sets involved, one can anticipate that the upper bound
of the number of clusters could be guided by the overlap criterion
of the cores of the clusters, i.e., the number of clusters should not
exceed a critical value at which any two of the cores of the clusters
overlap. The fuzzification coefficient (m) could be optimized,
however, it is common to assume a fixed value of 2.0. The choice
of m=2.0 is associated with the form of the membership
functions of the generated clusters,

In the following section we present a comparative study with
HCM, FCM, RCM and RFCM to experimentally validate these
claims.

Tabhe 2
Cluster validity indices for synthetic data X45,

Index ¢ HCM FCM RCM RFCM SCM
2 04238 04154 0.3521 04007 0.4302
Davies 3 03343 03878 03418 03873 0.2964
Bouldin 4 05994 (G829 04246 06268 03754
5 04974 07662 04976 05408 0O6GO3
i 01483 01730 01443 01730 01461
Xie 3 07153 01204 01230 01174 01042
Beni 4 01619 05340 O5E10 04202 0.4639
5 04004  QGBE0 05050 04912 04310
2 —05888 —04902 —04908 04902 —05523
Silhoustte 3 —0.3812  —03666 —03807 —03812 —0.3442
e 4 _0DES05  —0.7139 07239 06562 —0.5G465
5 —07790 —07252 —08364 07950 —0.B097
4. Experimental results
The different clustering algorithms were implemented

on four sets of synthetic and real data, for a detailed comparative
analysis of the partitions—both qualitatively and quantitatively.



5. Mitra et al. { Pattern Recognition 43 (2000) 1282-1291 1289

-
Lo L ow
Xr 7 shairw e * W abeadiw

] LA L = andlemdcn

Fiiura 2
Faalaii 2

B ) n
7
7 A
I . " \ . o L L . i .
z 4 = ] ] e, 4 ] 1 ] 3 z [ ] ] 2 1 ]
Famur 1 Faatre |
1
L -
1 " v sradaw
*  muclusiar
15
L] v
z v
|
“ o
Bt
e L il L L L L PR
n F] 1 B o o 12 14 16 1]
Frahua |

Fig. 7. Global view of exclusion and shadow regions, with the core being: (a) cluster 1, (b) cluster 2 and {c] cluster 3, using SCM on X45.

The two sets of synthetic data, viz., X32 and X45, consist of 32 and and its corresponding regions of exclusion and shadow are
45 points, and are depicted in Figs. 4(a) and 6{a), respectively, marked. It should be noted that in both the cases, elements
The speech data Vowel [11] is a set of 871 vowel sounds from belonging to one cluster have been readily labeled as exclusion
the Indian Telegu language, obtained by the utterance of three members for the other cluster, even though they were closer as
male speakers in the age group of 30-35 years, in a Consonant= compared to the shadowed region members (located at the top of
Vowel-Consonant context, The three input features correspond to the figure). Unguestionably, the shadowed label is established
the first, second and third vowel format frequencies obtained anly upon elements which possess sufficient ambiguity to prevent
through spectrum analysis of the speech data. Fig. 8(a) shows the their belonging to any exclusive partition, irrespective of their
six highly overlapped vowel classes &.a.i.u,e,0, marked with proximity to the prototype.
symbols ‘star', ‘plus’, ‘decagon’, ‘circle’, ‘upper triangle’ and ‘cross’, All the cluster validity indices concurred to generate two

respectively. The Iris data from the UCI Machine Learning aptimal partitions for data X32. Table 1 provides the three index
Repository” is a four-dimensional data set containing 50 samples, values for the different clustering algorithms, It is observed that

each of three types of Iris flower. The results, along with the the last column, corresponding to SCM, provides the best
cluster validity indices, are presented here, results—uviz, minimum DB and », and maximum 3.

The second set X45, of Fig. 6(a), has basically three clusters as
4.1, Synthetic data far as visual perception is concerned. Although the clusters are not

as well separated as in X32, yet the results follow a similar
behavior, Table 2 demonstrates that all the validity indices
concurred in generating three optimal partitions. Moreover, the
entries in bold indicate the overall best performance for 5CM
partitions (smallest DB and ¥, and largest §).

Thereafter, we used ¢ = 3 for comparing the partitioning results
in case of the different algorithms. FCM [Fig. 6{c)] and RFCM
|Fig. 6{e]] showed marked quality improvement in handling the
overlap of the boundary between the clusters, as compared to
HCM [Fig. 6(b]] and RCM [Fiz. 6{d)]. However, all of them were
afflicted by the outlier located towards the top right side of the
scatter plots. [t is interesting to observe from Fig. 6(f), that 5CM
prevented the centroid of the upper cluster from drifting towards
the noise. The core, shadowed and exclusion regions are also
plotted in Fig, 7, for the three clusters. Considering any of the
clusters as the core, in turn, leads to an automatic clubbing of the
o other two into its exclusion zone, The shadow region encompasses

' hitp: ) wewwics uci.edu) ~ mlearn the most ambiguous patterns.

There are two clusters in X32, with three outlier patterns as
marked on the upper part of the scatter plots in Fig. 4. These have
been purposely inserted in order to test the ability of the
algorithms to resist any bias during the estimation of cluster
prototypes. The centroids are marked by rectangles on the
figure.

It can be easily seen that noise or outlier has maximum effect
on HCM [Fig. 4(b)] and RCM |Fig. 4{d)], while FCM [Fig. 4(c)] and
RFCM [Fig. 4(e]] show reasonable improvement. Mot surprisingly,
SCM |Fig. 4(f)] generates the best estimation of the centroids in
this scenario. Fig. 5 exhibits the detailed mechanism through
which the quantification of the membership values result in core,
shadowed and exclusion regions in the proposed clustering
algorithm, Here each cluster is considered, in turn, as a core,
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42 Real data

The boundaries portrayed in the scatter plot of Vowel, as
observed from Fig. 8(a), are quite fuzzy. The partitioning produced
by the algorithms HCM, FCM, RCM and RFCM are depicted in parts
(b)-(e} of the figure, while part (f} corresponds to the proposed
SCM. The validity indices in Table 3 demonstrate the best results
with SCM for ¢ = 6. This corresponds to the actual number of vowel
categories under consideration. For example, in case of HCM, FCM
and RCM, we observe that DB is indicative of incorrect optimization
at five partitions. On the other hand, SCM provides better modeling
of the uncertainty in the overlapped data in all cases.

Table 4 presents the results for Irs data. One of the three
clusters in this data is well separated from the rest, while the
remaining two clusters are overlapped. All three indices concur in
indicating three optimal partitions for SCM, thereby tallving with
the actual number of flower types.

5. Discussion and conclusions

A novel partitive shadowed clustering technique has been
described in the hierarchy of the general c-means algorithms, The

Ovgnal Twowe! Datasel

Faard Fraturs?

main objective was to reduce the effect of external parameters on
the performance of the algorithm. Refinements to the existing
fuzzy and rough clustering algorithms in the framework of
shadowed sets were proposed, culminating in the shadowed
c-means algorithm, Faster convergence and better management of
uncertainty resulted in a more realistic modeling of the data. 5CM
demonstrated that it is possible to filter out irrelevant information
while remaining in the fuzzy framework, thereby resulting in an
unbiased estimation of the prototypes, The performance of SCM
was also found to be robust in the presence of outliers.

It is worth noting that the advantage of 3CM comes with the
interpretation abilities offered by this clustering technigue. The
three-valued quantification of the resulting structure of clusters
helps us easily identify regions (and patterns) which may require
further attention while pointing at the core structure and patterns
that arise with high values of typicality with respect to the
detected clusters,

Future work aims to focus on the mathematical basis of the
existence of a minima in the optimization process of the threshold
and on the possible existence of two or more extremum points.
This work along with the proof of convergence of the algorithm is
being currently investigated.

Ebacowid C-Maass

Faslatal Foaue

Fig. 8. Speech data Vowel: (a) original, and after clustering with; (b} HCM; (c] FCM: (d) ROM: (e) RFCM; and {1 SCM algorithms for ¢ = 6.
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