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B. Newly Proposed Cluster Validity Measure

1) Definition: Consider a partition of the data set X = {xj :
j = 1, 2, . . . , n} into K clusters. The center of each cluster

ci is computed by using ci =
∑ni

j=1 xij/ni, where ni (i =

1, 2, . . . ,K) is the number of points in cluster i, and xij is the

jth point of the ith cluster. The new cluster validity function

Sym is defined as

Sym(K) =
1

K
×

1

EK
× DK . (3)

Here, EK =
∑K

k=1 Ek, such that Ek =
∑nk

j=1 d∗ps(xkj , ck), and

DK = maxK
i,j=1 ‖ci − cj‖. DK is the maximum Euclidean dis-

tance between two cluster centers among all centers. d∗ps(xj , ci)
is computed by (2) with some constraint. Here, first knear

nearest neighbors of x′
j = 2 × ci − xj are searched among the

points which are already in cluster i, i.e., now the knear nearest

neighbors of the reflected point x′
j of the point xj with respect

to ci and xj should belong to the ith cluster. The objective is

to maximize this index in order to obtain the actual number of

clusters. It may be mentioned that Sym-index is inspired by the

I-index developed in [5].

2) Explanation: As formulated in (3), Sym-index is a com-

position of three factors, 1/K, 1/EK , and DK . The first factor

increases as K decreases; as Sym-index needs to be maximized

for optimal clustering, this factor prefers to decrease the value

of K. The second factor is a measure of the total within

cluster symmetry. For clusters which have good symmetrical

structures, EK value is less. Note that as K increases, in gen-

eral, the clusters tend to become more symmetric. Moreover,

as de(x, c) in (2) also decreases, Ek, in general, decreases,

resulting in an increase in the value of Sym-index. This will

continue until the clusters do not get the symmetric shape. But

after that as K increases, EK will increase, because its total

number of components will increase. Finally the third factor,

DK , measuring the maximum separation between a pair of

clusters, increases with the value of K. Note that the value

of DK is bounded by the maximum separation between a pair

of points in the data set. As these three factors are complemen-

tary in nature, so they are expected to compete and balance each

other critically for determining the proper partition.

C. Mathematical Justification

In this section, we mathematically justify the new validity

index by establishing its relationship to the well-known validity

measure proposed by Dunn [7] for hard partitions. This is

inspired by a proof of optimality of the Xie–Beni index [6].

1) Uniqueness and Global Optimality of the K-Partition:

The separation index D1 is a hard K-partition cluster validity

criterion. It is known that if D1 > 1, unique, compact, and

separated hard clusters have been found [7]. Here, we will prove

that if the optimal solution D1 becomes sufficiently large, the

optimal validity function Sym will also be large, which means

that a unique K-partition has been found. The proof of this is

as follows.

2) Theorem 1: For any K = 2, . . . , n − 1, let Sym be the

overall Sym-index value of any hard partition, and D1 be the

separation index of the corresponding partition. Then we have

Sym ≥
D1

n × K × 0.5 × knear × dmax
NN

where n is the total number of data points, K is the total

number of clusters and knear is the number of nearest neighbors

considered while computing dps as defined in (2). dmax
NN is

the maximum nearest neighbor distance in the data set. That

is dmax
NN = maxi=1,...,n dNN(xi), where dNN(xi) is the nearest

neighbor distance of xi.

Proof: Let the hard K-partition be an optimal parti-

tion of the data set X = {xj ; j = 1, 2, . . . , n} with ci(i =
1, 2, . . . , K) being the centroids of each class ui. The total

symmetrical variation EK of the optimal hard K-partition is

defined in (3). Thus

EK =

K
∑

i=1

∑

xj∈ui

dps(xj , ci) (4)

=

K
∑

i=1

∑

xj∈ui

∑knear
ii=1 dii

knear
de(xj , ci). (5)

Assuming that x∗
j (the symmetrical point of xj with respect to

cluster center ci) lies within the data space, it may be noted

that d1 ≤ dmax
NN /2, d2 ≤ 3dmax

NN /2, . . . , di ≤ (2i − 1)dmax
NN /2,

where di is the distance of ith nearest neighbor of x∗
j . Consid-

ering the term
∑knear

ii=1 dii/knear, we can write

∑knear
ii=1 dii

knear
≤

dmax
NN

2knear

(

knear
∑

ii=1

(2 × ii − 1)

)

. (6)

The right-hand side of the inequality may be written as

dmax
NN

2knear
×

(knear × (2 + (knear − 1)2))

2
=

knear × dmax
NN

2
.

(7)

So, combining (5), (6), and (7), we can write

EK ≤
K

∑

i=1

∑

xj∈ui

0.5 × knear × dmax
NN × de(xj , ci)

≤0.5 × knear × dmax
NN

K
∑

i=1

∑

xj∈ui

de(xj , ci).

Suppose that the centroid ci is inside the boundary of cluster i,
for i = 1 to K. Then de(xj , ci) ≤ dia(ui), for xj ∈ ui where

dia(ui) = maxxk,xj∈ui
de(xk, xj). We thus have

EK ≤ 0.5 × knear × dmax
NN

K
∑

i=1

∑

xj∈ui

dia(ui)

≤ 0.5 × knear × dmax
NN

K
∑

i=1

nidia(ui)

≤ 0.5 × knear × dmax
NN × n × max

i
dia(ui).

Here, ni denotes the total number of data points in cluster i. So,

1/EK ≥ 1/0.5 × knear × dmax
NN × n × maxi dia(ui). We also
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have that mini,j,i 	=j dis(ui, uj) ≤ DK where dis(ui, uj) =
minxi∈ui,xj∈uj

de(xi, xj) and DK = maxK
i,j=1 de(ci, cj).

Thus

Sym(K) =
DK

K × EK

≥
mini,j dis(ui, uj)

K × 0.5 × knear × dmax
NN × n × maxi dia(ui)

i.e.,

Sym(K) =
min1≤i≤K−1

{

mini+1≤j≤K
dis(ui,uj)

max1≤k≤K dia(uk)

}

K × 0.5 × knear × dmax
NN × n

.

(8)
The separation index D1 (Dunn [7]) is defined as

D1 = min
1≤i≤K−1

{

min
i+1≤j≤K

{

dis(ui, uj)

max1≤k≤K dia(uk)

}}

. (9)

So, combining (8) and (9), we get

Sym(K) ≥
D1

K × 0.5 × knear × dmax
NN × n

.

Since the denominator is constant for a given K, Sym in-

creases as D1 grows without bound. As mentioned earlier, it has

been proved by Dunn [7] that if D1 > 1, the hard K-partition

is unique. Thus, if the data set has a distinct substructure and

the partitioning algorithm has found it, then the corresponding

Sym-index value will be the maximum.

III. GAPS: SEGMENTATION ALGORITHM USED

A genetic algorithm with point symmetry distance based

clustering technique, GAPS, proposed in [3], is used as the

underlying segmentation method. A brief overview of the basic

steps of GAPS, which closely follow those of the conven-

tional genetic algorithm (GA), are enumerated below. Note

that details of GAPS are available in [3]. Given a particular

value of number of clusters K, GAPS partitions the data in K
symmetrical shaped clusters.

A. Initialization

The centers of the clusters are encoded in the fixed-length

chromosome as a series of real numbers that correspond to each

dimension per cluster. Thus, for a d-dimensional data set and

for K number of clusters, the length of each chromosome is

K × d. The K cluster centers encoded in each chromosome

are initialized to K randomly chosen points from the data set.

Thereafter, five iterations of the K-means algorithm is executed

to make the centers separated initially. Although five iterations

do not guarantee that K-means will converge, the aim here

was to select the initial set of cluster centers in a better way

than just randomly initializing it. The GA component of GAPS

in any case finally optimizes the centers in a better way than

K-means.

B. Assignment of Points

Here, a point xi, 1 ≤ i ≤ n, is assigned to cluster k if

and only if dps(xi, ck) ≤ dps(xi, cj), j = 1, . . . , K, j 	= k and

dsym(xi, ck) ≤ θ. For dsym(xi, ck) > θ, point xi is assigned

to some cluster m if and only if de(xi, cm) ≤ de(xi, cj), j =
1, 2 . . . K, j 	= m. The value of θ is kept equal to the maximum

nearest neighbor distance among all the points in the data set,

as here knear = 2.

C. Update of Centers

After the assignments are done, the cluster centers encoded

in the chromosome are replaced by the mean points of the

respective clusters.

D. Fitness Computation

For each chromosome, clustering metric, M , is calculated as

defined below

M =
K

∑

k=1

∑

xi∈kth cluster

dps(xi, ck).

It is evident that smaller values of M , the objective function,

correspond to partitions having symmetrical shaped clusters.

The fitness function, fit, of a chromosome is defined as: fit =
1/M . So minimization of M means maximization of func-

tion, fit.

E. Genetic Operators Used

Roulette wheel selection [8] is used to implement the pro-

portional selection strategy. The normal single-point crossover

operation with crossover probability selected adaptively as in

[9] is used here. The expressions for crossover probabilities

are given below. Let fmax be the maximum fitness value of

the current population, f be the average fitness value of the

population and f ′ be the larger of the fitness values of the

solutions to be crossed. Then the probability of crossover, µc,

is calculated as

µc = k1 ×
(fmax − f ′)

(fmax − f)
, if f ′ > f

µc = k3, if f ′ ≤ f.

Here, as in [9], the values of k1 and k3 are kept equal to 1.0.

Each chromosome undergoes mutation with a probability

µm, selected adaptively as like [9]. The expression for mutation

probability, µm, is given below

µm = k2 ×
(fmax − f)

(fmax − f)
, if f > f

µm = k4, if f ≤ f.

Here, values of k2 and k4 are kept equal to 0.5. The reason be-

hind such type of adaptation is available in [3] as well as in [9].

F. Termination

Steps 2–5 are executed for a maximum number of genera-

tions. The best string seen up to the last generation provides the

solution to the segmentation problem.

The parameters of the GAPS-clustering are as follows:

population size = 20, number of generations = 20.
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Fig. 1. (a) SCI. (b) Segmented SCI obtained by GAPS-clustering with Sym-
index (provides K

∗
= 3). (c) Segmented SCI obtained by K-means-clustering

for K = 3. (d) Segmented SCI obtained by EM-clustering for K = 3.

IV. APPLICATION TO IMAGE SEGMENTATION

As mentioned earlier, Sym-index is used in conjunction with

GAPS-clustering to segment an image in the intensity space.

Three other indices, namely PS-index [4], I-index [5], and

XB-index [6] are considered for comparison. One artificially

generated image and two remote sensing satellite images of

parts of the cities of Kolkata and Mumbai are used. For each

image, K, is varied from 2 to 16.

A. SCI

To show the effectiveness of the proposed Sym-index in

identifying small clusters from much larger ones where there

is a significant overlap of the small clusters with the bigger

one, we first generate an artificial image of size 256 × 256

shown in Fig. 1(a). There are two small circles of radius 20

each, centered at (113, 128) and (170, 128), respectively. The

pixels of these two small circles take gray values randomly in

the range [160–170] and [65–75], respectively. The background

pixels take values randomly in the range [70–166]. Here also K
is varied from 2 to 16. Fig. 1(b) shows the segmented image

using GAPS-clustering with Sym-index, when three clusters

were automatically found. We have calculated Minkowski score

(MS) [10] of the segmented image provided by the Sym-

index. Smaller value of MS indicates better segmentation. The

corresponding MS value is 0.177026. In contrast, PS-index,

I-index and XB-index attained their optimum values for

K∗ = 9, K∗ = 5, and K∗ = 9, respectively, i.e., they are not at

all able to detect the proper number of clusters. K-means (with

K = 3) is not able to find out the proper clustering from this

data set [shown in Fig. 1(c)]. MS value in this case is 0.806444.

The expectation–maximization (EM) algorithm is also not able

to find out the proper clustering from this overlapping data set

[Fig. 1(d)]. MS value in this case is 0.82.

B. SPOT Image of Kolkata

Fig. 2(a) shows the 512 × 512 Satellite Pour l’Observation

de la Terre (SPOT) [11] image of a part of the city of Kolkata

(available in three spectral bands) in the near-infrared (NIR)

band. GAPS-clustering is applied on this image data set while

varying the number of clusters K from 2 to 16. For each

obtained partitioning, the values of four cluster validity indices

(Sym-index, PS-index, I-index, and XB-index) are calculated.

Sym-index obtained its optimal value for K∗ = 6. The corre-

sponding segmented image is shown in Fig. 3(a). Similarly, the

I-index, PS-index, and XB-index obtained their optimum val-

ues for K∗ = 8, K∗ = 3, and K∗ = 2, respectively, and the

corresponding segmented images are shown in Figs. 3(b), 4(a),

Fig. 2. (a) SPOT image of Kolkata in the NIR band with histogram equal-
ization. (b) Variation of Sym-index with number of clusters for Kolkata image
using GAPS.

Fig. 3. Segmented Kolkata image obtained by GAPS-clustering with
(a) Sym-index (provides K

∗
= 6), (b) I-index (provides K

∗
= 8).

Fig. 4. Segmented Kolkata image obtained by GAPS-clustering with
(a) PS-index (provides K

∗
= 3) and (b) XB-index (provides K

∗
= 2).

and 4(b), respectively. The segmentations corresponding to

the optimum values of Sym-index and I-index are able to

separate almost all the regions equally well [Fig. 3(a) and (b)].

Even the thin outline of the bridge on the river has been

automatically identified [encircled in Fig. 3(a)]. This again

illustrates the superiority of symmetry-based distance for de-

tecting a small cluster. To validate the results, 932 pixel posi-

tions were manually selected from seven different land cover

types which were labeled accordingly. For these points the

MS [10] is calculated after application of GAPS-clustering for

the optimal cluster number indicated by each of the indices.

Smaller value of MS indicates better segmentation. The MS

scores corresponding to Sym-index, I-index, PS-index, and

XB-index are 0.865, 0.8799, 1.36921, and 1.4319, respectively,

again demonstrating the superior result obtained by GAPS-

clustering in conjunction with the Sym-index. PS-index and

XB-index perform poorly for this image. GAPS-clustering is

also applied on these selected 932 points with K = 7. The

class wise accuracies are 1, 0.83, 0.87, 0.82, 0.86, 0.86, and

0.88, respectively. The overall accuracy is 0.87. For segmented

SPOT Kolkata image, Davies–Bouldin (DB) index [12] has

been calculated corresponding to the optimal values of Sym-

index, I-index, PS-index, and XB-index. The values are listed
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TABLE I
DB-INDEX VALUES OF THE SEGMENTED KOLKATA AND MUMBAI

SATELLITE IMAGES CORRESPONDING TO THE OPTIMAL

VALUES OF FOUR CLUSTER VALIDITY INDICES

Fig. 5. (a) IRS image of Mumbai in the NIR band with histogram equal-
ization. (b) Variation of Sym-index with number of clusters for IRS image of
Mumbai using GAPS.

Fig. 6. Segmented Mumbai image obtained by GAPS-clustering with
(a) Sym-index/PS-index (provides K

∗
=6) and (b) I-index (provides K

∗
=5).

in Table I. As smaller values of DB are preferable, it signifies

that segmentation corresponding to Sym-index is the best.

Fig. 2(b) shows the variation of Sym-index with the number

of clusters for this data set.

C. IRS Image of Mumbai

The Indian Remote Sensing (IRS) image of Mumbai was

obtained using the Linear Imaging Self-Scanning System II

sensor, available in four bands, viz., blue, green, red, and

NIR. Fig. 5(a) shows the IRS image of a part of Mumbai

in the NIR band. Here also, the number of clusters (K) is

varied from 2 to 16. GAPS-clustering with Sym-index and

PS-index get their optimal values for K∗ = 6 whereas GAPS-

clustering with I-index and XB-index get their optimum values

for K∗ = 5 and K∗ = 3, respectively. The segmented im-

ages corresponding to the optimum values of Sym-index and

I-index are shown in Fig. 6(a) and (b), respectively. It can

be seen from the figures that the results using Sym-index and

PS-index are the same (since GAPS-clustering provides the

same partitioning for K∗ = 6 in both the cases). The water

(Arabian Sea) surrounding Mumbai gets differentiated into

two distinct regions, based on the difference in their spec-

tral properties. The other landmarks, e.g., the river above the

bridge (north) and dockyard (south) [encircled in Fig. 6(a)],

are well detected. In the segmentation obtained by GAPS-

clustering using I-index, some landmarks, e.g., the river just

above the bridge on its left end, are not so well delineated. The

DB index [12] values corresponding to the segmented images

of Mumbai given by the optimal values of Sym-index/PS-index,

I-index, and XB-index are listed in Table I. As smaller values

of DB indicates better clustering, the result signifies that the

segmentation corresponding to Sym-index is the best. Fig. 5(b)

shows the variation of Sym-index with the number of clusters

for this data set.

V. DISCUSSION AND CONCLUSION

In this letter, the application of the proposed symmetry-

based cluster validity index and GAPS-clustering technique is

described for image segmentation. Its effectiveness vis-a-vis

other well-known validity indices is first established for seg-

menting one artificially generated image. Thereafter, it is used

for classifying different land covers in two multispectral satel-

lite images. The choice of the underlying clustering technique

is important. Although the Sym-index has the capability of indi-

cating the proper symmetric clusters, the underlying clustering

technique should be able to first detect them. For example,

both well-known K-means and EM clustering algorithms are

unable to find out the proper clustering from the data sets like

the synthetic image. In contrast, GAPS-clustering [3] is able to

tackle such situations as is evident from its consistently good

performance. Effectiveness of other clustering techniques can

also be investigated in the future. A detailed sensitivity study of

different parameters of GAPS constitutes an important direction

of future research.
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