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Abstract

Symbolic fuzzy classification is proposed using fuzzy radial basis function network, with fuzzy c-medoids clus-
tering at the hidden layver. Symbolic objects include linguistic, nominal, boolean and interval-type of features, along
with quantitative attributes. Classification and clustering in this domain involve the use of symbolic dissimilarity
between the objects. Fuzzy memberships are used for appropriately handling uncertainty inherent in real-life de-
cisions. The fuzzy radial basis function (FRBF) network here comprises an integration of the principles of radial
basis function (RBF) network and fuzzy e-medoids clustering, for handling non-numeric data, The optimal num-
ber of hidden nodes is determined by using clustering validity indices, like normalized modified Hubert's statistic
and Davies—Bouldin index, in the symbolic framework. The effectiveness of the symbolic fuzzy classification is
demonstrated on real-life benchmark data sets. Comparison is provided with the performance of a decision tree.

Keywords: Radial basis function network; Fuzzy clustering; Symbolic object; Symbolic classification; Fuzzy classification;
Walidity index

1. Introduction

Symbolic or categorical clustering refers to the clustering of symbolic (or categorical) data. This 1s
important from the point of view of data mining, where one has to mine for information from a set of
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symbolic objects. Symbolic objects are defined as the logical conjunction of events linking values and
variables. The following are two examples of events: e; = [color = {white, blue}], &2 = [height =
[1.5—2.0]]. Here e indicates that the variable color takes a value either white or blue, while e- indicates
that the variable height takes a value between 1.5 and 2.0. For simplicity, we can drop the vanable
name and only take the value of that feature variable. Symbolic objects are defined by attributes that can
be quantitative (numeric or intervals) as well as qualitative. The similarity and dissimilarity measures
between symbolic objects are determined based on their position, span and content [4].

Soft computing is a consortium of methodologies that works synergistically and provides flexible infor-
mation processing capability for handling real-life ambiguous situations [ 14]. Its aim is to exploit the toler-
ance for imprecision, uncertainty, approximate reasoning and partial truth in order to achieve tractability,
robustness and low-cost solutions. Neuro-fuzzy computing [12] is the earliest and most widely reported
hybridization in this framework. This integration provides intelligent systems, in terms of parallelism,
fault tolerance, adaptivity and uncertainty management, in order to handle real life recognition/decision-
making problems.

The radial basis function (RBF) [11] is a three-layered network, typically used tor supervised classifi-
cation. The hidden layer performs crisp clustering using Gaussian basis function at the nodes. The output
layer performs a linear combination of the weighted activations from the hidden layer. The fuzzy RBF
(FRBF) [10] is designed by integrating the principles of RBF network and the fuzzy e-means (FCM)
algorithm [1]. It incorporates fuzzy set-theoretic concepts at the input, output and hidden layers. The
model can handle both linguistic and numeric inputs, and provides soft decision in case of overlapping
pattern classes at the output. The use of FCM in the hidden layer allows the network to provide a more
accurate representation of real-life situations, where a pattern can have finite non-zero membership to
two or more classes. The architecture of the network 1s suitably modified at the hidden layer to realize
the fuzzy clustering algorithm.

Computation of means is often not feasible in the symbolic framework, where numeric data may not
be involved. Instead of the mean, one may use another central tendency termed medoid. This has wide
applications in handling of multimedia data, as required in data mining [9]. In the present article, the
hidden layer of the network is adapted to model the clustering around medoids. The hard and fuzzy
c-medoids clustering [7] 1s incorporated at the hidden layer of the RBF and FRBF, respectively. The
novelty of the proposed method lies in its ability to handle optimal number of clusters, followed by an
effective classification in the symbolic framework.

The hard and fuzzy c-medoids algorithms are used to generate the optimal number of clusters, as
determined by the validity indices. Different indices [2,6]. like Normalized modified Hubert's statistic
and Davies—Bouldin index, are used in the symbolic framework [8], with the dissimilarity measure
expressed in terms of symbolic distance. They help determine the optimal number of hidden nodes for
the FRBF and RBF networks. These models are used for classifying symbolic data. Results are provided
on real-life benchmark data sets.

The major contribution of this article lies in incorporating clustering and vahidity indices in the sym-
bolic domain (as described in Ref. [8]) into the radial basis function framework. Fuzzy set-theoretic
concepts are used for fuzzy clustering as well as classification, thereby enabling more efficient han-
dling of real-life overlapping data. Both the hard and fuzzy c-medoid algorithms are used in the RBF
and FRBF, respectively, to generate the optimal number of hidden nodes. Finally, the output layer of
the FRBF performs fuzzy classification. The FRBF is observed to perform consistently better over all
datasets.
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The article is organized as follows. Section 2 provides a basic understanding of the fuzzy radial basis
function (FRBF) network. The notion of symbolic partitions and different validity indices is described
in Section 3. The design of the symbolic FRBF, with medoids-based clustering at the hidden layer, is
discussed in Section 4. The results of the proposed system are presented in Section 5, along with a
comparison with the performance of a decision tree, viz., ID3 [13]. Section 6 concludes the article.

2. Fuzzy radial basis function network

The FRBF network [10] incorporates an amalgamation of FCM clustering at the hidden layer of the
RBF network. The input space is partitioned using overlapping linguistic sets, thereby utilizing more local
information that aids in better classification. Each input feature X ; is expressed in terms of membership
values to each of the three linguistic property sets low, medium and high. Therefore, an n-dimensional
pattern X = [Xi1. Xiz, ... Xin] is represented as a 3n-dimensional vector

[t 23] = [Miowexny XD -+ highcx,y X (1)

Here, the linguistic properties low, medium and high are modeled using | — 8§, m and § functions [12],
respectively. The output is provided in terms of class membership values to the / classes, such that
B (e) sl fork =1, [. This is proportional to the weighted distance of the training pattern from
the kth class mean.

The input-hidden layer weights are initialized by cluster centers using fuzzy c-means, instead of the
more conventional hard c-means. The intermediate (hidden) layer is suitably modified to incorporate
FCM clustering [ 1] during learning, such that each output node receives the weighted membership value
(as opposed to a Gaussian function-based measure of proximity) of the enhanced input vector within each
cluster. The resultant FRBF architecture is depicted in Fig. 1 [10].

In the fuzzy c-means algorithm, the membership value of any pattern vector x; to a class k is represented

as
: @
Wkj = 2/m—-1}"
c el /
i (7)
where dj; is the distance of the pattern vector x ; from the center v;. of the kth cluster. Here
N m
L 2 )%
V= e, (3)

N
Z_}'—] (”kj}m

with fuzzifier 1 < m < o0, such that uy; € [0, 1], for ¢ clusters 1 <k <, for N pattern points 1< j <N,
with ;. ug; = L, for 1< j <N, and Zj’_, ugj = 0, for 1<k <e.

The objective is to do fuzzy partitioning of the data in the hidden layer of the FRBF network. In order
to perform the local computation of Eq. (2), a modified architecture 15 used. Eq. (2) 1s rewritten as

(4)
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Fig. 1. Fuzzy radial basis function (FRBF) network,

where

; 1 (2/m=1)
p = (5) | (5)

The activation of each node in the output layer is given as
A
[
J";P} = Z wa'j“ jps (6)
J=l

where y‘.[p " is the response of the ith output node when x,, is present at the input of the network. u ;, is
the output of the jth hidden node and W;; is the corresponding connection weight (typically initialized to

a random value lying in the range [0, 0.5]). From Egs. (4) and (5), }-‘f”] can be written as
( 1 ¢
=l
where
HP = t P, (8)

i=lI

Eqgs. (5) and (7) reveal that the /;s can be computed locally in the hidden nodes and the activation of the
output nodes can be computed from the hidden node activations with an additional normalization by the
total output in the hidden layer (H;). An auxiliary hidden node 1s used in the FRBF (as shown in Fig. 1)
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to compute the total activation in the hidden layer and feed it to the output layer. The weights of the links
from all hidden nodes to the auxiliary hidden node are set to unity. Note that the membership value uy;

of Eq. (2) is implicitly included in the network architecture in terms of the hidden node activations.
ip

Nemnmizo tEermLE = % iRy — }.J_Lm] during training. The rule for updating the weights,
using the least mean square a]gnritgm, is given as
’ I
ﬁw{tl] f— —ir (*}pr:l ath -‘,FP:');}‘:H]‘ {9)
) ] i i i
Htl

where n 15 the learning rate and + _v:.[ " is the target output in terms of class membership of the training

pattern. Here &Wf-’” is the change in W;; during training when X, is presented at the input in the 3n-

dimensional form of Eq. (1).

3. Symbolic partitions

In this section we describe dissimilarity measure between objects, along with some validity indices in
the symbolic framework. The dissimilarity between two symbolic objects 4 and B is defined as [4.5]

D(A, B) =) D(A;, B, (10)
i=l
where
D(A;, B) = Dp(Aj, Bi) + Ds(A;. Bi) + De(A;. B))

with D,. D, and D (normalized to [0,1]) indicating the components due to position, span and content,
respectively.

Let{X1,.... X¢, | be a set of symbolic objects lying in a cluster Uy. Then the average scatter within
the cluster Uy 1s expressed as
pi 1 X — Xy
S,,{Uk}zz' Ll ’”, (11)
lex|Clex] — 1)
where X;, X;» € U, i # i, |ci| is the number of samples in cluster Uy and || - || indicates the symbolic
dissimilarity of Eq. (10). The between cluster scatter is defined as
i 11X = X511
da (U, Up) = 21X — X, (12)
lexllesd

where X; € Uy, X; € Uy, such that k # [. We have used S, and d;, in our computations, in terms of the
symbolic dissimilarity D of Eq. (10).

To select the best among different partitioning, each of these can be evaluated using some validity
index. The procedure is repeated for c = 2, ..., /N number of clusters, where N is the size of the data
set. Some validation methods, like normalized modified Hubert’s statistic and Davies—Bouldin index, are
used in the symbolic framework [8].
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Let X; be the ith object and L(i) = k if X; € Uy. The modified Hubert’s I statistic for a particular
cluster structure is expressed in terms of symbolic dissimilarity as

N=-1 N
r=) ) DXiX)duULi). ULy (13)
i=1 j=i+l

If X; and X ; lie in two different clusters, d, is computed using Eq. (12). However, when they belong to
the same cluster, dy = 0. From this, we get normalized modified Hubert's statistic I as

N—-1 N _— B
- 1 D(X;, X)) = D¥edo(Upiy, Upr i) — d,
II:E E (D(X;, J} }[ ﬂ.{ Lii) Li_ﬂ} d). (14)
i=1 j=i+l SD3dy
where
{ M=l N
D= Y 3 bxi xp,
i=1 j=i+]
o 1 N—-1 N
da = E Z Z da{UL{jJ. U}'_,U'ﬂ‘
i=1 j=i+l
R i .
55 = = Y. > DX X)-T,
i=l j=i+l
and
] J"lr"'! J!\r 2
5g, = ] Z Z dy ULy, ULy) — da
i=l j=i+l

where M = [N(N — 1)]/2 is the total number of terms under the double summation. Note that M = N 2
if the matrix under summation is not symmetric. The optimal partitioning occurs at ¢ = ¢p for which

MMA'} 15 minimum. This corresponds to a sharp change in slope of the piecewise linear graph for the
normalized modified Hubert’s statistic,

The Davies—Bouldin index is a function of the ratio of the sum of within-cluster scatter to between-
cluster separation. The best clustering, for ¢ = ¢y, minimizes

iimax Sa(Ur) + Sa(U1) (15)
C = I dy (Ug, Uy) '

for 1 <k, ! <c. Here, the within-cluster scatter is minimized and the between-cluster separation 1s maxi-
mized. The index 1s expressed in the symbolic framework.
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4. Symbolic classification using medoids-based clustering

Since computation of means is often not feasible in the symbolic framework, we incorporate the -
medoids and fuzzy c-medoids algorithms at the hidden layer of the RBF and FRBF (Fig. 1), respectively.
The use of fuzzy memberships in FRBF helps in better modeling of uncertain real-life data. Before moving
on to the modeling of the FRBF in the symbolic domain, we provide a brief description of the hard and
fuzzy c-medoids algorithms.

The partitioning around medoids (PAM) algorithim uses the most centrally located object in a cluster,
the medoid, instead of the mean. The basic steps are outlined as follows:

e Choose the first initial medoid as the object that is most centrally located in the data set. Pick ¢ — 1
more objects successively as the subsequent medoids, such that each 1s most dissimilar to the medoids
that have already been selected.

e Assign each remaining data object (pattern) to the cluster for the closest medoid.

e Replace each of the medoids by one of all the non-medoids (causing the greatest reduction in square
error), as long as the quality of clustering improves.

e [terate until the criterion function converges.

The fuzzy c-Medoids clustering performs a fuzzification of the c-medoids algorithm and 1s outlined as
follows:

(i) Pick the initial medoids v;, i = 1, ..., ¢ (as described for PAM).

(i1) Repeat steps (iii)}—(iv) until convergence.
(i11) Compute the fuzzy membership u;, fori = 1,...,candk = 1,..., N, using Eq. (2).
(iv) Compute new medoids

vi = X,, (16)
where
N
= arg min O"NIX G — X2 17
g =arg min 3 ()" |1X; = Xl (17)
k=1
Note that this boils down to the hard c-medoids with u;, = 1, if i = g, and u;; = 0 otherwise.

The FRBF is extended to work in the symbolic domain by incorporating the clustering validity indices
of Section 3 [8] into the radial basis function framework. Fuzzy set-theoretic concepts are introduced
in terms of fuzzy c-medoids clustering at the hidden layer. The use of fuzzy inputs and output class
membership in the FRBF framework enables fuzzy classification, thereby leading to a more efficient
handling of real-life overlapping data.

The hard c-medoids at the hidden layer of the RBF serve as a base for comparison. The inherent
computational complexities of the hard/fuzzy c-medoids clustering, as compared to the hard/fuzzy c-
means clustering, cannot be overcome. However, the utility of medoids in appropriately modeling non-
numeric (symbolic) data, as compared to means, makes them a better candidate for extending the FRBF
to work in the symbolic domain.

In this article, the fuzzy c-medoids clustering is used to determine the optimal number of hidden nodes
of Fig. 1. The cluster medoids v; are computed using Eq. (16). These are used as the cluster centers, in
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place of Eq. (3). The mapping to the hidden nodes of the FRBF is made using Egs. (4) and (5), with
the distance d;; of pattern X; from cluster medoid v; being computed in the symbolic framework of Eq.
(10). Besides, the fuzzy membership u;; of pattern X; to cluster U; [Eq. (2)] now involves this symbolic
distance. The output node activations of the FRBF follow from Eqs. (6)+8). The connection weight
updates are controlled by Eq. (9).

5. Results

The symbolic classification was done on benchmark data, viz., Zoo and Sovbean [3]. Table 1 illustrates
the optimal clustering generated for the two symbolic data sets using the hard and fuzzy c-medoids
algorithms, corresponding to the different clustering validity indices.

Tables 3—4 provide the classification performance of the RBF and FRBF on Zoe and Sovbean data, for
different training set sizes as well as different number of clusters (hidden nodes). Note that the number
of clusters corresponds to the optimal values generated by the different validity indices in Table 1. The
connection weights of the networks were initialized as random values lying in the range —0.1, 0.1}, the
learning rate was set at y = 0.5 in Eq. (9) and the fuzzifier was chosenasm = 1.2 in Eq. (17) after several
experiments. A random training set of size x%. chosen classwise, is selected for training the network.
The remaining (100 — x)% data serves as the test set. The results are provided in the tables for both the
training and testing sets, individual classwise (1, 2, etc.) as well as total (Ner) over all classes. The FRBF
is found to perform consistently better than the RBF in all cases. This validates the necessity of using
the FRBF in the symbolic framework. Table 5 provides a comparative performance of the decision tree
algorithm ID3 [13] over the test set, for the Zoo and Soybean data.

5.1. Zoo data

The Zoo data [3] consist of 100 instances of animals with 17 features. The name of the animal constitutes
the first attribute. There are 15 boolean features corresponding to the presence of hair, feathers, eggs,
milk, backbone, fins, tail; and whether airborne, aquatic, predator, toothed, breathes, venomous, domestic,
catsize. The character attribute corresponds to the number of legs lying in the set {0, 2, 4, 5, 6, 8}.

Table 2 provides a sample-detailed partitioning of the Zoo data, obtained using the Davies—Bouldin
clustering validity index along with the fuzzy c-medoids algorithm. This generated three clusters, with
39, 29 and 32 objects each, corresponding to the last column of Table 1. This is used as the optimal
number of hidden nodes for the FRBF, whose classification performance is demonstrated in Table 3.

From Tables 1 and 2, it is observed that in case of three clusters the partition is made based on criteria
of “producing milk™, “absence of feathers™ and “not producing milk™, and “presence of feathers™ and
“not producing milk™. In case of four and five clusters the separation also involves “having tail™.

Table 1
Optimal clusters with e-medoids algorithm

Data Hard Fuzzy
Huberts statistics Davies—Bouldin Huberts statistic Davies—Bouldin
FLon 5 4 5 3

Sovbean ] 5 8 9
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Tahle 2

Symbolic partitions on Zoo data using Davies—Bouldin index

Cluster Mo, Animals

1 (39) aardvark, bear, girl, boar, cheetah, leopard,

lion, raccoon, wolf, lynx, mongoose, polecat,
puma, mink, platypus, seal, sealion, antelope,
buffalo, deer, elephant, giraffe, orvx, gorilla,
wallaby, calf, goat, pony, reindeer, pussycat,
cavy, hamster, fruitbat, vampire, squirrel,
hare, vole, mole, opossum.

2(29) bass, catfish, piranha, chub, herring, carp,
haddock, seahorse, sole, dogfish, pike, tuna,
stingray, frog, toad, newt, tuatara, pitviper,
clam, seawasp, crab, starfish, cravfish, lobster,
slowworm, seasnake, dolphin, octopus, porpoise.

33 chicken, dove, parakeet, lark, pheasant, sparrow,
wren, flamingo, ostrich, tortoise, crow, hawk, flea,
vulture, kiwi, thea, penguin, duck, swan, skua,
termite, slug, worm, gnat, gull, skimmer, scorpion,
ladybird. housefly, moth, honeybee, wasp.

Table 3
Remgn_il_i_ﬁn scores (%) v.f_i._l_h R_BI"_and IRBF !‘u_r ?Tcm u;ia.ts_t_
Trset (%5)  MNo,ofclust  RBF FRBF
Training Testing Training Testing
I 2 Net 1 2 Net 1 2 Net | 2 MNet
3 91,7 100, 96,7 828 100, 930 91.7 100, 96,7 931 100, 972
30 4 a91.7 100, 96,7 B2 100, 93.0 91.7 1040, 96.7 931 100, 972
5 g1.7 944 933 897 100, 938 91.7 94.4 933 897 100, 958
3 938 100, 975  BO.O 100, 91.8 938 100, 97.5 920 100, 947
40 4 938 100, 97.5  B0O.O 100, 918 938 1040, 975 920 100, 96.7
5 938 100, 975 4.0 100, 934 100 91.7 950 920 100, 96.7
3 85.0 100, 40  T6.2 100, 90.2 95.0 100, 98.0 905 100, 96.]
A0 4 95.0  100. 98.0 762 100, 90.2 100, 96.7 980 8l.O 100 922
3

95.0 100 98.0 RLO 100, 922 100 96.7 98.0 81.O0 100. 922

Table 3 provides the performance using the RBF and FRBF networks for different sizes of training sets.
The classification is based on whether the animal is a mammal or not. The number of clusters in the hidden
layer are determined by the hard and fuzzy c-medoids clustering algorithms, respectively. The optimal
numbers of clusters from Table 1, obtained using the different validity indices, are used for evaluating the
network performance. It is observed that the FRBF model, with embedded fuzzy c-medoids clustering,
performs generally better over the test set.

A decision tree is another popular tool used for classification. We have compared the performance of
the interactive dichotomizer D3 [13], and the corresponding recognition scores are provided in Table 5.
For training set sizes 30%, 40%. 50%, we find that the FRBF is consistently superior.
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Tahle 4

Recognition scores (%) with RBF and FRBF for Seybean data

Tm (%) Mod Clus No. Training Testing

| 2 3 4 Met 1 2 3 4 Met

R 5 00,0 100, 6.7 66.7 938 71.7 88,2 0.0 100, 81.7
B il 9.0 100, 66.7 66,7 Q3.8 6496 4.0 (.0 1040, TR.5
F 8 90,0 100, 66,7 06.7 93.8 71.7 058 28.6 100, 87.6

30 9 Q0.0 100, 0Oh. 7T B33 as5.0 #0.4 a4, 1 28.6 100, /8.7
F 5 95.0 96.1 100, 66,7 Q3.8 52.1 99,2 28.6 85.7 91.4
E i 95.0 9.1 100, 83.3 95,0 548 04,1 571 929 90.9
B 8 00,0 98.0 100, B33 95.0 B6.9 0%.3 28.6 92,9 92.5
F 9 S0 100, 100, B3.3 96.3 91.3 98.3 1.1 92.9 9.6
R 3 92.3 95.6 100, 62.5 92.5 100, 99.1 16.6 75.0 91.3
B 6 923 98.5 75.0 50.0 92.5 100, 62,2 16.7 75.0 90.0
F 8 92.3 98.5 100, B7.5 96.2 100, 93.1 16.7 S0.0 BE.R

40 9 88.5 100, 75.0 87.3 953 100, 96,1 16.7 583 91.3
F 5 96,2 95.6 100, 62.5 93.4 87.5 99,0 16,7 833 91.9
E i 96.2 971 100, 625 94.3 875 946.0 333 T5.0 91.9
B 8 96.2 a7.1 100, 87.5 96.2 97.5 85.1 333 75.0 91.9
F G 923 98.5 100, g7.5 96,2 ol.5 95,1 333 al1.7 93,1

5.2. Soybean data

There are 266 number of instances (samples) with 35 symbolic attributes. The four output classes
(1,2,3.4) are categorized as the soybean diseases (diaporthe stem canker, charcoal rot, rhizoctonia root
rot, phytophthora rot, brown stem rot); (powdery mildew, downy mildew, brown spot, phyllosticta leaf
spot, alternaria leaf spot, frog eve leaf spot. bacterial blight, bacterial pustule); purple seed stain; and
anthracnose.

Let us first analyze the optimal clusters generated in Table 1. Starting from two clusters, the partitioning
separated classes 1.4 and classes 2,3. For five clusters, class | is split into “canker” and the various types
of “rot™s; “anthracnose™ is separated and some “pustule™ samples comprise another group. Considering
six clusters, some types of “spots™ are put in a different cluster from class 2. The entire partitioning 1s
rather fuzzy, implying improved performance for fuzzy classification and clustering.

Table 4 provides the performance of the RBF and FRBF networks on the Soybean data, for different
sizes of traming sets. The optimal numbers of clusters from Table 1, obtained using the different vahdity
indices with the hard and fuzzy c-medoids algorithms, are used for evaluating the network performance.
The FRBF model is found to have an overall better performance. Comparing with the performance of
ID3 in Table 5, for training set sizes 30% and 40%, we find that FRBF is always superior.

6. Conclusions and discussion

Real-life data are essentially not restricted to the numeric domain. Hence, the need for symbolic
processing to efficiently handle data like linguistic, nominal, boolean, interval, shape, color, etc. arises.
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Table 5
Performance on test data with [D3
Diata Class Training set (%)
30 40 50
1 9524 94 28 93.33
Loo 2 96,43 96.15 95.24
Net 95.77 95.08 94,12
1 91.49 97.50 —
2 89.07 92.16 ——
Sovbean 3 14.28 50.00 -
4 85.71 83.33 —
MNet RiH.63 91.25 -

Partitioning of such data demands the use of symbolic measures for determining the similanty and
dissimilarity between objects. In this article we have demonstrated the effectiveness of symbolic fuzzy
classification and clustering on benchmark data, viz., Zoo and Soyvbean. The FRBF, in the symbolic
framework, performed consistently better over all data sets, even when compared to the decision tree
based ID3.

Clustering has useful applications in data mining, pattern recognition, image segmentation, rule ex-
traction and web mining. The importance of symbolic clustering in real world data 1s all the more evident,
considering the availability of large volumes of mixed-media data that are distributed over the internet. We
have used inter-cluster and intra-cluster scatter in the symbolic framework. Different clustering validity
indices have been modified to incorporate the symbolic computations using dissimilarity measures. The
generated clusters are observed to be naturally meaningful for the symbolic data used.

The novelty of the method lies in effectively clustering and classifying patterns in a symbolic framework.
The hard and fuzzy c-medoids clustering algorithms have been used to determine the optimal number of
hidden nodes of the RBF and FRBF networks, respectively. The incorporation of fuzzy membership of
fuzzy c-medoids in the FRBF helps to handle better the uncertainties inherent in real-life data. In general
the performance of the FRBF network has been found to be better for both symbolic data sets used.
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