


of objective function, to perform a directed random search. They are gradually finding

applications in a wide variety of fields like image processing and pattern recognition

[3], job-shop scheduling [4], VLSI design, machine learning, classifier systems, etc.

[5, 6].

Recently, an application of GA has been reported in the area of supervised pattern

classification in R2 [3]. Here GA is used for the appropriate placement of H

lines (fixed a priori) in the feature space such that one or more regions are associated

with an unique class. Points (of the training data set) of other classes lying in

this region are considered to be misclassified. The H lines are placed in such a way

that total misclassification of the training data points is minimized. The search

space for the lines is restricted to the rectangle enclosing the training points.

The parameters of these H lines are encoded in a chromosome (or string). The

fitness of a string is defined as the number of training data points properly classified

by the string. Conventional operators like selection, crossover and mutation

are applied over a fixed number of generations or till a termination criter-

ion is achieved. Let us subsequently refer to this GA-based classifier as GA-

classifier.

Since an a priori knowledge of the value of H is difficult to acquire, it is frequently

overestimated. Consequently, the resultant decision boundary may contain some

redundant hyperplanes, removal of which will not affect the classification capability of

the GA-classifier. A scheme for automatic deletion of such redundant hyperplanes is

described in [7] along with an extension of the classifier in N-dimensional space RN.

Note that a characteristic feature of the GA-classifier is that it utilizes the decision

boundary for performing classification. This is in contrary to the conventional pattern

classification techniques where the decision boundaries are obtained as a consequence

of the decision-making process.

There have been many attempts [8] for learning rules of classification. Some of

them use decision trees [9—11]. Recently, a procedure has been suggested by integrat-

ing genetic algorithms with similarity-based learning for acquiring rules for classifica-

tion [12]. Whereas these methods have used the rule-based approach to classify

patterns, the proposed GA-classifier uses the decision boundaries directly for classi-

fication. There is another similar attempt [13] for classification which involves

placement of a number of ellipsoids for generating class boundaries. But no theoret-

ical analysis of the performance was provided.

In this article, we provide a theoretical investigation of the performance of the

aforesaid GA-classifier. This mainly includes establishing the relation between Bayes

classifier and the GA-classifier. (It may be mentioned here that Bayes classifier [14] is

one of the most widely used statistical pattern classifiers which provides optimal

performance from the standpoint of error probabilities in a statistical framework. It

is known to be the best classifier when the class distributions and the a priori

probabilities are known. Consequently, the desirable property of any classifier is that

it should approximate or approach the Bayes classifier under limiting conditions.

Such an investigation was performed in [15] to show that the MLP, when trained as

a classifier using back-propagation, approximates the Bayes optimal discriminant

function.)
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It has been proved in this article that as the number of training data points (n) and

the number of iterations of GA go to infinity, the error rate of the GA-classifier

(defined as the ratio of the number of misclassified points to the number of training

data points) will be less than or equal to the error probability of Bayes classifier. It has

also been shown theoretically that under limiting conditions, the number of hyper-

planes found by the GA-classifier to constitute the decision boundary will be equal to

the optimum number of hyperplanes (i.e., which provides the Bayes decision bound-

ary) if exactly one partition provides the Bayes error probability. Otherwise, the

number of hyperplanes found by the GA-classifier will be greater than or equal to the

optimum value.

The theoretical findings have also been experimentally verified on a number of

training data sets following triangular and normal distribution having both linear

and non-linear boundaries. Performance on independent test data sets has also

been studied. Experiments have been conducted using different values of H. Instead

of using hyperplanes, circular surfaces have also been considered as constituting

the decision boundary. The generalization capability of the classifier has been

studied as a function of the class a priori probabilities (for two class problems). The

empirical findings show that as the training data size (n) increases, the perfor-

mance of the GA-classifier approaches that of Bayes classifier for all the data

sets.

The article is organized as follows: Section 2 describes the basic features and

principles of genetic algorithms. Section 3 gives a brief outline of the GA-classifier.

In Section 4 we present a theoretical investigation to find a relationship between

the GA-classifier and Bayes classifier. A critical discussion of the proof is also given

in the same section. This is followed by a description of the process of redundancy

elimination along with the associated study of the relationship between the

optimal number of hyperplanes required to model the Bayes boundary and those

provided by the GA-classifier in Section 5. Section 6 contains the experimental

results and their analysis. Finally, the discussion and conclusions are presented in

Section 7.

2. Genetic algorithms: basic principles and features

The power of GAs lies in their ability to encode complex information and para-

meters of the search space in simple structures called chromosomes or strings, which

are usually of a fixed length. Each chromosome encodes the parameters of a potential

solution. An objective function is associated with each string which provides a map-

ping from the chromosomal space to the solution space. Based on this objective

function, a fitness function is also associated with each string that provides a measure

of the degree of goodness of the potential solution encoded in it.

GA starts from a collection of chromosomes (called population), which is initially

created randomly. Various biologically inspired operators like selection, crossover and

mutation, based on the Darwinian Principles of Survival of the Fittest and evolution

are applied on these strings over a number of generations to yield the solution of the
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problem. The basic steps of GAs are as follows:

Begin

t"0

initialize population P(t)

compute fitness P(t)

repeat

t"t#1

select P(t) from P(t!1)

crossover P(t)

mutate P(t)

compute fitness P(t)

until termination criterion is ach ieved

End

Selection is the process of allocating a number (zero or more) of copies to a string,

depending on its fitness value, that go into the mating pool for further genetic

operations. Proportional selection strategy is one commonly used selection mechanism

where the number of copies that a string receives is proportional to its fitness value in

the population.

Crossover is the process of combining the information of two parent chromosomes

in order to produce potentially better solutions or offspring. In single-point crossover,

one commonly used crossover technique, a crossover point is chosen randomly, and

the portions of the parent strings lying to the right of the crossover point are swapped.

In mutation, the other genetic operator, a position in a string is selected randomly,

and the value in this position is changed. These two basic genetic operators, crossover

and mutation, are performed stochastically.

Usually, the process of fitness computation, selection, crossover and mutation are

performed for a number of iterations or generations, till a user-specified termination

criterion is attained. In the elitist model of GA, assumed in this article, the best string

seen upto the current generation is preserved in some location within or outside the

population. A detailed discussion on GAs can be found in [1].

3. The GA-based classifier: a brief outline

In the realm of pattern classification in N dimensions, a fixed number (H) of

hyperplanes is considered to constitute the decision boundary. Note that since each

hyperplane provides two regions, H hyperplanes provide a maximum of 2H regions.

Hence for a k class problem, H needs to be greater than or equal to log
2
k. Each

chromosome encodes the parameters of these H hyperplanes. The fitness of a chromo-

some is characterized by the number of points correctly classified by the H hyperplanes

encoded in it. The search space for the hyperplanes (which may be considered as

candidates for the formation of the decision boundary) is restricted to the hyper-

rectangle formed around the training pattern points. The following discussion describes

the different issues related to the application of GAs to pattern classification in RN.
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3.1. String representation

From elementary geometry, the equation of a hyperplane in N-dimensional space

(X
1
!X

2
!2!X

N
) is given by

x
N
cos a

N~1
#b

N~1
sin a

N~1
"d, (1)

where

b
N~1

"x
N~1

cos a
N~2

#b
N~2

sin a
N~2

,

b
N~2

"x
N~2

cos a
N~3

#b
N~3

sin a
N~3

,

F

b
1
"x

1
cos a

0
#b

0
sin a

0
.

The various parameters are as follows:

X
i
: the ith feature of the training points.

(x
1
, x

2
, 2 , x

N
): a point on the hyperplane.

a
N~1

: the angle that the unit normal to the hyperplane makes with the X
N

axis.

a
N~2

: the angle that the projection of the normal in the (X
1
,!X

2
!2!X

N~1
)

space makes with the X
N~1

-axis.

F
a
1
: the angle that the projection of the normal in the (X

1
—X

2
) plane makes with the

X
2
-axis

a
0
: the angle that the projection of the normal in the (X

1
) plane makes with the

X
1
-axis"0. Hence, b

0
sin a

0
"0.

d: the perpendicular distance of the hyperplane from the origin.

Thus the N tuple Sa
1
, a

2
, 2 , a

N~1
, dT specifies a hyperplane in N-dimensional space.

Each angle a
j
, j"1, 2, 2 , N!1, is allowed to vary in the range of 0 to 2n. If b

1
bits

are used to represent an angle, then the possible values of a
j
are

0, d * 2n, 2d * 2n, 3d * 2n, 2 , (2b1!1)d * 2n,

where d"1/2b1. Consequently, if the b
1

bits contain a binary string having the

decimal value v
1
, then the angle is given by v

1 * d * 2n.

Once the angles are fixed, the orientation of the hyperplane becomes fixed. Now

only d must be specified in order to specify the hyperplane. For this purpose the

hyper-rectangle enclosing the training points is considered. Let (x.*/
i

, x.!9
i

) be the

minimum and maximum values of feature X
i
as obtained from the training points.

Then the vertices of the enclosing hyper-rectangle are given by

(xch1
1

, xch2
2

, 2 , xchN
N

),

where each ch
i
, i"1, 2, 2 ,N, can be either max or min. (Note that there will be 2N

vertices.) Let diag be the length of the diagonal of this hyper-rectangle given by

diag"J(x.!9
1

!x.*/
1

)2#(x.!9
2

!x.*/
2

)2#2#(x.!9
N

!x.*/
N

)2 .
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A hyperplane is designated as the base hyperplane with respect to a given orientation

(i.e., for some a
1
, a

2
, 2 , a

N~1
) if

(i) it has the same orientation,

(ii) it passes through one of the vertices of the enclosing rectangle,

(iii) its perpendicular distance from the origin is minimum (among the hyperplanes

passing through the other vertices). Let this distance be d
.*/

.

If b
2

bits are used to represent d, then a value of v
2

in these bits represents a hyperplane

with the given orientation and for which d is given by d
.*/

#(diag/2b2) * v
2
. Thus each

chromosome is of a fixed length of l"H((N!1) * b
1
#b

2
), where H is the number of

hyperplanes. These are initially generated randomly for a population of size Pop.

Note that we have used this recursive form of representation over the classical one,

viz. l
1
x
1
#l

2
x
2
#2#l

N
x
N
"d, where l

1
, l

2
, 2 , l

N
are known as the direction

cosines. The latter representation involves a constraint equation, l2
1
#l2

2
#2l2

N
"1.

This, in turn, leads to the complicated issue of getting invalid or unacceptable

solutions when the constraint equation is violated. However, the representation that

we have chosen avoids this problem by being unconstrained in nature.

3.2. Fitness computation and genetic operations

A chromosome encodes the parameters of H hyperplanes as described earlier.

Using these parameters, the region in which each training pattern point lies is

determined from Eq. (1). A region is said to provide the demarcation for class i, if

among the points that lie in this region, majority belong to class i. Other points that lie

in this region are considered to be misclassified. The misclassifications associated with

all the regions (for these H hyperplanes) are summed up to provide the total

misclassification, miss, for the string. Its fitness is defined as (n!miss), where n is the

size of the training data.

Roulette wheel selection [1] is adopted to implement the proportional selection

strategy, where each string is allotted a slot of the roulette wheel subtending an angle,

proportional to its fitness, at the center of the wheel. A random number is generated in

the range 0 to 2n. A copy of a string goes into the mating pool if the random number

falls in the slot corresponding to the string. Thus, the number of copies that each

string gets is proportional to its fitness in the population. Elitism, where the best string

seen upto the current generation is preserved in some location, is incorporated by

replacing the worst string of the current generation with the best string seen up to the

last generation.

Single-point crossover among two chromosomes is applied with a fixed crossover

probability value of cr—prob. The mutation operation is performed on a bit by bit basis

for a varying mutation probability value. In the initial stages of the algorithm it has

a high value, which is first gradually decreased to a prespecified minimum value and

then increased again in the later stages of the algorithm. This ensures that in the initial

stage, when the algorithm has very little knowledge about the search domain, it

performs a random search through the feature space. This randomness is gradually

decreased with the passing of generations so that now the algorithm performs

a detailed search in the vicinity of promising solutions obtained so far. In spite of this,
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the algorithm may still get stuck at a local optima. This problem is overcome by

increasing the mutation probability to a high value, thereby making the search more

random once again. The algorithm is terminated if the population contains at least

one string with no misclassified points and there is no significant improvement in the

average fitness of the population over subsequent generations. Otherwise the algo-

rithm is executed for a fixed number of generations.

The variation of the performance of the above-mentioned GA-classifier with the size

of the training data (n) and number of hyperplanes (H) was presented in [7]. The

results showed that the generalization performance improved with n. Improvement of

performance was also observed as H was increased upto a certain value. Beyond this,

the generalization score decreased, although the training score increased. This demon-

strated that an unnecessarily large number of hyperplanes led to overfitting of the

training data set, which resulted in good performance during training, but was not

beneficial for the test case. An extensive experimental comparison of the performance

of the GA-classifier with those of Bayes maximum likelihood classifier (where the

a priori probabilities and the covariance matrices were computed from the training

data set assuming Gaussian distribution of patterns), k-NN classifier [14], and

multilayered perceptron [16] (MLP) for a variety of artificial and real life, overlapping

and non-overlapping data sets having non linear class boundaries was also made in

[7]. Note that both k-NN classifier and MLP (with hard limiting non-linearities)

provide piecewise linear boundaries. Interestingly, it was found in [7] that the

recognition score of the GA-classifier was comparable to (sometimes better than)

those of the Bayes maximum likelihood classifier for data sets having overlapping

classes (where Bayes maximum likelihood classifier is known to perform well), and

k-NN classifier and MLP for data sets having non-linear, non-overlapping regions

(where k-NN and MLP are known to perform well).

4. Relationship with Bayes error probability

In this section we study the theoretical relationship between the GA-classifier and

Bayes classifier. The mathematical notations and preliminary definitions are de-

scribed first. This is followed by the claim that for nPR the performance of the

GA-classifier will no way be worse than that of the Bayes classifier. Finally, some

critical comments about the proof are mentioned.

Let there be k classes C
1
, C

2
, 2 ,C

k
with a priori probabilities P

1
, P

2
, 2 ,P

k
and

class conditional densities p
1
(x), p

2
(x), 2 , p

k
(x). Let the mixture density be

p(x)"
k
+
i/1

P
i
p
i
(x). (2)

(According to the Bayes rule, a point is classified to class i iff

P
i
p
i
(x)*P

j
p
j
(x), ∀j"1, 2 , k and jOi ).

Let X
1
, X

2
, 2 , X

n
, 2 be independent and identically distributed (i.i.d.) N-dimen-

sional random vectors with density p(x). This indicates that there is a probability
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space (), F, Q), where F is a p field of subsets of ), Q is probability measure on F,

and

X
i
: (), F, Q) P(RN, B (RN),P), ∀i"1, 2, 2

such that

P(A)"Q(X~1
i

(A))

"P
A

p(x) dx

∀A3B(RN) and ∀i"1, 2, 2 .

Here B(RN) is the Borel p field of RN.

Let

E"GE :E"(S
1
, S

2
, 2 , S

k
), S

i
-RN, S

i
O0

∀i"1, 2 , k,
k

Z
i/1

S
i
"RN, S

i
WS

j
"0, ∀iOjH.

E provides the set of all partitions of RN into k sets as well as their permutations, i.e., if

E
1
"(S

1
, S

2
, S

3
, 2 ,S

k
)3E, E

2
"(S

2
, S

1
, S

3
, 2 , S

k
)3E, then E

1
OE

2
. Note that

E"(S
i1
, S

i2
, 2 ,S

ik
) implies that each S

ij
, 1)j)k, is the region corresponding to

class C
j
.

Let E
0
"(S

01
, S

02
, 2 , S

0k
)3E be such that each S

0i
is the region corresponding to

the class C
i
in RN and these are obtained by using Bayes decision rule. Then

a"
k
+
i/1

P
i PSc

0i

p
i
(x) dx)

k
+
i/1

P
i PS c

1i

p
i
(x) dx (3)

∀E
1
"(S

11
, S

12
, 2 ,S

1k
)3E. Here a is the error probability obtained using the Bayes

decision rule.

It is known from the literature that such an E
0

exists and it belongs to E because

Bayes decision rule provides an optimal partition of RN and for every such E
1
"(S

11
,

S
12

, 2 , S
1k

)3E, +k
i/1

P
i
:S c

1i
p
i
(x) dx provides the error probability for E

1
3E. Note

that E
0

need not be unique.

Assumptions. Let H
o

be a positive integer and let there exist H
o

hyperplanes in RN

which can provide the regions S
01

, S
02

, 2 ,S
0k

. Let H
o

be known a priori. Let the

algorithm for generation of class boundaries using H
o
hyperplanes be allowed to be

executed for a sufficiently large number of iterations. It is known in the literature [17]

that as the number of iterations goes towards infinity, an Elitist model of GA will

certainly provide the optimal string.

LetA"MA : A is a set consisting of H
o
hyperplanes in RNN. Let A

0
3A be such that

it provides the regions S
01

, S
02

, 2 ,S
0k

in RN, i.e., A
0

provides the regions which are

also obtained using the Bayes decision rule. Note that each A3A generates several
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elements of E which result from different permutations of the list of k regions. Let

E
A

-E denote all possible E"(S
1
, S

2
, 2 , S

k
)3E that can be generated from A.

Let

G" Z
A3A

E
A

; let

Z
iE

(u)"G
1 if X

i
(u) is misclassified when E is used as a decision

rule where E3G, ∀u3),

0 otherwise;

Let

f
nE

(u)"1
n

n
+
i/1

Z
iE

(u), when E3G is used as a decision rule;

and let

f
n
(u)"Inf M f

nE
(u) : E3GN.

It is to be noted that the pattern classification algorithm mentioned in Section 3 uses

n * f
nE

(u), the total number of misclassified points, as the objective function which it

attempts to minimize. ( f
nE

(u) is the error rate of the GA-classifier obtained by dividing

the number of misclassified points with the total number of training data points.) This

is equivalent to searching for a suitable E3G such that the term f
nE

(u) is minimized,

i.e., for which f
nE

(u)"f
n
(u). As already mentioned, it is known that for infinitely many

iterations the Elitist model of GAs will certainly be able to obtain such an E.

Theorem. For sufficiently large n, f
n
(u)'/ a (i.e., for sufficiently large n, f

n
(u) cannot be

greater than a) almost everywhere.

Proof. Let

½
i
(u)"G

1

0

if X
i
(u) is misclassified according to Bayes rule ∀u3),

otherwise.

Note that ½
1
, ½

2
, 2 , ½

n
, 2 are i.i.d. random variables. Now

Prob (½
i
"1)"

k
+
j/1

Prob (½
i
"1/X

i
is in C

j
) P (X

i
is in C

j
)

"
k
+
j/1

P
j
Prob (u : X

i
(u)3Sc

0j
given that u3C

j
)

"
k
+
j/1

P
j PSc

0j

p
j
(x) dx"a.

Hence the expectation of ½
i
, E(½

i
) is given by

E(½
i
)"a, ∀i.
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Then by using Strong Law of Large Numbers [18], (1/n) +n
i/1

½
i
Pa almost every-

where, i.e., P(u: (1/n) +n
i/1

½
i
(u) P@ a)"0. Let B"Mu : (1/n) +n

i/1
½
i
(u) PaN-).

Then Q(B)"1.

Note that f
n
(u))(1/n) +n

i/1
½
i
(u), ∀n and ∀u, since the set of regions (S

01
,

S
02

, 2 , S
0k

) obtained by the Bayes decision rule is also provided by some A3A and

consequently it will be included in G. Note that 0)f
n
(u))1, ∀n and ∀u. Let u3B.

For every u3B, º(u)" M f
n
(u), n"1, 2, 2 N is a bounded, infinite set. Then by

Bolzano—Weierstrass theorem [19], there exists an accumulation point of º(u). Let

y"Sup My
0
: y

0
is an accumulation point of º(u)N. From elementary mathematical

analysis we can conclude that y)a, since (1/n) +n
i/1

½
i
(u)Pa almost everywhere and

f
n
(u))(1/n) +n

i/1
½
i
(u). Thus it is proved that for sufficiently large n, f

n
(u) cannot be

greater than a for u3B.

Remarks. (1) The proof is not typical of the GA-based classifier. It will hold for any

other classifier where the criterion is to reduce the number of misclassified points. For

example, if simulated annealing is used instead of genetic algorithm, then too the

results will hold under limiting conditions.

(2) Instead of hyperplanes, any other higher-order surface could have been used for

obtaining the decision boundaries, provided the number of higher-order surfaces is

finite and known, and the Bayes boundary is indeed provided by such surfaces. It

would lead to only minor modifications to the proof presented earlier, with the basic

inference still holding good.

(3) Although theoretically all possible H
o
hyperplanes are considered while search-

ing for the decision boundary, this is not feasible practically. The search space has to

be discretized into small intervals which excludes some hyperplanes from consideration.

(4) The proof established that the number of points misclassified by the

GA-classifier will always be less than or equal to the number of points misclassified by

Bayes decision rule for sufficiently large number of training data points and iterations.

However, the fact that f
n
(u)(a is true for only a finite number of training data points.

This is due to the reason that a small number of identical training points can be

generated by different statistical distributions. Consequently, each distribution will

result in different error probabilities of the Bayes classifier. The GA-classifier, on the

other hand, will always find the decision surface yielding the smallest number of

misclassified points, irrespective of their statistical properties.

As the number of points increases, the number of possible distributions that can

produce them decreases. In the limiting case when nPR, only one distribution will

produce all the training points [20]. The proof of this statement is as follows: Let X be

an N-dimensional random vector. Let the distribution function of X be designated by

F(a
1
, a

2
, 2 , a

N
) which is equal to P[X3(!R, a

1
]](!R, a

2
]]2](!R, a

N
]].

Here P( )) is the probability of the event ()). Let the distribution function of X,

estimated by n observations of X viz. X
1
, X

2
, 2 ,X

n
, be F

n
(a

1
, a

2
, 2 , a

N
). Then from

the strong law of large numbers

F
n
(a

1
, a

2
, 2 , a

N
) PF(a

1
, a

2
, 2 , a

N
)

as nPR almost everywhere.
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The Bayes classifier designed over this distribution will provide the optimal deci-

sion boundary. The GA-classifier, in that case, will also yield a decision boundary

which is same as the Bayes decision boundary provided the number of surfaces is

known a priori. This fact has been borne out by the experimental results given in

Section 6 that for an increased number of training points, the decision surface

provided by the GA-classifier indeed approaches the Bayes decision boundary.

(5) From the theorem, it is obvious that the boundary provided by the GA-classifier

will approach the Bayes boundary as the number of training data points goes to

infinity. Otherwise, the number of points misclassified during training of the GA-

classifier would be more than that of the Bayes classifier (since Bayes classifier is

known to be the optimal one); but this is impossible from the theorem. Results are

presented in Section 6.2 to verify the validity of this statement.

(6) The theorem states that the error rate of the GA-classifier during training is less

than or equal to the Bayes error probability for sufficiently large number of training

data points and iterations. However, the performance of a classifier is better evaluated

if both the training and the test cases are taken into consideration. Such results are

presented in Section 6.2.

The results proved analytically in this section are also verified experimentally in

Section 6 under different situations. Note that in the proof described above it is

assumed that H
o
is known a priori. However, in practice, as mentioned earlier, H

o
may

not be known. In that case, we try to overestimate H
o
which may lead to the presence

of redundant hyperplanes in the resultant decision boundary. The next section

describes a method of eliminating the redundant hyperplanes thereby generating the

optimum number of hyperplanes H
GA

of the GA-classifier. A relationship of H
GA

and

the optimum hyperplanes H
o

yielding the Bayes boundary is also established in the

next section.

5. Relationship between Ho and HGA

Here, we first present a technique for getting H
GA

hyperplanes from the initial over

estimation of H. Subsequently, we establish that H
GA

is equal to H
o
when there exists

exactly one partition of the feature space that provides the Bayes error probability a.

In case more than one partition can provide the Bayes error probability, then all we

can say is that H
GA

will be greater than or equal to H
o
.

5.1. Obtaining H
GA

from H

A hyperplane is considered to be redundant if its removal has no effect on the

recognition score of the classifier for the given training data set. In order to arrive at

the optimal number of hyperplanes, one of the ways is to consider first of all, all

possible combinations of the H hyperplanes. For each such combination, the first

hyperplane is removed and it is checked whether the remaining hyperplanes can

successfully classify all the patterns. If so, then this hyperplane is deleted, and the test

is repeated for the next hyperplane in the combination.
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Obviously, testing all possible combinations results in an algorithm with exponen-

tial complexity in H. To avoid this, a branch and bound technique can be adopted

where the search within a combination is discontinued (before considering all the

H hyperplanes) if the number of hyperplanes found to be non-redundant so far, is

greater than or equal to the number of hyperplanes declared to be non-redundant by

some earlier combination. The complexity may be reduced further by terminating the

algorithm if the combination being tested provides a set of vlog
2
kw non-redundant

hyperplanes (see Section 3), this being the minimum number of hyperplanes that is

required for generating the k regions. This method guarantees removal of all the

redundant hyperplanes from the decision boundary, thereby yielding exactly

H
GA

hyperplanes.

5.2. How H
GA

is related to H
o

Let H
GA

be the number of hyperplanes (after elimination of redundancy) found

by the GA-classifier to provide an error rate"f
n
(u), which is less than or equal

to a (Bayes error probability) when nPR. If H
o

is the optimal number of hyper-

planes, then obviously H
GA

cannot be less than H
o
. It is now our task to ascertain

whether H
GA

'H
o

or H
GA

"H
o
. For this we must first consider the following

situations:

(a) The number of partitions which provides the Bayes error probability is exactly

one. Since this partition, formed from H
o

hyperplanes, provides the Bayes error

probability, which is known to be optimal, for nPR, the regions provided by the

H
GA

hyperplanes must be exactly same as the regions provided by the H
o
hyper-

planes. Thus H
GA

must be the same as H
o
for large values of n.

(b) On the contrary, the number of partitions that provide the Bayes error probability

may be greater than one. For example, this will be the case if at least one of the

k classes is totally disconnected from the other classes. Another example is

provided in Appendix A. In these cases, the regions provided by the H
GA

hyper-

planes may not be identical to the ones provided by the H
o
hyperplanes. Conse-

quently, H
GA

can be greater than H
o
for such situations although the classifier still

provides an average error"f
n
(u).

5.3. Some points related to n and H

In practice, we always deal with finite data sets (or finite n). Obviously, in that case,

additional hyperplanes, beyond H
o
, may be placed appropriately in order to further

reduce the number of misclassified points, at the cost of possibly reduced generaliza-

bility. These hyperplanes will not be eliminated by the redundancy removal process.

However, as n increases, the effect of introducing additional hyperplanes will decrease

and also the performance of the classifier in terms of the test data will gradually

improve. In the limiting case, for nPR, only the optimum number of hyperplanes

with a specific arrangement will provide the requisite decision boundary. Any addi-

tional hyperplane will obviously be detected as redundant. At the same time, the

generalization of the classifier will be optimum.
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6. Experimental results

Extensive empirical results are provided in this section, which are seen to conform

to the theoretical findings in Section 4. It is also found experimentally that the

decision boundary obtained by GA-classifier approaches that of Bayes classifier as

n increases. Data sets following triangular and normal distributions are considered

having both linear and non-linear class boundaries. All the data sets have consider-

able amount of overlap. In a part of the experiment, instead of hyperplanes, circular

segments (in two dimensions) are considered for constituting elements of the decision

boundaries. Its objective is to demonstrate whether the theoretical claims made in

Section 4 for hyperplanes hold good for higher-order surfaces or not. The effect of

class a priori probability on the recognition score has also been experimentally

investigated.

Different situations considered for conducting the experiments are as follows:

(i) The decision boundary is provided by H
o

hyperplanes, and H
o

is known a

priori.

(ii) The decision boundary is provided by H
o
higher-order surfaces, and H

o
is known

a priori.

(iii) It is known that the decision boundary can be approximated by H
o
hyperplanes

but the value of H
o
is not known.

(iv) It is known that the decision boundary can be approximated by H
o
higher-order

surfaces but the value of H
o

is not known.

(v) It is known that no value of H
o

hyperplanes can approximate the decision

boundary.

(vi) It is known that no value of H
o

higher-order surfaces can approximate the

decision boundary.

(vii) Nothing is known about the given data set. In that case, we may try to

approximate the boundary by a fixed number of hyperplanes or any other

higher-order surfaces.

This section is divided into three parts. The description of the data sets is given in

the first part. The decision boundaries and recognition scores (during training and

testing) obtained by GA-classifier (using linear as well as circular surfaces) are then

compared with those of Bayes classifier for different sizes of the training data in the

second part. Finally, the third part demonstrates the variation of the generalization

capability of the classifier as a function of the class a priori probability, for two class

problems.

6.1. Data sets

Four types of data sets are used which are described here.

Data set 1: A two-dimensional (X!½) data set is generated using a triangular

distribution of the form shown in Fig. 1 for the two classes, 1 and 2. The range for class

1 is [0, 2]][0, 2] and that for class 2 is [1, 3]][0, 2] with the corresponding peaks at

(1, 1) and (2, 1). Figure 1 shows the distribution along the X-axis since only this axis

has discriminatory capability. The distribution along the X-axis may be formally
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Fig. 1. Triangular distribution along the x-axis for Data set 1 having two classes.

quantified as

f
1
(x)"







0 for x)0,

x for 0(x)1,

2!x for 1(x)2,

0 for x'2.

for class 1. Similarly for class 2

f
2
(x)"







0 for x)1,

x!1 for 1(x)2,

3!x for 2(x)3,

0 for x'3.

The distribution along the ½-axis for both the classes is

f (y)"







0 for y)0,

y for 0(y)1,

2!y for 1(y)2,

0 for y'2.
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Fig. 2. Data set 2 for n"1000 along with the Bayes decision boundary for two classes.

If P
1

is the a priori probability of class 1 then using elementary mathematics, we can

show that Bayes classifier will classify a point to class 1 if its X coordinate is less than

1#P
1
. This indicates that the Bayes decision boundary is given by

x"1#P
1
. (4)

Data set 2: Figure 2 shows a normally distributed data set consisting of two classes.

The mean (k
1
, k

2
) and covariance values (&

1
, &

2
) for the two classes are k

1
"(0.0, 0.0),

k
2
"(1.0, 0.0) and

&
1
"A

1.0

0.0

0.0

1.0B , &
2
"A

4.0

0.5

0.5

4.0B ,

respectively.

The classes are assumed to have equal a priori probability ("0.5). Mathematical

analysis shows that the Bayes decision boundary for such a distribution of points will

be of the following form:

a
1
x2
1
#a

2
x2
2
#2a

3
x
1
x
2
#2b

1
x
1
#2b

2
x
2
#c"0.

The Bayes boundary for such a class distribution is also shown in Fig. 2.
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Fig. 3. Data set 3 for n"900 along with the Bayes decision boundary for nine classes.

Data set 3: To consider a multi-class problem, a nine class triangular distribution of

data points is considered. All the classes are assumed to have equal a priori probabilit-

ies ("1/9). The X—½ ranges for the nine classes are as follows:

f Class 1: [!3.3,!0.7]][0.7, 3.3].

f Class 2: [!3.3, 1.3]][0.7, 3.3].

f Class 3: [0.7, 3.3]][0.7, 3.3].

f Class 4: [!3.3,!0.7]][!1.3, 1.3].

f Class 5: [!1.3, 1.3]][!1.3, 1.3].

f Class 6: [0.7, 3.3]][!1.3, 1.3].

f Class 7: [!3.3,!0.7]][!3.3,!0.7].

f Class 8: [!1.3, 1.3]][!3.3,!0.7].

f Class 9: [0.7, 3.3]][!3.3, !0.7].

Thus, the domain for the triangular distribution for each class and for each axis is 2.6.

Consequently, the height will be (1/1.3) (since 1
2
]2.6]height"1). The resulting Bayes

boundary along with the data set is shown in Fig. 3.

Data set 4: This two class two-dimensional data set is used specifically for the

purpose of investigating the generalization capability of the GA-classifier as a function

of the a priori probability of class 1. The data set is normally distributed with the
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following parameters: k
1
"(0.0, 0.0), k

2
"(1.0, 0.0) and

&
1
"&

2
"&"A

1.0

0.0

0.0

1.0B .

Since &
1
"&

2
, the Bayes boundary will be linear [21] of the following form:

(k
2
!k

1
)T&~1X#1

2
(kT

1
&~1k

1
!kT

2
&~1k

2
).

Note: (1) For each data set and for a particular value of n, two different training data

sets are generated using different seed values. Training is performed with each data set

for five different initial populations. This means that a total of 10 runs are performed

for a given n. The results of the GA-classifier presented here are average values over

these 10 runs.

(2) The test data set comprises 1000 points. Testing of the GA-classifier is per-

formed for each of the 10 training runs. Results shown are the average values over

these 10 runs.

(3) Roulette wheel selection strategy with elitism is used in this investigation. Due

to memory constraints, population size of 20 is chosen. Consequently, a high cross-

over probability (cr—prob) of 0.8 is fixed for single point crossover scheme. The

mutation probability value (mut—prob) varies over the range of [0.01, 0.333], initially

having a high value, then gradually decreasing and finally increasing again in the later

stages of the algorithm. 100 iterations of the GA are performed for each mut—prob.

A total of 1500 iterations is performed. The mutation probability range is uniformly

divided into 8 distinct values. Starting from 0.333, at first the value is gradually

decreased after every 100 iterations, till the minimum value is achieved. Subsequently,

it is again increased in the reverse order after every 100 iterations till it attains the

value 0.333. Thus a maximum of 1500 iterations are executed.

Note that it is proved in [17] that an elitist model of GA will always provide the

optimal string as the number of generations goes to infinity, provided the probability

of going from any population to the one containing the optimal string is greater than

zero. This proof is irrespective of the population sizes and different probability values.

However, appropriate selection of GA parameters is necessary in view of the fact that

it has to be terminated after a finite number of iterations.

6.2. Learning the class boundaries and performance on test data

6.2.1. Utilizing linear surfaces

An extensive comparison of the performance of the GA-classifier with that of Bayes

classifier is performed for Data sets 1—3. The following cases are considered for Bayes

classifier:

Case 1: The distributions as well as the class a priori probabilities (P
1

and P
2
) are

known.

Case 2: The distribution is known, with P
1
"P

2
"0.5.

Case 3: The distribution is known, with P
1
"n

1
/n and P

2
"n

2
/n. Here n

1
and

n
2

are the number of points belonging to classes 1 and 2, respectively, n"n
1
#n

2
.
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Table 1

Comparative classwise and overall training recognition scores (%) for Data set 1

n Class GA-classifier Bayes classifier

H"1 H"3 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

100 1 88.77 89.26 81.08 85.94 81.08 82.60 88.77 83.71

2 93.24 95.00 91.21 87.88 90.30 89.60 87.18 89.60

Overall 91.50 92.70 87.00 87.5 87.00 87.00 88.00 87.50

500 1 76.48 78.24 80.29 87.75 81.41 83.43 87.51 82.87

2 95.69 95.59 89.39 84.73 90.15 87.87 85.38 87.85

Overall 88.00 88.65 85.70 85.90 86.20 86.10 86.20 86.00

1000 1 86.91 86.17 82.68 87.64 83.03 84.32 87.40 84.80

2 91.01 92.00 92.93 87.71 92.75 91.84 87.81 91.58

Overall 89.35 89.67 88.80 87.70 88.85 88.80 87.65 88.50

1500 1 87.17 87.70 82.26 88.18 82.70 84.38 88.33 84.59

2 90.73 90.45 92.07 88.17 92.10 91.11 87.94 90.54

Overall 89.08 89.35 88.10 88.16 88.33 88.10 88.10 88.16

2000 1 80.77 81.00 83.13 88.71 83.25 84.24 87.97 84.24

2 94.81 94.93 91.71 86.77 91.54 91.37 87.52 91.29

Overall 89.15 89.36 88.25 87.55 88.20 88.50 87.70 88.45

3000 1 75.96 78.72 80.82 85.59 80.57 82.41 85.34 82.24

2 95.68 94.02 91.86 87.65 91.86 90.75 87.76 90.81

Overall 87.83 87.90 87.46 86.83 87.36 87.43 86.80 87.40

4000 1 82.54 82.50 87.73 87.39 81.89 84.35 87.39 83.83

2 91.81 92.08 91.52 86.88 91.93 90.18 86.67 90.59

Overall 88.22 88.25 88.12 87.07 88.05 87.92 86.95 87.97

Case 4: Normal distribution with unequal covariance matrices, while P
1

and P
2

are

known.

Case 5: Normal distribution with unequal covariance matrices and P
1
"P

2
"0.5.

Case 6: Normal distribution with unequal covariance matrices, and P
1
"n

1
/n and

P
2
"n

2
/n, where n

1
and n

2
are defined above.

(a) Data set 1: The different values of n considered are 100, 500, 1000, 1500, 2000,

3000, and 4000 and P
1
"0.4. The Bayes boundary for this data set is a straight line

(x"1.4). The training recognition scores of Bayes classifier and GA-classifier are

shown for H"1 and 3 (Table 1). As expected, for each value of n, the recognition

score during training of the GA-classifier with H"3 was found to be at least as good

as that with H"1. Table 2 shows the recognition scores for the test data. Here, it is

found that the Bayes classifier yields a better performance than the GA-classifier. Also,

GA-classifier with H"3 provides a consistently lower score than with H"1. This is

expected since larger H leads to overfitting of the training data, thereby yielding better

training performance (Table 1), while the generalization capability of the classifier

degrades (Table 2).

It is seen from Table 1 that for all values of n, the recognition scores for GA-classifier

during training are better than those of Bayes (all cases). However, this difference in
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Fig. 4. Variation of a ("overall GA score—Bayes score) with n for Data set 1.

Table 2

Comparative overall test recognition scores (%) for Data set 1

n GA-classifier Bayes classifier

H"1 H"3

100 85.30 85.00 87.90

500 85.90 85.75 87.90

1000 86.20 85.87 87.90

1500 86.21 86.00 87.90

2000 86.55 86.41 87.90

3000 87.10 87.10 87.90

4000 87.32 87.20 87.90

performance gradually decreases for larger values of n. This is demonstrated in Fig. 4,

which plots a as a function of n, where a"(overall training recognition score of the

GA-classifier!overall recognition score of the Bayes classifier (Case 1)). This indi-

cates that as n increases, the decision boundaries provided by the GA-classifier

gradually approach the Bayes boundary (see Remark in Section 4). This observation is

demonstrated in Figs. 5, 6, 7 and 8 for n"100, 1000, 2000 and 4000, respectively.
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Fig. 5. Data set 1 for n"100 and the boundary provided by GA-classifier for H"1 (marked with an

arrow) along with Bayes decision boundary. Class 1 is represented by ‘#’ and class 2 by ‘v’.

Fig. 6. Data set 1 for n"1000 and the boundary provided by GA-classifier for H"1 (marked with an

arrow) along with Bayes decision boundary. Class 1 is represented by ‘#’ and class 2 by ‘v’. (Only 100 data

points are plotted for clarity.)

Fig. 7. Data set 1 for n"2000 and the boundary provided by GA-classifier for H"1 (marked with an

arrow) along with Bayes decision boundary. Class 1 is represented by ‘#’ and class 2 by ‘v’. (Only 100 data

points are plotted for clarity.)
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Fig. 8. Data set 1 for n"4000 and the boundary provided by GA-classifier for H"1 (marked with an

arrow) along with Bayes decision boundary. Class 1 is represented by ‘#’ and class 2 by ‘v’. (Only 100 data

points are plotted for clarity.)

A point to be mentioned here is that although the result of Bayes classifier (Case 1)

is the ideal one considering the actual distribution and a priori probabilities, interest-

ingly some of the other cases (e.g., Case 5 for n"100, Case 3 for n"500) are seen to

produce better scores. A reason for this discrepancy may be because of the effect of

stochastic errors in sampling of the data points. It is also found that results for cases

1 and 4 are similar (having same values for n"100, 1000 and 1500, and close values

for other values of n). The reason for this is that normal distribution with proper

variance has been found to be able to approximate the triangular distribution closely.

(b) Data set 2: Four values of n considered here for the experiments are n"500,

1000, 2000 and 5000. Cases 1, 3, 4 and 6 are investigated since only these are relevant

in this context. Table 3 presents the results corresponding to them during training.

Figure 2 shows the data set for n"1000 and the corresponding Bayes boundary. (It is

found that the Bayes boundary totally surrounds class 1.) Due to practical limitations,

we have considered H"4 and 6 only for executing the GA-classifier, although from

the complexity of the decision surface it appears that a still larger number of lines may

be required for proper approximation.

For smaller values of n (500 and 1000), it is found, as in the case of Data Set 1, that

the GA-classifier yields a better score than the Bayes classifier for the training data set

(Table 3). Figure 9 shows the decision boundary obtained for n"1000 and H"4,

along with the Bayes boundary. Although all the four lines of GA are found to be

necessary, and they surround class 1, the boundary formed by them could not

approximate the Bayes boundary well. In spite of this fact, its recognition score during

training is relatively larger than that of the Bayes classifier. Increasing H to a value

6 improves both the approximation of the boundary and the recognition score during

training (Table 3).

For n"2000, one out of the four lines is found to be redundant by the GA-classifier

(see Fig. 10) and they fail to surround class 1 for the same number (1500) of iterations.

The training score is accordingly found to be lower than that of the Bayes classifier.

For H"6 (Fig. 11), the recognition score during training exceeds the one obtained by

407S. Bandyopadhyay et al. / Journal of the Franklin Institute 336 (1999) 387—422



Table 3

Comparative classwise and overall training recognition scores (%) for Data set 2

n Class GA-classifier Bayes classifier

H"4 H"6 Case 1 Case 3 Case 4 Case 6

500 1 89.23 89.23 85.38 86.54 85.77 87.31

2 62.92 65.83 65.83 64.17 64.17 63.33

Overall 76.60 78.00 76.00 75.80 75.40 75.80

1000 1 83.92 84.90 83.33 84.12 83.33 84.71

2 67.96 67.44 66.53 65.92 65.71 65.10

Overall 76.10 76.35 75.10 75.20 74.70 75.10

2000 1 87.98 87.58 85.27 83.73 84.77 85.22

2 61.78 63.37 64.77 65.43 65.17 65.18

Overall 74.85 75.45 75.00 74.87 74.95 74.98

5000 1 85.18 83.04 85.42 85.50 85.74 85.82

2 65.04 68.39 66.33 66.01 66.09 65.81

Overall 75.18 75.76 75.94 75.82 75.98 75.88

Fig. 9. Data set 2 for n"1000 and the boundary provided by GA-classifier for H"4 along with Bayes

decision boundary (circular one).
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Fig. 10. Data set 2 for n"2000 and the boundary provided by GA-classifier for H"4 along with Bayes

decision boundary (circular one). The redundant line is marked with an arrow.

Bayes, and the approximation to the Bayes boundary improves (although only 5 lines

are utilized effectively).

For a further increase in n to 5000, the training recognition scores (Table 3) for both

H"4 and 6 are seen to be worse than Bayes scores for the same number of iterations.

However, the approximation to Bayes boundary is seen to be much improved here as

compared to n"1000 and 2000. This is evident from Figs. 12 and 13, where H"6, as

expected, provides better performance that H"4. From Figs. 10 and 13 it is

interesting to note that one line is found to be redundant and at the same time the

score is worse than that of Bayes. This may be attributed to the premature termination

of GA.

Table 4 shows the recognition scores for Data set 2 during testing. Again, it is found

that the GA-classifier provides poorer scores than Bayes classifier. Also, GA-classifier

with H"6 provides better performance than with H"4. This is expected since

H"6 can better approximate the complex decision surface.

(c) Data set 3: In order to extend the results for problems where k'2, we utilized

a nine class, two dimensional data set. The data set for n"1800 along with the

corresponding Bayes boundary is shown in Fig. 3. The experiments on training as well

as test data sets have been conducted for H"4 and n"450, 900, 1350 and 1800. Only

the training results are presented here. As before, the test results, show a superior

409S. Bandyopadhyay et al. / Journal of the Franklin Institute 336 (1999) 387—422



Fig. 11. Data set 2 for n"2000 and the boundary provided by GA-classifier for H"6 along with Bayes

decision boundary (circular one). The redundant line is marked with an arrow.

performance of the Bayes classifier, and are omitted. Comparison with the Bayes

classifier is made for case 1 only. The results for the overall training recognition scores

are shown in Table 5. Figure 14 shows the boundary obtained using the GA-classifier

along with the Bayes decision boundary for n"1800 where it seen is that the four

lines more or less approximate the Bayes boundary. It is found from Table 5 that

although for each value of n the training scores of the GA-classifier and the Bayes

classifier are comparable, the latter one appears to provide a slightly better perfor-

mance. The GA-classifier is not able to approximate the Bayes boundary very closely.

One of the reasons may again be the premature termination of the GA. Another factor

may be the coding itself which does not allow encoding of the actual Bayes lines (this

may be due to an insufficiency of the precision defined for the perpendicular distance

of the hyperplane).

6.2.2. Utilizing higher-order surfaces

It has been pointed out earlier (Section 4) that instead of approximating the

decision boundary by hyperplanes, we can assume any other higher-order surface

with similar effect. This subsection describes the method of utilizing a fixed number of

circular segments to constitute the decision surface in two-dimensional space.
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Fig. 12. Data set 2 for n"5000 and the boundary provided by GA-classifier for H"4 along with Bayes

decision boundary (circular one).

The equation of a circle with center (h, k), and radius r is given by

(x!h)2#(y!k)2"r2.

Thus, the three parameters h, k and r correspond to a unique circle and these are

encoded in a string of the GA-classifier. Let l and b be the length and breadth,

respectively, of the rectangle constructed around the data points in the two-dimen-

sional space. This rectangle will subsequently be referred to as the inner rectangle.

Surrounding the inner rectangle, let us consider a larger rectangle, to be referred to as

the outer rectangle, of length (2]p#1) l and breadth (2]p#1) b. Then the center of

the circle (which will be considered for constituting the decision boundary) is allowed

to lie anywhere within the outer rectangle. p can be chosen sufficiently large in order to

approximate any form of the decision boundary. The center (h, k) of the circle is

a randomly chosen point within the outer rectangle. For computing the radius, the

nearest distance of the center (h, k) from the vertices of inner rectangle is determined.

Let this be d
1
. Similarly, let the farthest distance be d

2
. Now if (h, k) lies within the

inner rectangle, then the radius can take on values in the range [0, d
2
]. Otherwise the

range is considered as [d
1
, d

2
]. A random value chosen from the range corresponds to

the radius of the circle.
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Fig. 13. Data set 2 for n"5000 and the boundary provided by GA-classifier for H"6 along with Bayes

decision boundary (circular one). The redundant line is marked with an arrow.

Table 4

Comparative overall test recognition scores (%) for Data set 2

n GA-classifier Bayes classifier

H"4 H"6

500 72.75 73.20 74.80

1000 72.92 73.35 74.80

2000 73.05 73.62 74.80

5000 73.34 74.15 74.80

Analogous to using hyperplanes, a fixed number of circles C is considered to

constitute the boundaries between classes. The regions corresponding to the different

classes are determined from the training data set. Fitness of a string is determined by

the number of points correctly classified by the string. For our experiment, we

assumed p"8. The other genetic parameters are kept the same as discussed earlier.

The results obtained during both training and testing, when circular segments are

used to model the decision boundaries for Data sets 1 and 2, are shown in Table 6.
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Table 5

Comparative overall recognition scores (%) for Data set 3

n Overall recognition score

GA-classifier (H"4) Bayes classifier (Case 1)

450 93.56 93.78

900 93.22 93.11

1350 90.08 92.52

1800 92.25 92.50

Fig. 14. Data set 3 and the boundary provided by GA-classifier for n"1800 and H"4 (marked with

arrows) along with Bayes decision boundary. (Only 900 points are shown.)

Interestingly, the approximation of the decision boundary for Data sets 1 and 2 could

be made better using linear and circular segments respectively. This is followed for

both data sets. Figures 15 and 16 show the GA and Bayes boundaries obtained for

Data set 1, n"1000 and C"1, and Data set 2, n"5000 and C"6 (where one

segment is found to be redundant as in Fig. 13), respectively.

Again, the test scores for Data set 1 with circular segments are found to be poorer

compared to those with linear segments. The case is reversed for Data set 2 (except
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Table 6

Overall training and test recognition scores (%) for higher-order surfaces

Data set n No. of circles GA-classifier GA-classifier

C (circular surface) (linear surface H"C)

from Tables 1 and 3

Training Testing

Training Testing

Data set 1 1000 1 89.40 86.05 89.35 86.20

2000 1 89.10 86.20 89.15 86.55

Data set 2 2000 4 74.97 73.10 74.85 73.05

2000 6 75.55 73.60 75.45 73.62

5000 6 76.00 74.45 75.76 74.15

Fig. 15. Data set 1 for n"1000 and the circular boundary (left one) provided by GA-classifier when

circular segments are considered to constitute the decision boundary for C"1 along with Bayes decision

boundary. (Only 100 data points are plotted for clarity.)

with n"2000 and H"6, where the two are comparable). This is expected since the

decision boundary is linear for Data set 1, while it is circular for Data set 2. Note that

all these results are however inferior to the Bayes scores for the test data (Tables 2

and 4).
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Fig. 16. Data set 2 for n"5000 and the boundary provided by GA-classifier when circular segments are

considered to constitute the decision boundary for C"6 along with Bayes decision boundary. The

redundant segment is marked with an arrow. (Only 500 data points are plotted for clarity.)

Note that for p"8, the circular property of the segments does not appear to be

fully exploited (Fig. 16) because of large radius. This was done in order to be able to

approximate better any type of decision boundary using circular segments only.

Figure 17 shows another result for n"2000, p"0 and C"2 which corresponds to

smaller radius, and hence shows better circular characteristics. Here, the recognition

scores over the training and the test data are 75.10% and 74.65%, respectively.

6.3. Variation of recognition scores with P
1

The variation of the test recognition scores of the GA-classifier and Bayes classifier

with P
1

is now demonstrated for Data set 1, 2 and 4 in Figs. 18 (H"1 and 3), 19

(H"6), and 20 (H"1), respectively. Here one training data set of size 200 and two

test data sets of size 1000 are taken. Training of the GA-classifier is performed for five

initial conditions. Subsequently, testing is performed for the two test data sets. The

results shown are the average values over the ten runs. Note that the variation of the

test recognition scores of the GA-classifier with P
1

is similar to that of Bayes classifier

for all the three data sets. (For the convenience of the readers, the above-mentioned

variation for Bayes classifier is discussed theoretically in Appendix B with reference to

triangular and normal distribution of data points.)
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Fig. 17. Data set 2 for n"2000 and the boundary provided by GA-classifier (marked with arrows) when

circular segments are considered for C"2 and p"0. The Bayes decision boundary is also shown. (Only

500 data points are plotted for clarity.) The arc on the right is obviously redundant.

Fig. 18. Variation of recognition score of test data with P
1

for Data set 1 corresponding to Bayes classifier

and GA-classifier (H"1 and 3): n"200.

It is shown in Appendix B that for triangular distribution the error probability

varies symmetrically with P
1
having the maximum value for P

1
"0.5. Similar observa-

tions were made in the investigation for Data set 1. Consequently, results are

presented for P
1

lying in the range [0, 0.5] only. The test scores for the GA-classifier
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Fig. 19. Variation of recognition score of test data with P
1

for Data set 2 corresponding to Bayes classifier

and GA-classifier (H"6): n"200.

Fig. 20. Variation of recognition score of test data with P
1

for Data set 4 corresponding to Bayes classifier

and GA-classifier (H"1): n"200.

with H"3 are found to be consistently poorer than those with H"1 for this data set

(Fig. 18). It is to be mentioned here that recognition of the training data was better for

H"3 than for H"1 (Table 1). This again supports the observations that increasing

H beyond the optimum value leads to better training performance but poorer

generalization of the GA-classifier.

7. Discussion and conclusions

A theoretical investigation is made here to find the relationship between a GA

based classifier developed earlier [3] and the Bayes classifier. It is shown that for

a sufficiently large number of training data points, and for a sufficiently large number

of iterations the error rate during training obtained by the GA-classifier (where

hyperplanes are considered to constitute the class boundaries) will be less than or

equal to the Bayes error probability.
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It is also shown that the number of hyperplanes provided by the GA-classifier for

constituting the decision boundary will be optimum if the minimal partition providing

the Bayes error probability is unique. Otherwise it will be greater than or equal to the

optimum value (see Section 5). In either case, the classifier will still be optimal in terms

of the number of misclassified training data points.

The experimental results on the different distribution of overlapping data with both

linear and non-linear boundaries show that the decision regions provided by

GA-classifier gradually approach the ones provided by Bayes classifier for a large

number of training data points. For small values of n, the GA-classifier yields

a significantly better recognition score during training. This is due to the reason that

such a relatively small data set can be generated by many distributions, each provid-

ing a different error function. As the number of points increases, the number of

distributions that are able to generate the points becomes smaller. In the limiting case,

only one distribution will provide the optimal error. The performance of the GA-

classifier, in such a case, will be same as that of the Bayes classifier.

When the decision boundaries are non-linear, the GA-classifier using circular

segments performs better than the one using linear surfaces (Table 6, for Data set 2).

On the other hand, with the decision boundary being actually linear, the GA-classifier

with lines performs better. In real life, data sets are often overlapping with non-linear

boundaries. Thus using higher-order surfaces for modeling the decision boundary

appears to be better in real-life problems.

As far as the generalization capability is concerned, the Bayes classifier generalizes

better than the GA-classifier for all the data sets, and also for all values of a priori

class probability P
1
. In fact, it is known in the literature that when the class a

priori probabilities and the probability distributions are known, the Bayes classifier

provides the optimal performance. No other classifier, in that case, can provide

a better performance. However, in most practical cases, these quantities are usually

unknown. It is in such situations that the GA-classifier, which is non-parametric in

nature, can be utilized. It has already been shown in [3, 7] that the performance of the

GA-classifier is comparable to (sometimes better than) that of some other standard

classifiers.
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Appendix A

Let us consider a three class problem. Let the a priori probabilities for the three

classes by P
1
, P

2
and P

3
and the class conditional densities be p

1
(x), p

2
(x) and p

3
(x). Let

the regions associated with the three classes be )
1
, )

2
and )

3
such that )

i
W)

j
"0,
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∀iOj and )
1
X)

2
X)

3
"). Then the error probability e is given by

e"
3
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i/1
P)e

i

P
i
p
i
(x) dx
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3

P
1
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1
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2
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P
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P
1
p
1
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P
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p
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P
3
p
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!P)
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P
1
p
1
(x) dx!P)

2

P
2
p
2
(x) dx#P)

1
X)

2

P
3
p
3
(x) dx
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#P
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#P)

1

(P
3
p
3
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1
p
1
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(P
3
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3
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p
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(x)) dx.

Similarly

e"P
2
#P

3
#P)

2

(P
1
p
1
(x)!P

2
p
2
(x)) dx#P)

3

(P
1
p
1
(x)!P

3
p
3
(x)) dx

and

e"P
3
#P

1
#P)

3

(P
2
p
2
(x)!P

3
p
3
(x)) dx#P)

1

(P
2
p
2
(x)!P

1
p
1
(x)) dx.

Summing up, we get

3e"2#CP)
1

((P
3
p
3
(x)!P

1
p
1
(x))#(P

2
p
2
(x)!P

1
p
1
(x))) dx

#P)
2

((P
3
p
3
(x)!P

2
p
2
(x))#(P

1
p
1
(x)!P

2
p
2
(x))) dx

#P)
3

((P
1
p
1
(x)!P

3
p
3
(x))#(P

2
p
2
(x)!P

3
p
3
(x))) dxD.

Let c be used to represent the term in square brackets. Therefore 3e"2#c. Bayes

classifier classifies a point x to the class which minimizes e, i.e., which in effect

minimizes c. Accordingly in order to classify a point x to one of the three classes the

following cases may arise:

1. Mx: P
1
p
1
(x)'P

2
p
2
(x)'P

3
p
3
(x)N: classify to class 1.

2. Mx: P
1
p
1
(x)'P

2
p
2
(x)"P

3
p
3
(x)N: classify to class 1.
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3. Mx: P
1
p
1
(x)'P

3
p
3
(x)'P

2
p
2
(x)N: classify to class 1.

4. Mx: P
1
p
1
(x)"P

3
p
3
(x)'P

2
p
2
(x)N: classify to class 1 or 3.

5. Mx: P
3
p
3
(x)'P

1
p
1
(x)'P

2
p
2
(x)N: classify to class 3.

6. Mx: P
3
p
3
(x)'P

1
p
1
(x)"P

2
p
2
(x)N: classify to class 3.

7. Mx: P
3
p
3
(x)'P

2
p
2
(x)'P

1
p
1
(x)N: classify to class 3.

8. Mx: P
3
p
3
(x)"P

2
p
2
(x)'P

1
p
1
(x)N: classify to class 3 or 2.

9. Mx: P
2
p
2
(x)'P

3
p
3
(x)'P

1
p
1
(x)N: classify to class 2.

10. Mx: P
2
p
2
(x)'P

3
p
3
(x)"P

1
p
1
(x)N: classify to class 2.

11. Mx: P
2
p
2
(x)'P

1
p
1
(x)'P

3
p
3
(x)N: classify to class 2.

12. Mx: P
2
p
2
(x)"P

1
p
1
(x)'P

3
p
3
(x)N: classify to class 2 or 1.

13. Mx: P
1
p
1
(x)"P

2
p
2
(x)"P

3
p
3
(x)N: classify to any of the three classes.

As is obvious from the previous discussion, regions represented by cases 4, 8, 12 and

13 do not have unique classification associated with them. These regions may be

included in more than one class provided they are non-empty, while still providing the

least error probability.

Appendix B

As mentioned earlier (Eq. (3)), the Bayes error probability a is given by

a"
k
+
i/1

P
iPS c

0i

p
i
(x) dx,

where S
0i

is the region for class i. For a two class problem a may be written as

a"P
1 PSc

01

p
1
(x) dx#P

2PSc
02

p
2
(x) dx

Since P
2
"1!P

1
, we get

a"P
1 PSc

01

p
1
(x) dx#(1!P

1
) PSc

02

p
2
(x) dx. (B.1)

For the triangular distribution mentioned in Section 6.2 (for generating Data set 1),

using Eq. (4) we may write

a"P
1 P

2

1#P
1

(2!x) dx#(1!P
1
) P

1`P1

1

(x!1) dx.

Solving for a we get

a"P
1

(1!P
1
)

2
.

Obviously, this is a symmetric function with minimum values at P
1
"0 or 1, and

maximum value at P
1
"0.5. Thus, the recognition score of the Bayes classifier should

be minimum for P
1
"0.5, increasing symmetrically on both sides.
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For normal distribution, it is very difficult to obtain a closed-form expression for

a in terms of P
1
. An analysis presented in [21, Section 3.1] indicates that the risk

r associated with a particular decision is maximum for some value of P
1
"P*

1
,

decreasing on both sides of this value when the regions associated with each class

change with the class a priori probabilities.

Alternatively, one can also derive bounds on the error probabilities. One such

bound for normal distribution is given by [21]

a)JP
1
P
2
e!k(1/2), (B.2)

where k(1/2) is called the Bhattacharyya distance. Let us define the upper bound of

a by a@, i.e., a@"JP
1
P
2
e!k(1/2), or

a@"JP
1
(1!P

1
) e!k(1/2),

da@
dP

1

"
1

2

1!2P
1

JP
1
(1!P

1
)
e!k (1/2).

This shows that the error bound is maximum when P
1
"P

2
"0.5.
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