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Abstract—The motivation behind fusing multimodality, multi-
resolution images is to create a single image with improved
interpretability. In this paper, we propose a novel multimodality
Medical Image Fusion (MIF) method, based on Ripplet Transform
Type-I (RT) for spatially registered, multi-sensor, multi-resolution
medical images. RT is a new Multi-scale Geometric Analysis (MGA)
tool, capable of resolving two dimensional (2D) singularities and
representing image edges more efficiently. The source medical images
are first transformed by discrete RT (DRT). Different fusion rules are
applied to the different subbands of the transformed images. Then
inverse DRT (IDRT) is applied to the fused coefficients to get the
fused image. The performance of the proposed scheme is evaluated by
various quantitative measures like Mutual Information (MI), Spatial
Frequency (SF), and Entropy (EN) etc. Visual and quantitative
analysis shows, that the proposed technique performs better compared
to fusion scheme based on Contourlet Transform (CNT).

1. INTRODUCTION

Different modalities of medical imaging reflect different information
of human organs and tissues, and have their respective application
ranges. For instance, structural images such as Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), Ultrasonography
(USG), Magnetic Resonance Angiography (MRA) etc. provide
high-resolution images with anatomical information. On the other
hand, functional images such as Position Emission Tomography
(PET), Single-Photon Emission Computed Tomography (SPECT) and
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functional MRI (fMRI) etc. provide low-spatial resolution images
with functional information [1]. A single modality of medical image
cannot provide comprehensive and accurate information. As a result,
combining anatomical and functional medical images to provide much
more useful information through image fusion, has become the focus
of imaging research and processing [2].

The main aim of Image fusion (IF) is integrating complementary,
as well as redundant information from multiple images to create a
fused image, providing more complete and accurate description. This
fused image is more suitable for human visual and machine perception
or further image processing and analysis tasks. Another advantage of
image fusion is that it reduces the storage cost by storing only the
single fused image, instead of the multisource images.

So far, many IF techniques have been proposed by various
researchers in the literature. Generally, IF methods can be classified
into three categories based on the merging state: pixel or sensor
level, feature level, and decision level [3]. It has been found, that
the pixel-level spatial domain IF methods usually leads to contrast
reduction [4]. Methods based on Intensity-Hue-Saturation (IHS),
Principal Component Analysis (PCA), and the Brovey Transform
offers better results, but, suffers from spectral degradation [5]. Many
Multiresolution Analysis (MRA) based IF methods have been proposed
to improve the fusion result. Pyramidal IF schemes such that
the laplacian pyramid, the gradient pyramid, the contrast pyramid,
etc. fails to introduce any spatial orientation selectivity in the
decomposition process, and hence often causes blocking effects [6].
The other MRA-tool, that has been used in IF extensively is the
Discrete Wavelet Transform (DWT) [7, 8]. The problem with Wavelet
Transform (WT) is that, it can preserve spectral information efficiently
but cannot express spatial characteristics well. The isotropic WT is
scant of shift-invariance and multidirectionality, and fail to provide an
optimal expression of highly anisotropic edges and contours in images.
So, WT based fusion scheme cannot preserve the salient features of the
source images efficiently, and will probably introduce some artifacts
and inconsistency in the fused results [9, 15].

Recently, a theory called Multi-scale Geometric Analysis (MGA)
for high-dimensional signals has been developed, and several MGA
tools were proposed like Ridgelet, Curvelet, Bandlet, Brushlet and
Contourlet. These MGA tools does not suffer from the problems of
WT. Few MIF methods based on these MGA tools were also proposed
to improve the fusion result [9, 10].

In this paper, we propose a novel MIF method based on a
recently developed MGA tool called Ripplet Transform Type-I (RT).
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RT is proposed by Jun Xu et al. to address the problem faced
by the conventional transforms, like Fourier transform (FT) and
WT, regarding the discontinuities such as edges and contours in the
images [11]. To our knowledge, this is the first attempt to apply RT
to fuse multimodality medical images. The source medical images are
first transformed by DRT. Every possible combination of four different
(simple average, maximum selection, PCA and addition) primitive
fusion rules, are applied to the Low-frequency (LF)-subband and High-
frequency (HF)-subbands coefficients of the transformed images, to
get the fused coefficients. The final fused images are obtained by
applying Inverse DRT (IDRT) on the fused coefficients. A comparison
of the effectiveness of the fusion rules, used in the paper is carried
out. Both visual and quantitative performance evaluations are made
and verified in the paper. Performance comparison of the proposed
RT based method with CNT based fusion schemes, shows that the
proposed method performs better.

The rest of the paper is organized as follows. RT is described in
Section 2. Section 3 presents the proposed algorithm. Experimental
results and comparisons are given in Section 4 and we draw conclusion
in Section 5.

2. RIPPLET TRANSFORM TYPE-I (RT)

Conventional transforms like FT and WT suffer from discontinuities
such as edges and contours in images. To address this problem,
Jun Xu et al. proposed a new MGA-tool called RT. The RT is a
higher dimensional generalization of the Curvelet Transform (CVT),
capable of representing images or 2D signals at different scales and
different directions. To achieve anisotropic directionality, CVT uses
a parabolic scaling law. From the perspective of microlocal analysis,
the anisotropic property of CVT guarantees resolving 2D singularities
along C2 curves [12]. On the other hand, RT provides a new tight
frame with sparse representation for images with discontinuities along
Cd curves [11].

There are two questions regarding the scaling law used in CVT: 1)
Is the parabolic scaling law optimal for all types of boundaries? and if
not, 2) What scaling law will be optimal? To address these questions,
Jun Xu et al. intended to generalize the scaling law, which resulted
in RT. RT generalizes CVT by adding two parameters, i.e., support c
and degree d. CVT is just a special case of RT with c = 1 and d = 2.
The anisotropy capability of representing singularities along arbitrarily
shaped curves of RT is due to these new parameters c and d.
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2.1. Continuous Ripplet Transform (CRT)

For a 2D integrable function f(−→x ), the CRT is defined as the inner
product of f(−→x ) and ripplets ρ

a
−→
b θ

(−→x ) as given below [11]

R(a,
−→
b , θ) = 〈f, ρ

a
−→
b θ
〉 =

∫
f(−→x )ρ

a
−→
b θ

(−→x )d−→x , (1)

where R(a,
−→
b , θ) are the ripplet coefficients and (.) denotes the

conjugate operator. The ripplet function of the Equation (1) is defined
as

ρ
a
−→
b θ

(−→x ) = ρ
a
−→
0 0

(Rθ(−→x −−→b )), (2)

where ρ
a
−→
0 0

(−→x ) is the ripplet element function, Rθ =
[

cos θ sin θ
− sin θ cos θ

]

is the rotation matrix, −→x and
−→
b are 2D vectors; b and θ denotes the

position parameter and rotation parameter respectively. The element
ripplet function is defined in frequency domain as

ρ̂a(r, ω) =
1√
c
a

1+d
2d W (a · r)V

(
a

1
d

c · a · ω
)

, (3)

where ρ̂a(r, ω) are the FT of ρ
a
−→
0 0

(−→x ) in polar coordinate system, and
a is the scale parameter. W (r) is the ‘radial-window’ and V (ω) is
the ‘angular window’. These two windows have compact supports on
[12 , 2] and [−1, 1] respectively. They satisfy the following admissibility
conditions: ∫ 2

1
2

W 2(r)
dr

r
= 1, (4)

∫ 1

−1
V 2(t)dt = 1, (5)

These two windows partition the polar frequency domain into ‘wedges’
as shown in Figure 1(a).

The ripplets functions decay very fast outside the elliptical
effective region, which has the following property for its length and
width: width ≈ lengthd. Length and width is the major and minor
axis of the ellipse respectively. The customizable effective region tuned
by support c and degree d bespeaks the most distinctive property of
ripplets the general scaling. For c = 1, d = 1, both axis directions
are scaled in the same way. So ripplet with d = 1 will not have the
anisotropic behavior. For d > 1, the anisotropic property is reserved
for RT. For d = 2, ripplets have parabolic scaling; for d = 3, ripplets
have cubic scaling; and so forth.
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(a) (b) (c)

Figure 1. (a) The tiling of polar frequency domain. The shadowed
‘wedge’ corresponds to the frequency transform of the element function.
Ripplet transform: (b) MRI image. (c) Different subbands after
decomposition.

The CRT can only capture the characteristics of high frequency
components of f(−→x ), since the scale parameter a cannot take the value
of infinity. So the ‘full’ CRT consists of fine scale RT and coarse scale
isotropic WT. We can perfectly reconstruct the input function based
on its ripplet coefficients. If f(−→x ) ∈ L2 is a high-pass function i.e.,
its FT vanishes for |ω| < 2

a0
and a0 is a constant, then f(−→x ) can be

reproduced by its RT through

f(−→x ) =
∫

R
(
a,
−→
b , θ

)
ρ

a
−→
b θ

(−→x )dad
−→
b dθ/a3, (6)

and a Parseval formula for f holds

||f ||2L2
=

∫ ∣∣∣R(a,
−→
b , θ)

∣∣∣
2
dad

−→
b dθ/a3, (7)

2.2. Discrete Ripplet Transform (DRT)

As digital image processing needs discrete transform instead of
continuous transform, here we describe the discretization of RT [11].

The discretization of CRT is based on the discretization of the
parameters of ripplet functions. a is sampled at dyadic intervals. b

and θ are sampled at equal-spaced intervals. aj ,
−→
b k and θl substitute

a,
−→
b and θ respectively, and satisfy that aj = 2−j ,

−→
b k = [c · 2−j ·

k1, 2−j/d · k2]T and θl = 2Π
c · 2−bj(1−1/d)c · l, where

−→
k = [k1, k2]T , and

j, k1, k2, l ∈ Z. (·)T denotes the transpose of a vector. d ∈ R, since
any real number can be approximated by rational numbers, so we can
represent d with d = n/m, n,m 6= 0 ∈ Z. Usually, we prefer n,m ∈ N
and n,m are both primes. In the frequency domain, the corresponding
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frequency response of ripplet function is in the form

ρ̂j(r, ω) =
1√
c
a

m+n
2n W (2−j · r)V

(
1
c
· 2−bj m−n

n
c · ω − l

)
, (8)

where W and V satisfy the following admissibility conditions:
+∞∑

j=0

|W (2−j · r)|2 = 1, (9)

+∞∑

l=−∞

∣∣∣∣V
(

1
c
· 2−bj(1−1/d)c · ω − l

)∣∣∣∣
2

= 1, (10)

given c, d and j.
The ‘wedge’ corresponding to the ripplet function in the frequency

domain is

Hj,l(r, θ) =
{

2j ≤ |r| ≤ 22j ,
∣∣∣θ − π

c
· 2−bj(1−1/d)c · l

∣∣∣ ≤ π

2
2−j

}
, (11)

The DRT of an M ×M image f(n1, n2) will be in the form of

R
j,
−→
k ,l

=
M−1∑

n1=0

N−1∑

n2=0

f(n1, n2)ρj,
−→
k ,l

(n1, n2), (12)

where R
j,
−→
k ,l

are the ripplet coefficients.
The image can be reconstructed through Inverse Discrete Ripplet

Transform (IDRT)

f̃(n1, n2) =
∑

j

∑
−→
k

∑

l

R
j,
−→
k ,l

ρ
j,
−→
k ,l

(n1, n2), (13)

The Figures 1(b) and 1(c) show an MRI image and subbands of
the ripplet transformed MRI image after decomposition, respectively.

3. PROPOSED METHOD

The notations used in this section are as follows: A, B, F represents
the two source images and the fused image respectively. CY

X(p) denotes
the subbands of the images after applying DRT. (X = A,B, F ) and
(Y = L,H) where L and H represents the LF-subband and HF-
subbands respectively. p = (m,n, k, l), where (m, n) denotes the
spatial location of each coefficients, and k the directional subbands at
scale l. The method can be easily extended to more than two images.

In this section we first describe the fusion rules used in our method,
and then we outline the steps of the proposed algorithm.
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3.1. Fusion Rules

We have used four different primitive fusion rules in our proposed
method. The reason behind choosing these simple fusion rules is that,
as this is the first time RT is used to fuse images, so using these simple
fusion rules we can understand how effective RT is in image fusion
domain. The different fusion rules used in the proposed method are as
follows:

3.1.1. Simple Average (R1)

Simple average fusion rule gives equal importance to both the source
images, and can be expressed as follows:

CY
F (p) =

1
2
(CY

A (p) + CY
B (p)), (14)

3.1.2. Maximum Selection Rule (R2)

According to this fusion rule, select the frequency coefficients from
CY

A (p) and CY
B (p) with greater absolute value as the fused coefficients:

CY
F (p) =

{
CY

A (p) |CY
A (p)| ≥ |CY

B (p)|
CY

B (p) |CY
B (p)| > |CY

A (p)|
}

, (15)

3.1.3. PCA Based Fusion Rule (R3)

PCA is a vector space transform often used to reduce multidimensional
data sets to lower dimension for analysis. It reveals the internal
structure of data in an unbiased way [13]. Assuming i and j as the the
elements of the principal eigenvector, which are computed by analyzing
the corresponding subbands CY

A (p) and CY
B (p) for corresponding

coefficients, we obtain,

α =
i

i + j
and β =

j

i + j
(16)

α and β are the normalized weights used for fusing the source subbands,
to get the fused coefficients:

CY
F (p) = α · CY

A (p) + β · CY
B (p), (17)

3.1.4. Addition Rule (R4)

In this fusion rule, the fused coefficients are obtained by simply adding
the corresponding source subbands coefficients:

CY
F (p) = CY

A (p) + CY
B (p), (18)
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To facilitate the description of the proposed algorithm, the above
mentioned fusion rules are denoted by Ri where i = 1, 2, 3, 4; as
indicated in the headings of the fusion rules. The combinations of
fusion rules are indicated by RiRj where i, j = 1, 2, 3, 4.

3.2. Proposed Fusion Algorithm

The medical images to be fused must be registered to assure that the
corresponding pixels are aligned. Here we outlines the salient steps of
the proposed MIF method:
(i) The registered source medical images A and B are decomposed by

DRT to get the LF-subband and HF-subbands.
(ii) The LF-subband and HF-subbands are fused using the different

combinations of fusion rules (e.g., R1R1 to R4R4).
(iii) IDRT is applied to get the final fused medical image.
The block diagram of the proposed MIF scheme is shown in Figure 2.

Figure 2. Block diagram of the proposed MIF method using RT.

4. EXPERIMENTAL RESULTS AND COMPARISONS

To evaluate the performance of the proposed MIF method, extensive
experiments were carried out on various modalities of medical images.
Figures 3((a), (b)) and 3((c), (d)) show two different sets of source
images used in the experiments, and are denoted by IS1 and IS2,
respectively. The CT image in Figure 3(a) shows the bones and
the MRI image in Figure 3(b) displays the soft tissues information.
The T1-weighted MR image in Figure 3(c) of IS2 contains the soft
tissues but no illness information, and the MRA image in Figure 3(d)
shows the illness information (shown by the marked ellipse) but no
soft tissues information. The decomposition parameter of DRT was
levels = [1, 2, 4, 4]. The proposed scheme is compared with MIF
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(a) (b) (c) (d)

Figure 3. Source images: (a) CT image; (b) MRI image; (c) T1-
weighted MR image; (d) MRA image. ((a), (b)) first set IS1 and
((c), (d)) second set IS2 of images, respectively (downloaded from
http://www.imagefusion.org/).

method based on CNT. To show the effectiveness of the proposed
technique, visual as well as quantitative analysis were carried out. The
selected quantitative criterions used in the experiments are as follows:

4.1. Standard Deviation (STD)

It measures the contrast in the fused image. An image with high
contrast would have a high standard deviation.

STD =

√√√√ 1
MN

M∑

m=1

N∑

n=1

(F (m,n)−MEAN)2, (19)

where M ×N denotes the size of the image and F (m,n) indicates the
gray-value of the pixel of image F at position (m,n) and

MEAN =
1

MN

M∑

m=1

N∑

n=1

|F (m,n)| , (20)

4.2. Entropy (EN)

The entropy of an image is a measure of information content. It is the
average number of bits needed to quantize the intensities in the image.
It is defined as

EN = −
L−1∑

g=0

p(g) log2 p(g), (21)

where p(g) is the probability of grey-level g, and the range of g is
[0, . . . , L − 1]. An image with high information content would have
high entropy. If entropy of fused image is higher than parent images
then it indicates that the fused image contains more information.
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4.3. Spatial Frequency (SF)

Spatial frequency can be used to measure the overall activity and
clarity level of an image. Larger SF value denotes better fusion result:

SF =
√

RF2 + CF2, (22)

where RF is the row frequency and CF is the column frequency:

RF =

√√√√ 1
M(N − 1)

M−1∑

m=0

N−2∑

n=0

(F (m,n + 1)− F (m,n))2, (23)

and

CF =

√√√√ 1
(M − 1)N

M−2∑

m=0

N−1∑

n=0

(F (m + 1, n)− F (m,n))2, (24)

where M ×N denotes the size of the image and F (m,n) indicates the
gray-value of the pixel of image F at position (m,n).

4.4. Mutual Information (MI)

It measures the degree of dependence of the two images. A larger
measure implies better quality. Given two images xF and xR MI is
defined as [14]:

MI = I(xA;xF ) + I(xB; xF ), (25)

where

I(xR; xF ) =
L∑

u=1

L∑

v=1

hR,F (u, v) log2

hR,F (u, v)
hR(u)hF (v)

, (26)

where hR, hF are the normalized gray level histograms of xR and xF ,
respectively. hR,F is the joint gray level histogram of xR and xF , and L
is the number of bins. xR and xF correspond to the reference and fused
images, respectively. I(xR;xF ) indicates how much information the
fused image xF conveys about the reference xR. Thus, the higher the
mutual information between xF and xR, the more likely xF resembles
the ideal xR.

Quantitative and visual analysis of performance of the proposed
scheme shows that, the combinations RiR3, i = 1, 2, 3, 4; of fusion
rules, which use ‘PCA Based Fusion Rule’ (R3) for HF-subband
coefficients, gives the worst fused results, although in some cases
provides high quantitative measure values. Figure 4 shows the fused
images obtained by using RiR3, i = 1, 2, 3, 4; combinations of fusion
rules. The fused images shown in Figures 4((a1)–(d1)) of IS1 are very
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 4. Results of using ‘PCA based fusion rule’ for HF-subbands
coefficients: ((a1), (a2)) R1R3; ((b1), (b2)) R2R3; ((c1), (c2)) R3R3;
((d1), (d2)) R4R3. ((a1)–(d1)) Fused images of IS1 and ((a2)–(d2))
fused images of IS2.

distorted. For images of IS2 the fused results shown in Figures 4((a2)–
(d2)) are not so much distorted, but the illness information has been
totally lost. Similar results have been obtained for other source images
used in the experiments. From the fused results given above we may
say that ‘PCA Based Fusion Rule’ for HF-subband coefficients is not
suitable for MIF. So, in rest of the analysis of the experimental results
we have excluded the results obtained by using the combination of
fusion rules RiR3, i = 1, 2, 3, 4.

The graphs of the Figure 5, Figure 6, Figure 7, and Figure 8
show the detailed quantitative analysis of the performance of the
combinations of fusion rules RiRj, i = 1, 2, 3, 4; and j = 1, 2, 4; for
the first set of images IS1. Performance of both the MIF methods
based on RT and CNT is presented in the graphs. It is clear from the
graphs, that the combination R4Rj, j = 1, 2, 4; of fusion rules, which
use ‘Addition Rule’ R4 for the LF-subband coefficients gives the better
results among all the different combinations. It is also clear from the
graphs that the MIF method based on RT, gives better result than
the CNT based method. Only in some cases the quantitative measures
obtained from CNT based MIF method perform better than the RT
based proposed MIF scheme. Similar results have been obtained for
IS2 and other source images used in the experiments, where RT
performs comparably with CNT.
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Figure 5. Performance analysis in respect to mutual information
(MI).

Figure 6. Performance analysis in respect to spatial frequency (SF).

Figure 7. Performance analysis in respect to entropy (EN).



Progress In Electromagnetics Research B, Vol. 30, 2011 367

Figure 8. Performance analysis in respect to standard deviation
(STD).

(a) (b) (c)

(d) (e) (f)

Figure 9. Results of using ‘addition rule’ for LF-subband coefficients:
((a)–(c)) for RT based MIF method and ((d)–(f)) for CNT based MIF
method, ((a), (d)) R4R1; ((b), (e)) R4R2; ((c), (f)) R4R4.

Figure 9 shows the fused images of IS1, obtained by applying the
combinations of fusion rules R4Rj, j = 1, 2, 4; for both MIF methods
based on RT and CNT, respectively. It can be easily seen that the
fused images obtained using the proposed MIF method based on RT, is
better than the CNT based scheme. We can see that the salient features
and detailed information presented in Figures 9((a)–(c)) is much richer
than Figures 9((d)–(f)). For the other sets of source images used in
the experiments, similar results have been found.
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Table 1. Performance comparison of RT and CNT based MIF method
using the combinations R4Rj, j = 1, 2, 4; for IS1 and IS2.

Image Set IS1

Fused By Fused By Fused By Original Original

R4R1 R4R2 R4R4 Image 1 Image 2

SF
RT 4.5132 5.3044 5.2343

3.5472 4.3389
CNT 4.5319 5.2999 5.2140

EN
RT 6.2071 6.2189 6.0215

1.7126 5.6561
CNT 6.1838 6.1817 6.0197

STD
RT 35.7651 37.4298 37.5125

20.4484 30.3225
CNT 35.7649 37.4001 37.6070

Image Set IS2

SF
RT 7.1979 8.5422 8.7554

7.7005 6.4901
CNT 7.2016 8.5246 8.6979

EN
RT 6.9863 6.9642 6.5065

4.1524 4.3310
CNT 6.9704 6.9146 6.6295

STD
RT 83.3503 84.5689 85.7223

69.1972 25.5812
CNT 83.3564 84.5808 84.7133

Table 1 shows the effectiveness of the proposed MIF method based
on RT considering only the combinations R4Rj, j = 1, 2, 4; of fusion
rules for both the image sets IS1 and IS2, respectively. Performance
analysis of both the MIF methods based on RT and CNT are compared
in the Table 1. The ‘bold’ values indicate the higher values in the
Table 1. The higher values of SF indicates that the fused images
have more activity and clarity level than the source images. Similarly
the higher values of EN and STD for the fused images show that
the fused images have more information, as well as higher contrast
than the source images. So, it is clear from Table 1 that, the fused
images obtained by MIF methods based on RT as well as CNT are
more clear, informative and have higher contrast which is helpful in
visualization and interpretation. It is also obvious from the Table 1
that the proposed MIF methods based on RT perform comparably, and
often better than CNT based MIF methods. For subjective analysis,
the source images and the fused images obtained by our proposed
MIF method as well as by CNT based MIF method were shown to
an expert. After careful manual inspection, the expert conformed to
the effectiveness of the proposed MIF method based on RT.
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5. CONCLUSION

The fusion of multimodality medical images plays an critical and
vital role in many clinical applications for they can support more
comprehensive and accurate information than any individual source
images. As a novel MGA-tool, ripplet offers better advantage of
directionality, localization, multiscale and anisotropy, which cannot
be perfectly achieved by traditional MRA-tool like wavelet transform.
In this paper, we propose a novel multimodality MIF method based
on ripplet transform type-I. Combinations of four different fusion rules
are applied to fuse the different subbands. Even though, we have only
used simple fusion rules in this paper, the experimental results show
that RT is very effective in MIF. The proposed MIF method based
on RT, is analyzed both visually and quantitatively. The proposed
method is compared with CNT, and the superiority of the proposed
method is established. Experimental results show that the RT based
MIF, can preserve more useful information in the fused medical image
with higher spatial resolution and less difference to the source images.
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