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CONCERNING ASYMPTOTIC NORMALITY
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SUMMARY. L.LeCam (1900) has shown that a cortain kind of asymptotic differentia-
bility of the log-likelihood ratios implies that the limit distribution of the log-likelihood
tunction is normal. This result is extended and strengthened to a situation where it is shown
that the limit distributign is, in general, mixed normal,

1. INTRODUCTION

LoCam (1960) has shown that a certain kind of asymptotic differentia-
bility of the log-likelihood ratios together with the contiguity condition
implies that the limit distribution of the suitably normalised log-likehood
function is normal. A remarkable thing to be noted here is that the asympto-
tic normality occur through an argument which has nothing to do with sums
of independent random variables or martingale differences. It is tho purpose
of this paper to extend and strengthen this and other related results of LeCam
to & situation where the limit distribution turns out to be a mixed normal.

More specifically, in his definition of asymptotic differentiability, LeCam
assumed that the sequence of normalised log-likelihood ratios is approximated,
with probability tending to one, by the sum of two expressions, the first one
being a sequence of random linear functions of the normalised parameter and
the second one being & non-random function of the normalised parameter.
In this paper we assume that this second expression is also a sequence of
random function of tho normalised parameter and then wo first establish
Theorem 1 that the limit distribution, when it exists, is a mixed normal for
almost all points of the parameter space. Secondly we establish Theorem 2
that, without assuming the existence of the limit distribution, the log-likeli-
hood function converges in & certain weak topoiogy to & mixed normal dis-
tribution; though the convergence stated here is very much weaker than the
convergence stated in Theorem 1, Theorem 1 actually follows from this result
and it appears that this result is more important than Theorem 1. In the
spacial case when the second expression tioned above is d to be a
non-rsndom function of the normalised parameter, it is possible to obtain
the convergence stated in Theorem 1 under the assumptions of Theorem 2
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(seo the remark following this Theorom 2); thus the conclusion of Theorem 4.1
of LeCam (1960) holds even when the existence of the limit distribution is
not assumed. Thirdly, we ostablish Thoorom 3 that, whon the second expres-
sion tioned above is & seq of random quadratic forms of the norma-
lised parameter and when the sequence of random matrices of this quadratic
forms satisfies a certain invariance condition, the hmit distribution is & mixed
normal for all points of the parameter space. It may be mentioned here
that the contiguity condition plays a crucial role in establishing all these
results.

Our approximation of the log-likelihood ratios, stated in section 2, is
slightly weaker them the one assumed in LoCam (1960), and thoreforo we
will have to further assume that the random quantities involved in the approxi-
mation are jointly measurable in the observations and the parameter, and
that the given sequence of family of probability measures are measurable
in a certain sense. In section 4 it is shown that theso measurability restric-
tions can be removed when the approximation of the log-likelihood ratios
is analogous to the one assumed in LeCam (1960).

Assumptions and the main rosults are stated in soction 2 and the proofs
of the main results are presented in section 3.

Aftor the completion of this work wo came to know of a related work
Davies (1979) which contains a version of the third result Theorem 3 of the
present paper.

When the asymptotic difforentiability condition, together with tho
condition that tho limit distribution of the log-likelihood function is mixed
normal, is satisfied, the given sequence of families of probability measures
may be called locally asymptotically mixed normal (LAMN) families. A
dotailed study of the LAMN conditicn under the “differontiability in quadratic
mean’—type regularity conditions, using the rocent martingale central limit
theorems, can be found in Jeganathan (1979a). Further interosting conse-
quoncos of the LAMN-condition and extonsions of sevoral basic results of
LeCam and Hajek can boe found in Jeganathan (1979a, 1979b and 1980).
For the practical situations whore the LAMN condition is satisfied, see e.g.
Bhat (1978), Basawa and Prakasa Rao (1979) and Davies (1979).

2. ASSUMPTIONS AND THE MAIN RESULTS

Lot &, = {@,, A, Pp, . 060}, n> 1, be a sequence of experiments;
through out this paper it will be d, without further ioning, that
© is an opon subset of R¥, &k > 1.

A34-2
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We uso the following notations. If P and @ are probability messures
on & measurable spaco (2, ), then dP/d@ denotes tho Radon-Nikodym
derivative of the @-continuous part of P with respect to @. If Y is a random
voctor its distribution will he denoted by oY) or by &¥|P) when
Y: (@ ARy, 8), ¢21, & being the o-field of Borel subsets of
Re. k| 8F donotes the Lobesgue messuro. For a vector he RE, B’ denotes
the transpose of & and || denotes the euclidean norm. For a matrix D,
| D| denotes the norm defined by *he square root of the sum of squares of
its elements.

Definition : A soquonce of experiments &, = { @ Ans Pg,ns 066},
n> 1, will be called asymptotically differentiable on @ if the following six
assumptions are satisfied.

(A.1). The functions 6 — Py, ,(4), A€ A, n > 1, are Borel measurable.

(A.2). There exist ¥,x &¥*-moasurable functions

Wo() : 2,0 — R¥ and 4,(k,.) : 9L, %0 > R, n > 1,heRE,

such that the difference
e KW (0)— A, (h, 0
P, —exp [1'W,(0)—A,(k, 0)]

converges to zero in P,,,-proavility for every i e R¥ and 0¢®, whero {5}

1s a sequence of positive dofinite (p.d.) matrices such that ||8,]l = 0 as 7 — oo,

1A.3). The sequonces {Pp, s » »f and {Py, .} are contiguous for every k ¢ RE
and 0¢0.

(A.4). For very 0 ¢ @, there exist a random function 2 — A(h, 6) and a
random vector W(f) defined on some probability space (%, &, Ay such that
for every finite {h¢;i=1,2,...,m}

LW ,(0), Aoy, 0),i=1,2, ..., m| Py,,)
= L(W(B), A(iu, 03,1 =1, 2, ..., m| Ay).

(A.5). For every 0¢®, thero exists a set Nye & of Aj-measure zero
such that the functions & — A(h, 6) are continuous for all points outside the
set Np.

(A.6). For every s, he R¥ and 0¢©, the difference

A (h, 04+8,8)—A, (1 0)

converges to zero in Pp,,-probability.
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Theorem 1: Suppose that the sequence {&,} of experiments satisfies the
conditions (A.1)-(A.6). Then there are A, X Bk-measurable k-vectors y,(0)
and posive semi-definite (p.s.d.) kX k matrices T ,(0), n 2> 1, FX &¥-measurable
E-vector y(0) and a p.s.d. kx k matriz T(0), and a Lebesgue null set N C O such
that for every 0€ @—N

(i) The difference

AR, O)—[H'y,(0)+3 BT ()R]

converges to zero in Py, ,-probability, and
(ii) LW (0), ya(0) T ()] Py,n)
— LITO)Z+y(0), 7(0), T(O)]|Ag)

where 7 is a copy of the standard k-variate normal distribution independent of
both y(0) and T(0).

Corollary : Suppose that the sequence {&,} satisfies the conditions (A.1)-
(A.6). Further assume that L(W(0), A(he, 0),3 = 1,2, ..., m| Ay) is @ continuous
function of O for every finite {h¢; i = 1,2, ..., m}. Then the slatements (i) and
(ii) of Theorem 1 hold for emery € ©.

To state the noxt result, we need a wealk topology, introduced by LeCam
(1973), on the space of all sub-stochastic kernels on &7, ¢ > 1, which may
be described as follows.

Let ((487) be the space of all sub-stochastic measures on &7, ¢ > L
Let (8, & v) be a o-finite measure space. Consider the sub-stochastic
kernels P : 8 — G(87). Lot Co(R?) be the space of all continuous functicns
vanishing outside compacts. Denote the Cfo(R7)® Ly(v) topology of tho
sot of all sub-stochastic kernels to be the smallest topology such that all
functions

P[] fl)PE)(da)g(tu(d],
f€Cog, g€ Ly(v), are continuous. It is known that the set of all sub-stochastic
kornels endowed with this topology is metrisable and compact; a proof can
be found in LeCam (1979, Ch. 8).

We now state

Theorem 2 : Suppose that the sequence {@,} of experiments satisfies, in
addition to (A.1)-(A.3), (A.5) and (A.6), the condition (s): for every finite
{h; 1,2, ..., m} and almost all 0 ¢ @

LA (s, 0),i=1,2,...,m|Py,)
= LA, 0),5 = 1,2, ..., m| Ag).
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Let the random functions y,(0), T,(6), n > 1, y(0) and T(6) be as in Theorem 1.
Then there exists a Lebesgue null set N C © such that for every 6 ¢ ®@—N, the
statement (1) of Theorem 1 is satisfied, and (ii) the sequence {L(W(0), v,(6),
T.(0)| Py} s Coo(R**™)® Ly(u¥) convergent to the stochastic kernel
LTV Z+y(0), ¥(6), T(0)]Ag), where Z is a copy of the standard k-variate
normal distribution independent of both y(0) and T(6).

Note that in Theorem 2, the existence of the limit distribution of the
sequence {I¥,(0)} is not assumed.

Remark : In the special case when A ,(k,0) = A(k, 0) for every n > 1,
where the function % — A(R, 6) is non-random, it is easy to sce directly from
the statement (i) of Theorem 2 that thore exists a Lebesgue null set NC O
such that for every ¢ ®—N, £(W,(0)| P, ,) converges woakly to the k-
variate normal distribution with mean vector y(f) and covariance matrix
T(0). Thus the conclusion of Theorem 4.1 of LeCam (1960) holds even when
the existence of the limit distribution is not assumed.

Theorem 3 : Assume that, for 0,€ ©,

(i) there exists a sequence {IV,(0)} of _¥,-measurable k-vectors and a
sequence {T,(00)} of A measurable kx k-symmelric matrices such that ithe
difference

dP
08 A

- W0)—3 B
o exp [B' W ,(0p)—% KT o(0)%]

converges to zero in Py, a-probability where 8.} is a sequence of p.d. malrices,

(ii) there exists an almost surely p.s.d. matriz T(0,) such that
LT4(00)| Py, ) == LIT().
Then,
(iii) LW o(00); To(00)| Py, ) == £ (T"%(85) Z, T(6o))

where Z is a copy of the standard k-variate normal distribution independent of
T(0,) if and only if

(iv) the sequence {Pomn} and (P% _,J”n'”}, n > 1, are contiguous for every
he R¥, and

(V) L(T'a(00)] Py, o) = L(T(6,)) for every ke RE.
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3. PRrOOFS OF THE RESULTS
Note that Theorem 1 actually follows from Theorem 2. However, we
will present the proof of Theorem 1 only for the following reasons. Firstly,
the proofs of both the theorems are essentiaily identical. Secondiy the argu-
monts in the proof of Theorem 1 aro more transparent and notationally less
cumbersome.

Wo first present tho following invariance lemma, a proof of which can
bo found in Jeganathan (1979b). A much more dotailed and deep discussions
on this typo of invarianco results can bo found in LeCam (1974, Ch. 11) and
LeCam (1979, Ch. 8).

(Invarianco) Lemma 1: Assume that © C R¥ is a measurable subsel.
Let {F,} be a sequence of (sub-stochastic) kernels F, : @ x R¥ = G(8%), k,q > 1,
salisfying

F(0,h) = Fousp 0
for every 0€© and he R¥, where {8,} is a sequence of p.d. mairices such that
118,l= 0 as n—> 0. Then the following two statements nold.

(i) The sequence 0— F,(0,R), he R%, n > 1, is Coo(RY) @ Ly(u¥) con-
vergent to @ kernel F(0, k) if and only if the sequence 0— F,(0,0), n > 1, is
Coo(RY) ® Ly(uk) convergent to the kernel F(0,0) = F(6).

(ii) The kernel F(0,R) satisfies the invariance condition
J [ f@)FO0)dx)g(0)a0 = [ | f()F(0, k)dx)g(6)d0
6 R 6 pt

for every f € Cog g€ Ly(u¥) and € RE.

We will assumo in what follows, for the sake of simplicity only, that
dim ® = 1. Tho proof of the next lemma is based on the proposition 1 of
LeCam (1974, Ch. 11).

Lemma 2 : Suppose that the assumptions of Theorem 1 are satisfied.
Then there exist random variables y(0) and T(0), and a Lebesgue null set N C ©
such that

A(h, 6) = y(0)+3 BT(0) a.s.
for every he R¥ and 0e ©—N.
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Proof : Denoto, for s, he R and 6¢©,

dP,
Zp, olb]8) = —t?
Fson

Further, the vector whose elements are A4,.(s,0), 4,(,0), An(ﬂz'—h, 0),
A s+u,0), A (h+u,0)and 4, ("J;—" +u,0) will bo donotod by Vs, 4, ,0)
and tho voctor whose elemonts are A(s, 0), A(k, 0), A(i‘gj, 0), A(s+u, 0),
A(h+u, 6) and 4 (hT+-8+u, 0) will be denoted by V(s, k,u,0). In view of
the statement (6) of Theorem 2.1 of LoCam (196(), it follows from the given
conditions that
LV (8, by u, 0), Ze.n(h‘l’w'3+w)IPON,,(l+w),n)
dGg, hiw
= £ (Vlo, b, 0), G2 | Gao) i 1)

for every 0 ¢ © and s, k, u, w € R, whore

dGy,n = oxp[AW(0)—A(h, 0))dA ,he R.

(Note that in view of the contiguity condition Gy, is & probability measure for
every f€@ and he R).
Further, the contition (A.6) and tho invariance lemma 1 implios that Loth
the sequences
LV 18, b, u, 0), Zy, o(h] J)P.#n,.”)

and
LV (5, by u, 0), Zg, n(h-+0|5+w)| Porayiat,n)

are Coo(R") @ Ly(u) convergent to a samo kornel for every s, h,u,weR.
Henco, this fact together with (1) implies that for evory s, h,u, we R, there
exists a Lobesgue null sct N(s, b, u, w) possibly dopending on (s, k. u, w)
such that

dGO. Atw
&£ ( Vs, by, 0), o lGe..+-)

= & (Vo hu,0), ‘;‘;‘:: |Ga.) )
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whenever 0€@—N(s,k, u,w). Lot D bo the sat of all points in R with
rational co-ordinates, and let

N= ¥ N(s, b, u, w).

(e, h,u,w) €D

Then it follows that whenever 8¢ ® —N, the equality in the expression (2)
holds for every (s, k, u,w) € D. In particular it ecasily follows that, for every
(8, h,u,wje D and 6 ® —N,

EV / dGn h+u d(n Ao, 8+u
d/\.

dGe,n dGgs
— EV il 0 8.
L { A, d }“ @
and
g7 (Loe) 1 as @
S ;

where E” denotes the conditional exprectation givon V(s,k,u,0) with the
underlying probability spaco Dbeing (%, &, A). In what foliows assume
that 0 ® —N is fixed. Since wo have, as is casily checked using (4),

v dGa,M—u (IG',s+u
log £ { a, A
1 s+h
PRV, Y _9 e ]
- [A(s+u, 0)+-A(h+u, 0)—24 ( 4, 0)]
for every s, h, u€ R, it follows from (3) that for every rational s, k, u€ R
Als+, 0)+Ah-Fu, 0)—24 (ﬁ +u,0)

— Ao, 0)+4(h, 0)—24 (< L) 0 as.

Hence in viow of the condition (A.5) there exists & set of Ap-measure zero
such that outside this null set
h
As-+u, 0)+A(h+u, 0)—24 (——”' +u,0)

— A(s, O)+- AR, )— 24(""" 9)
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for every s,h,uc R, ie., the random function & — A(h,6) hes constent
second differences outside a set of Ay-measure zero. This implies that theére
exist random vartiablos y(0) and 7T'(0) such that, (note that 4(0,0) =0 as.),

A(h, 6) = hy(0)+ % KT (6) a.8.
for overy 0 ® —N. This completos the proof of the lemma.

Proof of Theorem 1 :  First note that, for almost all ®, 7'\0) is the second
difference of the random function & — A(k, 0) at h = 0 and that y(0) can be
expressed in terms of tho first and second differencos of the function k— A(#, 6)
at b= 0. Henco it follows from the relation (4) and lemma 2 togother with
a simplo continuity argumont that the'e exists a Lebesguo null sot N ceoe
such that

EO.TO [exp hIW(0)] = oxp[ly(0)+} KT (0)] as.

for every he R and 0¢ © —N. Henco it follows that W(0) is distributed
as TV2(0) Z++y(6) where Z is a copy of the standard normal distribution inde-
pendent of both y(f) and T'(f). Now lot T',(0) bo the second difference of
> A,(h,0)at =0, 00, n> 1, and define y,(0) similarly. This T,(6)
need not be non-negative, but this can be easily remedied since 7'(0) is non-
negative. This completes the proof of Theorem 1.

Proof of Theorem 3: It is clear that the statemonts (i) and (iii) imply
the statement: (iv). In view of the statoment (6) of Theorem (2.1) of LeCam
(1960), to prove that (i) and (iii) implies (v) it is enough to show that

[ oxp[itT(0o)+1T"*(00)Z—3} W*T(05))d £(T(00),2)

= [ exp(itT(0g))d o£(T(0o)
for every t, he R. Using the independence of Z and T'(0) it is easy to verify
this equality. This proves the necessary part of tho theorem. To prove the
sufficiency part, first note that, in view of the statement (4) of Theorem 2.1

of LeCam (1960), the sequence {W,(6,), T'(0,)} is relatively compact for *he
sequence {Pgm'}. Hence for every sub-sequence there exists & furthor sub-

sequence {m} C {n} and a random voctor (7", W) such that

L(Tm(00)s Wm(ao)lpdu'm) = LT, W).
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In view of the statement (6) of Theorem (2.1) of LeCam (1960) we then have
from the statement (iv) that

LT') = LT | Ry) . (5)

for every h € R, where the prooapility measure Rj is defined by

2
Ry = oxp (AW— 2 1) ¢ 211, W).
2

In particuiar (5) implies that

ET' [exn(hW)] = exp( } h?T")
and hence
Eloxp(itT"+iulW]

= Bloxp(itT'— } w*T']
= Eloxp(itT(0,)— § «*T(6,)]-
This proves the sufficiency part.

4. DISOUSSION ON THE MEASURABILITY CONDITIONS
The purpose of this section is to show that under 3 condition which 18
slightly stronger than (A.2), the joint measurability of W,(6) and A,(k,6),
n > 1, can be removed in both the theorems 1 and 2 and further that the
condition (A.1) can be rvemoved in Theorem 1. Consider the following
condition :

(A.2'). There exist _f,-measurable functions W,(0), 4.k, 0), n>1,
he R¥, 6 ¢ © such that the difference

4E 048 5 o0

i, —oxplin ¥ ,(6)— 4.k, 6)]

hn

converges to zero in Py, , probability for every bounded sequence {k,} of R¥
and that the difference
Aplby, 6)—A (0, 0)

convorges to zero for overy sequence {fy} of B¥ satisfying |k, —kn| — 0, whore
tho sequence {8,} of p.d. matrives is such that [|3,] = 0.
A34-3
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Lemma 3: Suppose that the conditions (A.2') and (A.3) are salisfied.
Then the quantity

“Pﬂ+ﬁnh"-n_PB+l"l:m —0 « (6)

for every bounded sequences {n,} and {nn} of R¥ satisfying |n,—ny]— 0.

Proof : It is oasy to sec that the given conditions entails that tho

saquence {PU-FH,‘A”,»}' {PO-H,,h:,n}

assume without loss of generality that P

and {Pg,,} are contiguous, and hence we can

or0 pon = Fon® Py o, for overy
0e® and n > 1, where the symbol = denotes mutual absolute continuity.

Set, for avery ne R¥, (e ® and n > 1.

dpP
848,0un
Zg, uh) = —="—.
dPy, ,
Now note that the difference
Zg, 1) —Z, k) e (M

converges to zore in Py, , probability fr overy €. Next note that

{12 {ﬂ )| >a} Zy (0,)APg, = Poysn, ol Zg, W(1,)|> 2]
on(“n)| Sa

and hence, in view of contiguity.

lim  limsup / Zy, (h,)APy, , = . .. (8)
a—m® n—eo {lz,,,,(h,,”).)

Simitarly
lim limsup I Zg, u(hp)dPyg, , = 0. v {9)

ade 0o (7, 0)]>
Now combining (7), (8) and (9) we have
11 7y, o(h)— 2y, (R3) | dPg, ,, = 0.
Hence the proof of the lemma is complete.

Lemma 4: Suppose that the sequence of experiments &, = {2, ./.4,.,
Py, 0€ 0@}, n > 1, satisfies the condition (6) of lemma 3. Then there extsls
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a consiruction of another sequence of experiments &y = {@Lp, A, Ps n; 0 €8},
n > 1, with the following properties.
(i) The functions 6 — Py, ,(A), A € Aq n > 1, are Borel measurable,
(ii) the fumctions

dP;-M ahn
P,

(2, x © x R¥) — log n>1,

are jointly measurable,

(iii) for every o > 0 and € ©

.
I:quu 1Pg+a,n, n—Posepn,all = 0, and

(iv) when the sequence {@,} further satisfies the condition thal the seq
{Posa,ny ) and {Py, ,} are contiguous for every bounded sequence {h,} of R¥ the
difference

.
1 ar, 048} 1 T ap 8+8 b n
o o=,
9 ap,, P,

converges to zero in P, , probability for every 0¢® and for every bounded
sequence {h,} of R¥.
Proof :  Sce LeCam (1974, pp. 153-155).

Proposition :  Suppose that the sequence { i of experiments salisfies
the conditions (A.2'), (A.3), (A.5) and (A.6) and the condition (#) of Theorem 2.
Then there exist _A,x &*-measurable functions Wa(f) : 2, x® — R¥ and
A X B X GE-measurable functions Ah,0): L,xREx® > R,n> 1, such
that

(i) the condition (A.2') is salisfied with the functions W ,(0) and A,(h, 0)
are replaced by Wa(0) and Ax(h, 0) respectively,

(ii) for enery ke R¥ and 0 ¢ ©, the differences
E
43(0,0)—[4,0,0)— = hed (o0, 0)]
i1

and
HWAO)— [h'u',(a)— $ hed (e, 0)]
i=1
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converges to zero in Py, -probability where {€; ¢ = 1,2, ..., k} s a basis of Rk

)
and h's are such that h = 3 h4€y,
f=l

(iii) for every € > 0, he R* and g€ Ly(u¥),
j"wf I[] 438, 0+8,h)—Ax(s, 0)| > €] dPpyq p 49(0)d0 — 0 .. (10)
e n

and

iv) the condition (A.5) is satisfied for the corr ding limit of the seq
4
{45(n, 0)}.

Remark : Note that the above condition (10) is weaker than the condi-
tion (A.6), but what we have really used in the proof of Theorem 1 is the above
condition (10). It is possible to show, under the condition (A.4) which is
stronger than the condition (s) of Theorem 2, that there exists a Lebesgue
null set ¥ G O such that the condition (A.6) is satisfied for the sequence
{43(h, 6)} whenever 0 ¢® —N; the proof of this statement will not he pre-
sented here though the arguments of the proof seem to be somewhat non-
trivial.

Proof : Let {e; i=1,2, ..., k} be a basis of R¥. Define Wy(6) by

k
K Wa(0) = = s An(0+0,8, 6)
i=1
where h¢’s are such that

k
h= 3 k&, heRE,
i=1
and

dP;
A3(0+8,h, 0) = log %‘;»ft",

Now define Aj(k, 0) by

3R, 0) = K'W(0)—As(0+8,h, 6).

It is clear from the statements (ii) and (iv) of lemma 4, that the condition
(A.2) is satisfied with the functions W,(6) and A,(k, 6) ate replaced by W,(6)
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and A%(h, ) respectively and further that the functions W3(6) and A3, 6)
ate jointly measurable. Now note that

Ak, 6) = 1 Wy(0)—AO+8,h, 6)
13
=Zh AN(0+8,84, 0)—AR(6+8,h, 0)

and in view of the statement (iv) of lemma 4, this can be approximated with
E

P, .-probability tending to one by A,(k,0)— I kA (€, 6). Hence the
im1

statements (i) and (iv) folllw. Now note that, since for every s e R and
0e®

A(O4-8,8, 0)—[s'W ,(0)—A (8, 0)]

converges to zoro in Py, -probability, the invariance lemma 1 and the condi-
tion (A.6) implies that, for every € > 0, &, s & R¥ and g€ L,(u¥)

§ [ ICIANO-+8(s+h), 048,0)
D

n
—[8' W (0+8,k)—A,(s,0)]| > s]dP,"n,,,n g(6)df — 0. .. (11)
Now, writing

k
s= 32 818,
i=1
k
A%(s, 0+-0,8) = T 84 ASO+8 (€1-+h), 6+0nh)
i=1

—An(0+3,(s+), 0+8,R),

and hence the statement (jii) follows by using (11) and the statement (ii).
This completes the proof of the proposition.
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