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iteration individual strings are evaluated with respect to a performance criteria and assigned a fitness

value. Strings are randomly selected using these fitness values to either survive or to mate to produce

offspring for the next generation. All such strings are subject to mutation. GAs are theoretically and

empirically found to provide global near optimal solutions of various complex optimization problems in

the fields of operations research, VLSI design, pattern recognition, image processing, machine learning

etc. [6, 11, 16, 15, 17, 9, 12, 10].

Among the many global search methods available, GA has been considered to be a viable and promis-

ing option for exploration. This evolutionary technique is population oriented, successive populations

of feasible solutions are generated in stochastic manner following laws of natural selection. In this

approach, multiple stochastic trajectories approach simultaneously towards one or more regions of the

search space providing important clues about the global structure of the function. Various theoretical

aspects of genetic algorithms have been studied in the literature. Researchers have tried to establish the

theoretical basis of the use of simple (yet difficult to model) operations. Attempts have been made to

find the GAs amazing search ability by analyzing the evolution of strings generated by the crossover and

mutation operations.

Genetic algorithms have been successfully modeled as Markov chains [9, 2, 3, 18, 14, 21, 20]. Vose

[21], and Davis and Principe [3] have not preserved the knowledge of the previous best in their model.

Bhandari et. al. [2], Rudolph [18] and Suzuki [20] preserved the knowledge of the previous best in their

model and proved the convergence of GAs to the optimal string. In [13], Murthy et. al. have tried to

provide the optimal stopping time for a GA in terms of ε-optimal stopping time. They have provided an

estimate for the number of iterations that a GA has to run to obtain an ε-optimal global solution.

All of the steps of a GA are well defined except the stopping criterion. So far the practitioners use

stopping criteria based on time or fitness value. Time based stopping criteria are mainly of two kinds. The

popular one is to decide upfront the number of iterations to be executed. Another is based on execution

time of the algorithm. Algorithm is run for a predetermined period and gets the result. Though these

criteria are very simple to implement, determining the time is again a challenge. In the first, the process

is executed for a fixed number of iterations and the best string, obtained so far, is taken to be the optimal

one. While in the other, the algorithm is terminated if no further improvement in the fitness value for the

best string is observed for a fixed number of iterations. However, it is not clear how to fix the number of

iterations required for the execution of a GA.

In this article, we propose a new stopping criterion based on the variance of the best fitness values

obtained over the generations. The proposed criterion uses only the fitness function values and takes into

account the inherent properties of the objective function. User does not need to study the characteristics

of the objective function and the genetic parameters to be used in the algorithm. The criterion based on

the variance of the fitness function values obtained over the generations only needs a sufficiently small

values of the bound. It has been shown theoretically that the variance tends to zero when the number of

generations tends to infinity with probability of obtaining the global optimal solution tends to unity.
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The basic principles of genetic algorithms and a description of GAs with elitist model (EGAs) are

provided in the next section. The mathematical modeling of EGAs and the issues of convergence are

discussed in Sections 3. Sections 4 and 5 deal with the optimal stopping time of EGAs. Section 6

presents experimental results demonstrating the effectiveness of the proposed criterion for a number

of objective functions. A detailed comparative study among different stopping criteria is provided in

Section 7. Section 8 concludes the article.

2. Basic Principles of Genetic Algorithms

We describe the basic principle of GAs in this section, considering a problem of maximizing a function

f(x), x ∈ D where D is a finite set. The problem here is to find x∗ such that

f(x∗) ≥ f(x); ∀ x ∈ D.

Note that D is a discrete domain since it is finite.

While solving an optimization problem using GAs, each solution is coded as a string (called ”chro-

mosome”) of finite length (say, L). Each string or chromosome is considered as an individual. A col-

lection of M (finite) such individuals is called a population. GAs start with a randomly generated pop-

ulation. In each iteration, a new population of same size is generated from the current population using

three basic operations on the individuals of the population. The operators are (i) Reproduction/Selection,

(ii) Crossover and (iii) Mutation.

To use Genetic algorithms in searching the global optimal solution, the very first step is to define a

mechanism to represent the solutions in a chromosomal form. The pioneering work of Holland proposed

to represent a solution as a string of length L over a finite set of alphabet A. Each string S corresponds

to a value x ∈ D. The GA with A = {0, 1} is termed as binary coded genetic algorithm (BCGA) or

simple genetic algorithm (SGA). The string representation limits the algorithm to search a finite (though

users can achieve their required approximation by increasing the string length) domain and provides the

best solution among the 2L possible options. To take into account the continuous domain, real valued

strings are considered as the chromosomal representation by suitably manipulating the genetic operators

and is termed as real coded genetic algorithm (RCGA). However, it is again quite difficult to consider

all the real values considering the limitation of the computer in storing irrational values. Henceforth,

throughout this article, we shall take A = {0, 1} as this paper deals with the SGAs and can be easily

extended to GAs defined over a finite set of Alphabet or over RCGAs.

Generally a random sample of size M is drawn from 2L possible strings to generate an initial popu-

lation. GAs leverage a population of solutions to generate a new population with the expectation that the

new population will provide better solution in terms of the fitness values.

In every iteration, we evaluate each chromosome of the population using fitness function fit. Eval-

uation or fitness function fit for a string S is equivalent to the function f :

fit(S) = f(x)

where, S corresponds to x. Without loss of generality, let us assume that fit(S) > 0 for all S in S where,

S is the set of all possible strings.

Selection is a process in which individual strings of the current population are copied into a mat-

ing pool with respect to the empirical probability distribution based on their fitness function values.
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Crossover exchanges information between two potential strings and generates two offspring for the next

population. Mutation is an occasional random alteration of a character. Mutation introduces some ex-

tra variability into the population. Though it is performed usually with very low probability q(> 0), it

has an important role in the exploration process. Every character in each chromosome (generated after

crossover) has an equal chance to undergo mutation. Note that, any string can be generated from any

given string by mutation operation [13]. The mutation probability q is taken to be in the range of (0, 0.5].
It may be due to the fact that, intuitively, the probability of mutating i bit positions is more than that of

mutating i+ 1 bit positions, i.e.,

qi(1− q)L−i > qi+1(1− q)L−i−1 ∀i = 0, 1, 2, ..., L− 1

which results in q ≤ 0.5. Hence the minimum probability of obtaining any string from any given string

is qL, that is, mutation needs to be performed at every character position of the given string.

The knowledge about the best string obtained so far is preserved either (i) in a separate location

outside the population or (ii) within the population; in that way the algorithm would report the best value

found, among all possible coded solutions obtained during the whole process. GAs with this strategy

of retaining the knowledge of the best string obtained so far as genetic algorithms with elitist model or

EGAs. The new population obtained after selection, crossover and mutation is then used to generate

another population. Note that the number of possible populations is always finite since M is finite. This

paper deals with the GAs with the elitist model (EGA) of selection of De Jong [4], where the best string

obtained in the previous iteration is copied into the current population if the fitness function values of all

strings are less than the previous best.

Note that the values for the parameters L, M , p and q have to be chosen ’properly’ before performing

those operations. The population size M is taken as an even integer so that strings can be paired for

crossover. The probability (p) of performing crossover operation is taken to be any value between 0.0
and 1.0. Usually in GAs, p is assumed to be a value in the interval [0.25, 1] [6]. The mutation probability

q is taken to be very low [0.001, 0.01] [6], however, it can be taken in the interval (0, 0.5]. Mutation

plays an important role in the convergence of GAs to the global optimal solution. The following section

presents the approach Bhandari et. al. [2] provided to prove the convergence of GAs as that is the

fundamental building block in proposing the variance of the best fitness value obtained so far as the

stopping criterion of a GA.

3. Convergence of Genetic Algorithms

Various theoretical aspects of genetic algorithms have been studied in the literature. Researchers have

tried to establish the theoretical basis of the use of simple (yet difficult to model) operations. Attempts

have been made to find the GAs amazing search ability by analyzing the evolution of strings generated by

the crossover and mutation operations. Genetic algorithms have been successfully modeled as Markov

chains [2, 3, 18, 14, 21, 20]. Vose [21], and Davis and Principe [3] have not preserved the knowledge

of the previous best in their model. Bhandari et. al. [2], Rudolph [18] and Suzuki [20] preserved the

knowledge of the previous best in their models and proved the convergence of GAs to the optimal string.

An extensive theoretical study regarding the dynamics of evolutionary algorithms may be found in [9].

Genetic algorithms search over a space S of 2L strings and eventually provide the best with respect

to the fitness function fit. The strings can be classified into a set of s classes depending on their fitness
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function values. The classes are defined as

Si = {S : fit(S) = Fi}

where Fi denotes the ith highest fitness function value. Thus, F1 > F2 > · · · > Fs. Let us also assume

without loss of generality that Fs > 0.

A population Q is a multi-set of M strings of length L generated over a finite alphabet A and is

defined as follows:

Q = {S1, S1, · · · , (r1 times), S2, S2, · · · , (r2 times), · · · , Sm, Sm, · · · , (rm times)

where, Si ∈ S; Si1 6= Si2 ∀i1 6= i2 and ri ≥ 1 fori = 1, 2, · · · ,m;
∑m

i=1 = M}.

Let Q denote the set of all populations of size M . The number of populations or states in the Markov

chain is finite.

The fitness function value fit(Q) of a population is defined as fit(Q) = maxS∈Q fit(S). Then

the populations are partitioned into s sets. Ei = {Q : Q ∈ Q and fit(Q) = Fi} is a set of populations

having the same fitness function value Fi. In an iteration, the genetic operators (selection, crossover and

mutation) create a population Qkl ∈ Ek; l = 1, 2, · · · , ek and k = 1, 2, · · · , s; from some Qij ∈ Ei

where ek is the number of elements in Ek. The generation of a population Qkl from Qij is considered

as a transition from Qij to Qkl and let pij.kl denotes this transition probability. Then the probability of

transition from Qij to any population in Ek can be calculated as

pij.k =

ek
∑

l=1

pij.kl; j = 1, 2, · · · , ei; k = 1, 2, · · · , s.

For all j = 1, 2, · · · , ei and i = 1, 2, · · · , s one obtains

pij.k > 0 if k ≤ i

= 0 otherwise

by construction. This means that once GAs reach a population Q ∈ Ek they will always be in some

population Q′ ∈ Ek for k ≤ i. In particular, once GAs reach a population Q ∈ E1 they will never go out

of E1.

Let p
(n)
ij.kl be the probability that GA results in Qkl at the nth step given that the initial state is Qij .

Let p
(n)
ij.k denote the probability of reaching one of the populations in Ek from Qij at the nth step. Then

p
(n)
ij.k =

∑ek
l=1 p

(n)
ij.kl.

To show the eventual convergence of a GA with elitist model to a global optimal solution the follow-

ing theorem has been proved in [2] and is not presented here.

Theorem 1. For an EGA with the probability of mutation q ∈ [0, 12 ],

lim
n→∞

p
(n)
ij.k = 0 for 2 ≤ k ≤ s; ∀ j = 1, 2, · · · , ei and i = 1, 2, · · · , s.

Hence lim
n→∞

p
(n)
ij.1 = 1 ∀ j = 1, 2, · · · , ei and i = 1, 2, · · · , s.
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4. Stopping Criteria

Proof of convergence of an algorithm to an optimal solution is very important as it assures the optimal

solution in infinite iterations. When an algorithm does not assure or guarantee the optimal solution

even after running for infinite iterations, it’s utility is in doubt. Once the convergence of an algorithm

is assured, the focus turns into the exploration of stopping time or stopping criterion of the algorithm.

Today, the biggest challenge in the implementation of GAs is to decide when to stop the algorithm

keeping in mind that there is no a-prior information regarding the objective function. Attempts have been

made to provide stopping criteria of a GA based on time the algorithm is being executed and obtained

objective function values or their distribution [11, 8, 12]. Time based stopping criteria are mainly of two

kinds. The popular one is to decide upfront the number of iterations to be executed. Another is based on

execution time of the algorithm. Algorithm is run for a predetermined period and gets the result. Though

these criteria are very simple to implement but determining the time is again a challenge. This would

require a good knowledge about the global optimal solution, which is not always available. In the first,

the process is executed for a fixed number of iterations and the best string, obtained so far, is taken to be

the optimal one. While in the other, the algorithm is terminated if no further improvement in the fitness

value for the best string is observed for a fixed number of iterations. Though these criteria are easy to

implement, they do not guarantee the convergence of the GAs to the global optimal solution as they are

terminated after a finite number of iterations.

The criteria based on objective function values use the underlying fitness function values to calculate

auxiliary values as a measure of the state of the convergence of the GA. Subsequently, the running mean,

standard deviation of the population under consideration, Best Worst, Phi, Kappa were defined as a

convergence measure. In [8], Jain et. al. have tried to provide a cluster based stopping criteria called

ClusTerm. This concept takes into account the information about the objective values as well as the

spatial distribution of individuals in the search space in order to terminate a GA.

Safe et. al. [19] presented a critical analysis of various aspects associated with the specification of

termination conditions for simple genetic algorithms. The study, which is based on the use of Markov

chains, identifies the main difficulties that arise when one wishes to set meaningful upper bounds for the

number of iterations required to guarantee the convergence of such algorithms with a given confidence

level. Greenhalgh et. al. [7] have discussed convergence properties based on the effect of mutation

and also obtained an upper bound for the number of iterations necessary to ensure the convergence. In

[1], authors have tried to provide a stopping criteria together with an estimation for the stopping time.

In [13], Murthy et. al have provided ε-optimal stopping criteria for GAs with elitist model and also

derived the ε-optimal stopping time. Pessimistic and optimistic stopping times were derived with respect

to the mutation probability. However, it is to be noted that with existing operations, whatever value for

the number of iterations N is decided, there is always a positive probability of not obtaining the global

optimal solution at that stage and is stated below as a lemma.

Lemma 1. With existing operations, whatever value for the number of iterations N is decided, there is

always a positive probability of not obtaining an optimal solution.

Proof:

In general, the number of solutions in the solution space Ω is much higher compare to the number of

optimal solutions. Moreover, the population size considered in the implementation of genetic algorithms
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is very low compare to that of solution space. Therefore, it is clear that the probability of starting with a

population (Q) containing no optimal solution is positive. Let P
(1)
Q.Q be the probability of obtaining the

same population in one iteration. It is obvious that P
(1)
Q.Q > 0 as the probability of mutation δ is assumed

to be < 1. Now,

P
(2)
Q.Q =

∑

Q′ 6=Q

P
(1)
Q.Q′ .P

(1)
Q′.Q + P

(1)
Q.Q.P

(1)
Q.Q

> P
(1)
Q.Q.P

(1)
Q.Q

> 0.

Similarly, P
(n)
Q.Q, the probability remain in Q in n iteration, is > 0. ut

The theoretical study brings out a number of limitations in defining a stopping criterion. Some

desirable properties of a ”good” stopping criterion are given below.

• Easy to implement.

• Able to provide stopping time automatically for any fitness function.

• Should lead to ’good’ / ’satisfactory’ result.

• Total number of strings searched should not exceed 2L.

However, the fundamental task of a stopping criterion is to provide a guideline in terminating the al-

gorithm so that the solution obtained at that time and the optimal solution are close to each other. In other

words, the stopping criterion provides the user a guideline in stopping the algorithm with an acceptable

solution close to the optimal solution. Mathematically, the closeness may be judged in various ways.

One way is to show that the probability of not reaching optimal at that time is less than a small prede-

fined quantity. Another way is to measure the distance between the optimal and the current solution, and

show that the distance is less than a small predefined quantity. If stopping criterion is not mathematically

(i.e., heuristically) defined, the amount of error (the value of probability in first case and distance in the

second case) in accepting the solution would not be known.

In this context, a new stopping criterion based on the variance of the best solutions obtained up

to the iteration in hand is defined here. This is easily implementable and does not need any auxiliary

information other than the fitness function values obtained so far. The theoretical study given below

reveals its properties and strengths in searching for the global optimal solution.

5. Proposed Stopping Criterion

Let ai be the best fitness function value obtained at the end of ith iteration of an EGA. Then, a1 ≤ a2 ≤
a3 ≤ · · · ≤ an ≤ · · · ≤ F1, as F1 is the global optimal value of the fitness function (defined in section

3). Let ān = 1
n

n
∑

i=1

ai be the average of the ai’s and ā2n = 1
n

n
∑

i=1

a2i be the average of the a2i ’s up to the

nth iteration, then variance of the best fitness values obtained up to the nth iteration, defined by bn, is

bn =
1

n

n
∑

i=1

(ai − ān)
2 =

1

n

n
∑

i=1

a2i − ān
2 = ā2n − ān

2
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bn can be used as a stopping criterion for a GA. A GA is stopped or terminated after N iterations when

bN < ε, where ε(> 0) is a user defined small quantity.

Given below are the basic steps of the genetic algorithm with elitist model where variance of the best

solutions obtained in the generations is considered as a stopping criterion.

1. A population of random solutions is created and an ε is defined.

2. Each solution is evaluated on the basis of the fitness function.

3. Store the best solution if it is better than previous best.

4. Calculate the variance of the best solutions obtained so far.

5. If the variance is greater than the predefined value (ε), go to the next step, else stop the algorithm

6. A new generation of solutions is created from the old generation using selection, crossover and

mutation.

7. Steps 2 to 6 above are repeated until the condition in step 5 is satisfied.

Now, we will theoretically establish that when the number of generations tends to infinity, the proba-

bility of obtaining the global optimal solution tends to 1, and the variance of the best fit solutions obtained

in the generations approaches to 0.

In Section 3, we have discussed the convergence of GAs with elitist model. In the convergence

theorem, we have seen that

lim
n→∞

p
(n)
ij.1 = 1 ∀ j = 1, 2, . . . , ei and i = 1, 2, . . . , s.

The convergence theorem in turn implies that the probability of obtaining a global optimal solution (F1)is

1 as number of iterations goes to infinity can be stated as the following lemma.

Lemma 2: For each ε1 > 0, lim
n→∞

Prob(|an−F1| > ε1) = 0. In other words, for each ε0 > 0 and ε1 >

0, there exists N0 such that for n > N0,

1− Prob(|an − F1| ≤ ε1) < ε0 or

⇒ Prob(|an − F1| ≤ ε1) > 1− ε0 for n > N0

(1)

Proof: Trivial.

With the help of the above lemma, we shall now show that the variance of the best solutions obtained

in the generations approaches to 0 when number of iterations tends to ∞.

Theorem 2: Prob(
1

n

n
∑

i=1

(ai − ān)
2 ≤ ε) → 1 as n → ∞ for each ε > 0.
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Proof:

1

n

n
∑

i=1

(ai − ān)
2 =

1

n

n
∑

i=1

[(ai − F1)− (ān − F1)]
2

=
1

n

n
∑

i=1

(ai − F1)
2 − (ān − F1)

2

≤
1

n

n
∑

i=1

(ai − F1)
2

(2)

Now for n > N0,

1

n

n
∑

i=1

(ai − F1)
2 =

1

n

N0
∑

i=1

(ai − F1)
2 +

1

n

n
∑

i=N0+1

(ai − F1)
2

Since Fs is the minimum value of the function f(x) (defined in section 3), we have,

1

n

N0
∑

i=1

(ai − F1)
2 ≤

1

n

N0
∑

i=1

(Fs − F1)
2 (as Fs ≤ ai ≤ F1 ∀i)

= N0

n
(Fs − F1)

2

(3)

One can always find an N1 (> N0) such that for each ε2 (> 0),

N0

N1
(Fs − F1)

2 < ε2 (4)

Therefore, for n > N1 > N0

1

n

N0
∑

i=1

(ai − F1)
2 ≤ N0

n
(Fs − F1)

2

≤ N0

N1
(Fs − F1)

2

≤ ε2 from (4)

(5)

As a1 ≤ a2 ≤ a3 ≤ · · · ≤ ai ≤ ai+1 ≤ · · · ≤ F1,

1

n

n
∑

i=N0+1

(ai − F1)
2 ≤

1

n

n
∑

i=N0+1

(aN0+1 − F1)
2

= n−N0−1
n

(aN0+1 − F1)
2

≤ (aN0+1 − F1)
2

(6)

From (1), we have for n > N0,

Prob(|an − F1| ≤ ε1) > 1− ε0

Therefore,

Prob((aN0+1 − F1)
2 ≤ ε21) > 1− ε0

⇒ Prob((aN0+1 − F1)
2 ≤ ε1) > 1− ε0, as ε1 << 1.

(7)
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Now, for each ε = ε1 + ε2,

Prob(
1

n

n
∑

i=1

(ai − F1)
2 ≤ ε)

= Prob(
1

n

N0
∑

i=1

(ai − F1)
2 +

1

n

n
∑

i=N0+1

(ai − F1)
2 ≤ ε)

≥ Prob(ε2 +
1

n

n
∑

i=N0+1

(ai − F1)
2 ≤ ε) (from 5)

= Prob(
1

n

n
∑

i=N0+1

(ai − F1)
2 ≤ ε− ε2)

> 1− ε0, (from 7), where ε1 = ε− ε2.

(8)

Therefore, we can conclude that for each ε0 > 0, there exists an N1 such that for n > N1

Prob(
1

n

n
∑

i=1

(ai − F1)
2 < ε) > 1− ε0

In other words, Prob(
1

n

n
∑

i=1

(ai − F1)
2 ≤ ε) → 1 as n → ∞ for each ε > 0.

This completes the proof of theorem 2. ut

The following remarks can be made regarding the proposed algorithm with variance as stopping

criterion.

Remarks:

1. The variance is calculated from the fitness values obtained over the generations, which implicitly

takes into account the characteristics of the objective function.

2. ε signifies a measure of error, the difference between the fitness value of the best solution obtained

so far and the global optimal solution.

5.1. Implementation Details

Some of the salient features of the stopping criterion are discussed below regarding its implementation.

• The user needs to choose only the bound for variance for implementing this criterion. Naturally,

less the value of the bound, more is the chance of obtaining a solution close to global optima. A

user can decide the value of ε based on the accuracy required.

• Due to the randomness involved in the algorithm, it may so happen that there may not be any

change (improvement) in the best fitness value over a number of consecutive iterations which will

result in 0 variance. It is important to select a significant number of iterations from which the

fitness values will be considered in calculating the variance so that the algorithm gets enough

opportunity to yield improved (better) solution.
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• Variance can be iteratively calculated. Variance bn+1 at the end of (n + 1)th iteration can be

calculated as follows:

bn+1 =
1

n+ 1

n+1
∑

i=1

(ai − ¯an+1)
2 =

1

n+ 1

n+1
∑

i=1

a2i − ¯an+1
2

or

bn+1 =
1

n+ 1
((nā2n + a2n+1)− (nān + an+1)

2) (9)

This indicates that only the average of the fitness function values and their squares of the previous

n iterations are required to evaluate the variance for the n+ 1th generation. This iterative feature

of variance calculation indeed makes the algorithm easier to implement.

• The proposed variance based criterion is that it is not scale invariant. That means it is sensitive to

transformations of the fitness function. The algorithm may need different number of iterations for

f(x) and g(x) = k ∗ f(x), where k is a constant. Sometimes, scale invariance is a desirable prop-

erty but not always. There are several measures that are not scale invariant, e.g., mean, variance,

co-variance, moments. However, one can easily avoid the impact of the scaling effect by a simple

transformation of the fitness function. One such transformation is given in equation (10).

g(x) =
f(x)

f
(1)
max

(10)

where, f
(1)
max is the maximum value of the fitness function obtained in the first iteration.

Let us now try to understand the impact of the above mentioned transformation in the selection of

the value of ε. We have,

bn =
1

n

n
∑

i=1

(ai − ān)
2 (11)

Now, let bn(g) be the variance of the best fitness values obtained up to the nth iteration for the

function g(x). Then, it is clear that

bn(g) =
1

n

∑n
i=1(ai − ān)

2

f
(1)
max

2 (12)

It is now obvious that the user who assumed εf as the value of ε for the function f can assume

εf ∗ f
(1)
max

2
as the value of ε for the function g. This simply implies that the user has to adjust the

value of ε for the applied transformation. It may be convenient for the user to select the value of ε

after the transformation. Therefore, the user needs to know his/her desire of making the stopping

criterion scale invariant based on the convenience for selecting the value of ε.

The experimental results are being discussed in the following section.
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6. Experimental Results

The effectiveness of the proposed stopping criterion is demonstrated in searching for global optimal

solutions of some complex functions of multiple variables. A number of typical objective functions

(given below) are used in the experiment [8].

f1(x) = 6 + sin(x) when 0 ≤ x ≤ 2π

= 6 + 2sin(x) when 2π < x ≤ 4π

= 6 + 3sin(x) when 4π < x ≤ 6π

= 6 + 4sin(x) when 6π < x ≤ 8π

= 6 + 5sin(x) when 8π < x ≤ 10π

= 6 + sin(x) when 10π < x ≤ 32

f2(x) = log(1 +
5

∑

i=1

|[xi]|+
5
∏

i=1

|xi|), where [x] is the integral part of x

f3(x) =
1

1 +

5
∑

i=1

[xi]
2

, where [x] is the integral part of x

f4(x) =
20

11 +
5

∑

i=1

−[xi] ∗ sin(
√

|[xi]|)

, where [x] is the largest integer ≤ x

The pictorial presentations of the functions are shown in fig 1 (a-d). f1 is a univariate function while

the remaining 3 are multi-variate (number of variable is considered as 5 here). Functions f2 and f3 are

multimodal with symmetrical distributed plateaus of identical size and having multiple global maxima.

f1 and f4 are unimodal with spatially distant local maxima and single global maxima. Different search

spaces are considered for different functions to exploit the typical features of the functions.

As mentioned earlier, there may be no change in the fitness function value for a number of consecu-

tive iterations. Therefore, the variance would become 0 and may result in premature termination of the

algorithm. The user should consider a significant number of iterations in calculating the variance. In our

experiment the minimum number of iterations considered to generate variance are 50 for f1 and 200 for

other functions.

The genetic parameters used in the execution of the algorithm are as follows:

Population size = 10 for f1 and 50 for others

String length = 20 for f1 and 100 for others

Crossover probability = 0.8

Mutation probability = varying from 0.2 to 0.45

To obtain statistical significant results, one test run comprises 100 runs for a particular ε value for each

function. Different seeds are being supplied to bring in the randomness in generating initial populations
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(a) (b)

(c) (d)

Figure 1. Pictorial presentation of the functions

and performing other genetic operations. Considering the importance of mutation in the convergence

process of the GAs, the mutation probability is made variable. It is considered as high as 0.45 in the

initial iterations and being monotonically reduced to 0.1 towards the final iterations. Fig. 2 depicts the

trend of the variance with the iteration number. It is clearly non-decreasing. As the algorithm explores

better solution with higher fitness value the variance increases.

Table 1 depicts the average number of iterations required in order to converge the algorithm for a

given ε. The results shows that for a low value of ε, the algorithm produces satisfactory performance

for all the functions. In fact, the algorithm produces global optimal solution in most of the cases for

ε = 10−5. Note that the number of iterations to attain the given bound differs for different functions

depending on the characteristics of the function. Also the percentage of convergence to the global opti-

mum solution for f3 is much higher whereas it is lower for f4 (in fact, with values > 10−4 of ε, no run

could produce the global optimal solution). This is due to the fact that the presence of multiple global

optima of f3 results in faster convergence while the single optima of f4 is hard to attain. This clearly

demonstrates the effectiveness of the criterion to take into account the inherent properties of the objective

unction. In some cases though the stopping criterion is satisfied, the algorithm does not converge to the

global optimal value of the objective function. This is in line with the fact that GAs do not guarantee

the global optimal solution in a finite number of iterations. However, with the reduction in ε value the

chance of obtaining the global optimal solution increases.
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Figure 2. Change in variance with iteration

7. Differences with Other Stopping Criteria

Three widely used stopping criteria are (i) the variance of the fitness evolved in the whole population is

less than a predefined small quantity (εp, say), (ii) number of iterations is greater than or equal to a fixed

number (N ), decided a-priori, and (iii) no improvement in the best fitness value through a fixed number

of iterations (say K). Let us refer them as POP-Var, AN -it and K-it respectively in the successive

discussion.

7.1. Pop-var

In this framework, the algorithm stops when the variance of fitness values of all the strings in the current

population is less than a predefined threshold (say, εp). Usually, εp is taken to be a small value, close to

0. It is primarily based on the assumption that after significantly many iterations the fitness values of the

strings present in the population are all close to each other, thereby making the variance of the fitness

values close to 0. In general, this assumption is not true due to the following reasons: (i) Usually in elitist

model only the best string is preserved, (ii) any population containing an optimal string is sufficient for

the convergence of the algorithm and (iii) there is a positive probability of obtaining a population after

infinitely many iterations with exactly one optimal string and others are being not optimal. This is further

illustrated using an example taken from [2].

In this example, a maximization problem is considered in the domain D = {0, 1, 2, 3}. We have

considered M = 2, L = 2 and A = {0, 1}. The best string of the previous population is copied into the

current one if the fitness values of all offspring are less than the previous best.

The strings representing x are s1 = 11, s2 = 10, s3 = 01 and s4 = 00. The fitness function values

are taken to be

fit(s1) = 1fit(s2) = 4fit(s3) = 2 andfit(s4) = 3.

The strings can be classified into four classes which are S1 = {s2}, S2 = {s4}, S3 = {s3} and

S4 = {s1}.
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Function ε Average number % of cases when Number of strings Number of

of Iterations global solution is reached in search space strings searched

f1 10−2 208.01 29 2, 080

10−3 541.04 43 220 ≈ 106 5, 410

10−4 4421.97 62 44, 219

10−5 28207.21 78 282, 072

f2 10−2 938.36 12 46, 918

10−3 16625.88 23 2100 ≈ 1030 831, 294

10−4 203736.02 37 10, 186, 801

10−5 1260294.83 51 63, 014, 741

f3 10−2 821.04 89 41, 052

10−3 5298.25 100 2100 ≈ 1030 264, 912

10−4 36175 100 1, 808, 750

10−5 99980.98 100 4, 999, 049

f4 10−2 235.78 0 11, 789

10−3 1289.42 0 2100 ≈ 1030 64, 471

10−4 14392.51 0 719, 625

10−5 92406.10 20 4, 620, 305

Table 1. Average iterations for various ε

The number of populations or states is (

(

22 + 2− 1

2

)

) = 10 and they are

Q1 = {10, 10}, Q2 = {10, 00}, Q3 = {10, 01}, Q4 = {10, 11} Q5 = {00, 00},

Q6 = {00, 01}, Q7 = {00, 11}, Q8 = {01, 01}, Q9 = {01, 11}, Q10 = {11, 11}.

The partition over the populations is given below.

E1 = {Q1, Q2, Q3, Q4},

E2 = {Q5, Q6, Q7},

E3 = {Q8, Q9},

E4 = {Q10}.

.

We are representing here the transition probabilities as pi.j where i, j = 1, 2, · · · , 10 for convenience.

The n-step transition probability matrices for n = 1 and 1024, are given below for p = 0.5 and q = 0.01.

P(1) =



















0.960596 0.009999 0.009803 0.019602 0 0 0 0 0 0

0.318435 0.667011 0.008056 0.006498 0 0 0 0 0 0

0.426975 0.228811 0.331134 0.013080 0 0 0 0 0 0

0.617890 0.009608 0.010230 0.362272 0 0 0 0 0 0

0.000098 0.019406 0.000196 0.000002 0.960696 0.019506 0.000196 0 0 0

0.000036 0.007081 0.004760 0.000048 0.350488 0.632812 0.004775 0 0 0

0.000098 0.014555 0.180271 0.004853 0.540372 0.019506 0.240345 0 0 0

0 0.000002 0.000196 0.000002 0.000098 0.019406 0.000196 0.960596 0.019504 0

0.000011 0.000045 0.004422 0.002244 0.000044 0.008712 0.004422 0.431255 0.548815 0

0.000098 0.000002 0.000196 0.019406 0 0.000002 0.000196 0.000098 0.019406 0.960596


















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P(1024) =



















0.918654 0.038293 0.014367 0.028922 0 0 0 0 0 0

0.918652 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918652 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918651 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918646 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918648 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918649 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918628 0.038291 0.014366 0.028922 0 0 0 0 0 0

0.918632 0.038292 0.014367 0.028922 0 0 0 0 0 0

0.918631 0.038292 0.014366 0.028922 0 0 0 0 0 0



















The figures in the above matrices are given upto 6 decimal places. It can be easily seen from the

matrix P(1024) that p
(1024)
i.j are nearly zero for all j ≥ 5 and for all i = 1, 2, · · · , 10. It can also be seen

that all the rows are almost identical in P(1024). From the literature on Markov chains [5], it is necessary

that all the rows of P(n) are identical for sufficiently large n, i.e., p
(n)
i,j are independent of i for sufficiently

large n. This fact ensures the convergence of the GA for the considered model.

The POP-Var criterion uses the variance of the population as the basis in the termination of the

algorithm. This criterion will be effective when the population becomes homogeneous (having the same

or almost same fitness values of all the strings). For the given example, the algorithm obtains Q1, Q5,

Q8 or Q10 ( Q1 being the most desired population) so that the algorithm converges to the global optimal

solution satisfying the POP-Var criterion. It is clear from P(1024) that the probability of obtaining Q1

after 1024 iterations is maximum but there is a significant chance in obtaining Q2, Q3 or Q4 after those

many iterations. The elements of second, third and fourth columns of P(n) are positive (> 0) even after

n > 1024. Therefore, the algorithm does not guarantee the maintenance of the same population over the

iterations. Moreover, there is a high chance of premature termination.

7.2. AN -it

In this stopping criterion, the number of iterations to be executed is decided a-priori. Let us denote

the fixed value by N . It has been proved that as the number of iterations n → ∞, we shall obtain a

population containing an optimal string with probability 1. Note that any value N , that is fixed to a

finite number, whereas the bound on the number of iterations, i.e., ∞, is infinite. One would like to

fix, in general, a value so that the fixed value is closed to the limiting value. Here, we need to make the

number of iterations to be infinite to obtain the optimum value. Any finite value, which is fixed, will have

infinite difference with ∞. Thus, though higher the value of N , the better would be the confidence on

the obtained result, the difference between ∞ and the fixed value will remain ∞. Ideally, one would like

to fix a value so that the difference between optimal and the fixed value can be measured and is small.

These two properties are upheld by the proposed stopping criterion.

7.3. K-it

In this criterion, if there is no change in the best fitness value for K consecutive iterations, the algorithm

is terminated. The value of K is to be fixed by the user. So the basic assumption, the user is making here

is that it is impossible to obtain a better string after this K consecutive iterations. Actually, following

lemma 1, one can show that there is always a positive probability of obtaining K consecutive equal sub-

optimal solutions, whatever may be the value of K, where K is finite. However, if K → ∞, for an elitist

model, the probability of reaching an optimal solution will also tend to 1. As in AN -it, the upper bound

of K is ∞ and we can not get a finite difference between K and ∞.
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Note that starting with a sub-optimal population Q (Q does not contain any optimal string), there is

always a positive probability to remain in the same sub-optimal population Q after K iterations. This

probability will be higher if Q represents a sub-optimal population as well as a local optimal population

(a population containing a local optimal solution). In this situation, one needs to continue the algorithm

further to make it go out of the local optimal population. Additionally, the same value of K need not hold

good for every local optimal population. One needs to device a technique where, the algorithm takes into

account these situation automatically. The proposed criterion partially does this job.

7.4. Proposed Criterion

The proposed criterion fixes a bound (ε) on the variance of the best fitness values obtained through a

number of iterations, and the algorithm stops when the variance is less than the bound. It has been shown

in this article that the variance goes to 0 with probability 1 as number of iterations goes to ∞. Thus ε,

which is equal to ε− 0, can be viewed as the difference between the optimal and the best solution found

so far. This measurement of the difference could not be done with AN -it or K-it. Secondly, by taking ε

close to 0, we can improve upon the best fitness value.

Suppose, the genetic algorithm got stuck at a local optimal string/population. In this scenario, it is

highly probable that for many consecutive iterations the best fitness value will remain the same. It may

be noted that in order to reach the local optimal population, the algorithm would have gone through some

iterations previously, because of which there would be some fitness values which are less than that of the

current best fitness value. This enables the variance to be positive (> 0). By making the value of ε to

be very small, the proposed criterion allows the algorithm to execute more number of iterations compare

to the number of iterations allowed by K-it; thereby increasing the probability of going out of the local

optimal population with the proposed criterion.

Let us consider two examples,

Example 1: fit(S) = 2 when, S = S1

= 1 otherwise

Example 2: fit(S) = 3 when, S = S1

= 2 when, S = S2

= 1 otherwise

In case of Example 1, when the string length is quite large (say > 100), it is likely that the starting

population will not contain the optimal string S1 and the probability of exploring the optimal string in

significant number of iterations will be very low. In this scenario, the chance of obtaining the string with

same fitness value over a significant number of iterations is very high. As a consequence the variance

of the best fitness values obtained over the iterations remain 0 and the proposed criterion may not be

applicable. Same will be the performance of Pop-var, AN -it and K-it. Similar result may be observed

for the second example also. Moreover, once the second best string S2 is explored, since the variance

for the proposed criterion will be positive (> 0), it will allow the algorithm to run for a longer period

thereby will increase the chance of exploring the optimal string S1 contrary to to AN -it and K-it.

Though the characteristics of POP-Var, AN -it and K-it seem to be similar to the proposed variance

based criterion, there are quite a few differences as mentioned below.
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1. The proposed criterion not only takes into account the information extracted in a fixed number

(say, K) of iterations but also considers the fitness values observed prior to those K iterations.

2. one may note that both the iteration based criteria (AN -it and K-it), mentioned above, are based on

the fact that the algorithm converges as the number of iteration tends to ∞, whereas the proposed

criterion is based on the fact that the difference between the global optimal value of the function

and the fitness function value tends to 0.

3. It is intuitive to assume the value of N or K for AN -it or K-it respectively depending on the

length of the string length L. When L is low one considers a low value for N or K. On the other

hand, for a larger L, one will consider a higher value for K or N . While in the case of proposed

criterion, one does not need to change the value of ε.

4. In AN -it and K-it, one has to define the number at the start of the algorithm. While for the

proposed algorithm, one does not need to define the number of iterations to be executed.

5. For the iteration based criteria, one decides the number of iterations keeping in mind that the algo-

rithm will provide a satisfactory result after those many iterations. This is purely heuristic without

considering the characteristics of the function. The inherent characteristics of the objective func-

tions are automatically taken into account for a sufficiently small value of the bound for variance

in the proposed criterion.

6. The proposed criterion clearly gives a finite measure regarding the closeness of the obtained solu-

tion to an optimum solution.

7. While POP-Var have used the information from the current population, the proposed criterion

maintains an elite preserving mechanism over the generations and use them as the basis of the

criterion.

8. Other researchers [1, 8] have computed their online stopping criteria at each generation whereas

the proposed criterion is estimated for generations to reduce the possibility of convergence to a

local optima.

Though, K-it criterion is easy to implement and computationally less expensive, the probability of

resulting to a local optimum in K-it criterion is higher than that of the proposed variance based criterion.

This is due to the fact that K-it criterion takes into account the information obtained only in K iterations

not the information prior to that. In favorable conditions, K-it criterion may stop the algorithm early

and reduce the computation, but in general, and in the worst case scenario, the proposed criterion would

allow the algorithm to execute more number of iterations and permit it to converge to a global optimum

solution.

8. Conclusion and Scope for Future Work

A new stopping criterion for EGA has been suggested here. It has been shown that the variance of the

best solutions obtained so far tends to 0 as n → ∞. In practice, a user needs to suggest an appropriate

value for the upper bound of the variance for his/her problem. It is experimentally found that different
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problems with the same size of search space need different bounds for variance to obtain global optimal

solution. For better accuracy, the user needs to choose sufficiently small value for ε (bound for variance).

No automatic way of choosing the value ε is suggested here. The choice of ε depends upon the accuracy

the user desires. It may also be desirable for the user to know the number of iterations for obtaining ε

accuracy in variance before performing the experiment. This is an extremely challenging problem and it

is the matter for further research.
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