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Land-cover classification of satellite images is an important task in analysis of
remote sensing imagery. Segmentation is one of the widely used techniques in this
regard. One of the important approaches for segmentation of an image is by
clustering the pixels in the spectral domain, where pixels that share some
common spectral property are put in the same group, or cluster. However, such
spectral clustering completely ignores the spatial information contained in
the pixels, which is often an important consideration for good segmentation of
images. Moreover, the clustering algorithms often provide locally optimal
solutions. In this paper, we propose to perform image segmentation by a
genetically guided unsupervised fuzzy clustering technique where some spatial
information of the pixels is incorporated. Two ways of incorporating spatial
information are suggested. The characteristic of this technique is that it is able to
determine automatically the appropriate number of clusters without making any
assumptions regarding the dataset, while attempting to provide globally near-
optimal solutions. In order to evolve the appropriate number of clusters, the
chromosome encoding scheme is enhanced to incorporate the don’t care symbol
(#). Real-coded genetic algorithm with appropriately defined operators is
used. A cluster validity index is used as a measure of the fitness value of the
chromosomes. Results, both quantitative and qualitative, are demonstrated for
several images, including a satellite image of a part of the city of Mumbai.

1. Introduction

Classification of satellite images into different land-cover regions is considered to be
one of the fundamental operations in the domain of remote sensing image analysis.
When no prior information about the pixels is available, then unsupervised
segmentation, which is a critical component of any image processing and analysis
system (Rosenfeld and Kak 1982, Gonzalez and Woods 1992) has traditionally
been considered as an important approach for land-cover classification. Errors in
segmentation often significantly affect the subsequent tasks of feature extraction,
classification and interpretation of images. The problem of image segmentation can
be formally stated as follows: Partition a given image into regions or segments such
that pixels belonging to a region are more similar to each other than pixels belonging
to different regions.

The primary approaches for segmenting an image (Jain and Dubes 1988) are
based on (i) thresholding or clustering, (ii) boundary detection, and (iii) region
growing. In this paper we concentrate on the clustering-based approach to image
segmentation (Wharton 1983, Gowda 1984, Theiler and Gisler 1997), where pixels
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that share some common property are clustered into the same class. The spectral
property of the pixels is an obvious choice on which the clustering may be
performed. However, since the pixels inherently contain some spatial information,
taking this into consideration as well appears to be a natural choice in the domain of
image segmentation.

Uncertainty and ambiguity are inherent in the domain of image processing.
Several types of ambiguities often faced in this domain are spectral ambiguity (e.g.
due to the possible multivalues levels of intensity), geometrical ambiguity (e.g. in
the boundary of segments, location of edges) and interpretational ambiguity (e.g.
location of certain objects in the image). Thus incorporation of the flexibility and
advantages of fuzzy information processing (Zadeh 1965), which is a way to
represent vagueness in everyday life, to deal with possible uncertainty in images
appears to be appropriate (Bezdek and Pal 1992, Bezdek et al. 1999, Kerre and
Nachtegael 2000). As a result, in this paper we deal only with fuzzy clustering of the
dataset, which is capable of providing fuzzy segments.

In fuzzy clustering of a dataset X={x,, x», ..., x,,} in IR", the set of fuzzy partition
matrices My, may be represented as

My ={U e IR | U=[uy],,,» 0<usx <1 Vi, k

Vk,u,-k>OEIi;O<ZZ:1u,-k<n Vi (1)

S =1k}

where u;, denotes the membership of the pattern x;, 1 <k<n, to cluster i, I <i<ec.

Fuzzy C-Means (FCM) (Bezdek 1981) clustering is one of the widely used techniques
for evolving the appropriate partition matrix U€ M., such that a criterion based on the
squared error of the clusters is minimized. However, there are two primary drawbacks
of the FCM method that limit its applicability: it requires an a priori knowledge of the
number of clusters, and it often gets stuck at local optima.

In this paper we describe an approach to image segmentation using a genetically
guided fuzzy clustering technique that can overcome the above-mentioned
limitations of the FCM, while considering some additional characteristics over a
window centred around each pixel in order to incorporate spatial information. The
power of genetic algorithms (GAs) (Goldberg 1989, Davis 1991, Michalewicz 1992,
Mitchell 1996, Maulik and Bandyopadhyay 2000), a well-known optimization tool
that performs search in large, complex and multimodal spaces while providing near
optimal solutions, is utilized for evolving an appropriate set of cluster centres such
that the local optimum is avoided. In order to evolve the number of clusters
automatically, the chromosome encoding incorporates a don’t care (#) symbol.
Real-coded GAs with modified versions of mutation operators are defined, which
can alter, increase and decrease the string length. The Fukuyama—Sugeno index
(Fukuyama and Sugeno 1989) is used as a measure of the cluster validity of
the resulting clusters in the multispectral space. Hence this index is used to compute
the fitness of a chromosome, which indicates the degree of goodness of the
encoded solution (fuzzy partitions). Experimental results are provided for several
images, both simulated and real, including a satellite image of a part of the city of
Mumbai.
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2. Genetic fuzzy clustering

In this section we describe the fuzzy clustering technique that utilizes the searching
capabilities of genetic algorithms for automatically partitioning a dataset into an
appropriate number of clusters. The basic steps in a conventional genetic algorithm
are as follows.

Begin

1. t=0

2. initialize population P(t)

3. compute fitness P(t)

4. t=t+l

5. if termination criterion achieved go to step 10
6. select P(t) from P(t-1)

7. crossover P(t)

8. mutate P(t)

9. go to step 3

10. Output best solution

End

2.1 String representation

In the genetic fuzzy clustering technique, the chromosomes are made up of real
numbers (representing the coordinates of the clusters centres) as well as the don’t
care symbol #. The value of ¢ is assumed to lie in the range [¢in, Cmaxl, Where ¢, 18
chosen to be 2 and ¢,y is taken to be v/z (n is the size of the dataset) unless specified
otherwise. The length of a string is taken to be c¢p.x Where each individual gene
position represents either an actual centre or a don’t care symbol.

2.2 Population initialization

For each string i in the population (i=1, ..., P, where P is the size of the population),
a random integer ¢; in the range [cmin, Cmax] 1S generated. This string is assumed to
encode the centres of ¢; clusters. For initializing these centres, ¢; distinct points are
chosen randomly from the dataset. These points are distributed randomly in the
chromosome. The other (¢p,.x—¢;) positions of the chromosome are filled with #.

2.3 Fitness computation

As mentioned in section 1, the fitness of a chromosome is computed using the
Fukuyama-Sugeno (FS) fuzzy cluster validity index. Given a partition matrix
U=[ujy]e « n» set of cluster centres V={vy, v,, ..., v;, ..., v}, and the centre of the data

v* computed as v*= ) .~ the FS index is deﬁned as follows:

FS(U.V: )= 33w (=P =y = P) )

i=1k=1

Here m is the weighting coefficient. Note that 1<<m<e, and the membership value of
the kth point to the i cluster, uy, is computed as (Bezdek 1981)
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U = ! —, for 1 <i<e¢; 1<k<n (3)

c Dy(vi i) \"
Z/= 1 <D,k(\)/, x/\.))>
where Dj(v;, x;) is the distance from x; to the ith cluster centre, v;.

For each chromosome, the set of encoded clustre centres is first extracted and
the fuzzy partition matrix is computed as above. Using these values, and the centre
v¥ (computed at the start of the process) for the data points X={x;, x», ..., X,,}, the
FS(U, V; X) index is computed using equation (1). The objective of the clustering

process is to minimize the FS(U, V; X) index for evolving the proper partitioning.
Therefore, the fitness function for chromosome j is defined as

1
FS(U, V: X),

Subsequently, the set of new cluster centres is computed as

L B i @
=1 (uix)

These cluster centres are introduced into the chromosome, replacing the old ones.
This, in effect, constitutes one iteration of the FCM process (Bezdek 1981),
and is incorporated into the GA process to improve its convergence to the best
solution. Note that the following criterion is minimized in the classical FCM
algorithm:

V=

m U V ZZ utk Vts xk) (5)

i=1k=

In case the number of clusters, ¢, is varied, this criterion will achieve its minimum
value for the largest ¢, being equal to zero when ¢=n in the limiting case. Hence J,,,
cannot be used for proper clustering when c is variable.

2.4 Genetic operations

The following genetic operations are performed on the population of strings for a
number of generations.

2.4.1 Selection. A commonly used selection strategy is called the roulette wheel
selection, where each string receives a number of copies that is proportional to its
fitness in the population. This selection scheme requires the fitness values to be
greater than or equal to zero. Since in our case, the FS index can, and often will,
assume negative values, we consider another scheme of selection, namely the binary
tournament selection. In this strategy, a pair of individuals is picked up at random,
and the fitter of the two is selected for propagation to the next generation. This
process is repeated until the mating pool fills up.

2.4.2 Crossover. During crossover each cluster centre is considered to be an
indivisible gene. Single point crossover is applied on each pair of strings with
probability u.. Here, a crossover point is randomly chosen, and the genetic materials
(cluster centres, as well as #s) to the right of the crossover point are swapped in the
strings to produce two offspring.
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2.4.3 Mutation. The process of mutation is defined in such a way that it has the
capability of perturbing one or more cluster centres, deleting an existing cluster
centre as well as introducing a new cluster centre. Thus accordingly we define three
types of mutation, normal mutation, deletion mutation and insertion mutation. The
first and the second ones, i.e. normal and deletion mutation, are applied to actual
cluster centres which are encoded as real numbers in the chromosomes. During
normal mutation at a location, its value is allowed to change by atmost /%, where
fis user specified. That is, if the value at a location is v, then after mutation it will
lie between

"~ 100" " 100

o5+
During deletion mutation, the corresponding centre is deleted and is replaced by #.
The insertion mutation is applied probabilistically only on the #s. In this case, the #
is replaced by a randomly picked point from the dataset, which is then perturbed in
the manner of normal mutation.

2.5 Termination criterion

In this paper the processes of fitness computation, selection, crossover and mutation
are executed for a maximum number of iterations. The best string having the largest
fitness value seen up to the last generation provides the solution to the clustering
problem. We have implemented elitism at each generation by preserving the best
string seen up to that generation in a location inside the population. Thus on
termination, this location contains the centres of the final clusters.

3. Segmentation using genetic fuzzy clustering

In order to segment images using the above technique, the natural choice of the data
to be clustered is the intensity values of the pixels. Note that in this case the
dimension of the feature space, N, is equal to the number of available spectral bands
of the image. For example, N=1 for grey-level images, N=3 for colour images.
However, as already mentioned, clustering in only the spectral domain effectively
ignores the spatial information that is inherent in the pixels. On the contrary, while
segmenting images, it seems natural that we take into account not only the spectral
properties of the pixels, but also their spatial information. For example, if we
consider a 3 x 3 neighbourhood, then while deciding on the clustering of two pixels
(i, j) and (i, j') such that |i—i'| and |j—j'|<1, the fact that the two pixels are
neighbours should also be taken into account.

There are two approaches in which spatial information can be incorporated in the
clustering process. The first approach is by modifying the optimizing criterion such
that it takes into account the contiguity of the segments in some form. Some such
attempts may be found in Theiler and Gisler (1997) and Dulyakarn and Rangsanseri
(2001). Note that, in the former this has been done for the well-known k-Means
algorithm (Tou and Gonzalez 1974) while in the latter, the authors have used partial
supervision in fuzzy clustering (Pedrycz 1997) with a local spatial information. Both
these methods require a priori specification of the number of clusters, and provide
locally optimal solutions. Also note that the basic clustering algorithm needs to be
altered in these techniques.



584 S. Bandyopadhyay

The other approach of incorporating spatial information in the clustering
process is by including the spatial information in the data representation itself. This
would involve an increase in the dimensionality of the data, while keeping the
clustering technique unaltered. The approach adopted in this paper belongs to
this category. A general procedure for doing this is by adding the intensity values of
all the neighbouring pixels as components of the pixel of interest. For example, if
the intensity value of a pixel at location (i, j) is p; ;, and we are considering a 3 x 3
neighbourhood, then the pattern in the extended feature space will be

(Pi—1,j=1 Pi—1,j Pi—1,j+1 Dij—1 Dij Pij+1 DPi+1,j—1DPi+1,) PDi+1,j+1)

It can be easily noted that this approach will be computationally very expensive, and
therefore infeasible in practice. If we consider the same example but with say five
bands of the image, then the increase in dimensionality of the dataset used for
clustering is from five to 3 x 3 x 5=45. Note that, with the increase in the size of the
window, the dimensionality of the data will increase further (the relationship being
quadratic in nature).

In order to overcome this problem, while still extending the feature space with
spatial information, we consider two approaches. In the first one (referred to as
WinAvg), the average intensity value over a specified neighbourhood across the
pixel of interest is considered. In other words, if the intensity value of a pixel at
location (i, j) is p;;, and we are considering a 3 x 3 neighbourhood, then the average
intensity is computed as

1 1
p,_,]=1/9 Z Z pi+l',_/+c

r=—1lc=-—1

The pattern in the extended space becomes
(pi; Pi)

In the other approach (referred to as WinTopDown), the difference between the
intensity values of the pixels above and below the pixel under consideration is taken
as the first additional feature, while the difference between the intensity values of the
pixels to the left and right of the pixel under consideration is taken as the second
additional feature. Thus the pattern in the extended space becomes

(Pi,j (171; 1,j —Pi+ l,j) (pi,jfl —Dij+ 1))

Note that if the image has N spectral bands, the above computation is done in each
band; thereby resulting in an increase in dimensionality of the data from N to 2N in
the first approach, and from N to 3N in the second approach. The genetic fuzzy
clustering is performed for the data in this extended feature space in order to
segment the given image.

4. Implementation

The effectiveness of the genetic clustering technique is demonstrated on two images,
namely, the Spanner image and a satellite image of a part of the city of Mumbai.
Results comparing the performance of the clustering method both with and without
the spatial information is provided, both pictorially as well as in terms of a
quantitative index. The parameters of GAs are taken as follows. The population size
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is taken to be 20, u.=0.8, probabilities of normal, insertion and deletion mutations
are set to 0.1, value of the maximum perturbation during mutation f=20%,
maximum number of iterations of GA=100 and weighting coefficient m=2.0.

4.1 Image datasets

In this section we describe the datasets used for the experiments. The first is the
Spanner image shown in figure 1. This is a 256 x 256 grey-scale image. (The
corresponding genetically segmented images obtained without using spatial
information and with WinAvg approach are shown in figures 2 and 3, respectively,
as discussed in section4.2.)

The Mumbai image, shown in figure 4, was obtained from Indian Remote Sensing
Satellite (IRS-1A). Data used for this work were captured using the LISS-II sensor,

Figure 1. Input Spanner image.

Figure 2. Segmented Spanner image without using spatial information.
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Figure 3. Segmented Spanner image with spatial information using WinAvg approach.

which has a focal length of 324.4m, radiometric resolution of 128 and spatial
resolution of 36.25m x 36.25m. We have considered here two bands, namely green
band of wavelength 0.52-0.59 um, and near-infrared band of wavelength 0.77-
0.86 um.

Figure 4. Near-infrared band of the Mumbai image with histogram equalization.
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Some important land covers of Mumbai obtained from the ground data, and as
seen more prominently from the near-infrared band (figure 4 shows the image with
histogram equalization to make it more prominent) are as follows. The elongated
city area is surrounded by the Arabian Sea. There is a concrete structure (on the
right top corner) connecting Mumbai to New Mumbai. On the southern part of the
city, there are several islands, including the well-known Elephanta islands. The
dockyard is situated on the south-eastern part of Mumbai, which can be seen as a set
of three finger-like structures. On the upper part of the image, towards the left, there
is a distinct crisscrossed structure. This is Santa Cruz airport.

It may be noted that these data have been used earlier for classifying the pixels
into different categories under the supervised framework (Bandyopadhyay and Pal
2001, Pal et al. 2001). From the ground data, five different land-cover types, namely,
turbid water (TW), Concrete (Concr), Habitation (Hab), Vegetation (Veg) and
Open Space (OS), were known to be present. Training points were extracted from
the different land-cover regions, and the class labels were manually associated by an
expert knowledgeable about the area. The classified image using the well-known
k-NN rule (for k=1) and the Bayes maximum likelihood classifier (Tou and
Gonzalez 1974) are provided in figures 5 and 6, respectively. Note that the utility of
an unsupervised scheme, which does not require the a priori specification of the
number of clusters (such as the one described in this paper), becomes evident if the
manual intervention for extracting training points needs to be reduced or eliminated
totally.

Conor Wag

Figure 5. Classified Mumbai image using the k-NN classifier (k=1).
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Concr Hab Ve s

Figure 6. Classified Mumbai image using the Bayes maximum likelihood classifier.

4.2 Results

This section presents the results of application of the genetic fuzzy clustering
technique on the above-mentioned images. Results are provided both when the
spatial information is neglected as well as considered, for the two images.

In the case of the Spanner image, two clusters are obtained when spatial
information is not considered. These correspond to the object and the background
regions. The resulting clustered image is shown in figure 2. Using the WinTopDown
approach, again two clusters are obtained. The J,, values (equation (5)) for the
above two cases (both of which provide two clusters) are found to be 870.7243%10*
and 870.5665%10%, respectively, indicating a slightly better performance using the
WinTopDown approach. For the case when the WinAvg approach is used with a
window size of 3 x 3, three clusters are obtained, one of which belongs to the
background and the other two to the object (see figure3). Interestingly, some
portions of the spanner, which are found to have grey-level properties close to that
of the background, are segmented as a class separate from both the backgound and
object regions (appears in white in the figure). Note that some subsequent
postprocessing technique can be applied in order to infer that this segment needs to
be merged with the object segment (appears in black in figure3) before further
analysis is carried out.

In the case of the Mumbai image, the algorithm using WinAvg approach for
incorporating spatial information was executed for different window sizes, namely
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3x3,5x5 and 7 x 7, while the WinTopDown approach had a window size of 3 x 3.
In all the cases, the algorithm provided five clusters. This more or less corresponded
to the five land-cover types obtained using the supervised classifiers mentioned
earlier (figures5 and 6). The values of J,, (equation (5)) for the different cases is
provided in table 1. As can be seen from the table, the J,, values obtained when
spatial information is incorporated are generally found to be lower than when
spatial information is ignored. For the WinAvg approach, the lowest value is
achieved for a window size of 3 x3. As expected for this approach, for larger
window sizes, increased averaging effect is observed. This leads to the loss of very
narrow regions like roads, bridges, etc. Figure 7 shows the result of this approach for

Table 1. Value of J,, for different approaches for Mumbai image.

Approach Window size I

No spatial information - 228.3718*10*

WinAvg 3x3 221.26*10*
5%5 227.6153%10*
Tx7 225.0962%10*

WinTopDown 3x3 219.2152*10%

0s Concr Hab T™W Veg

Figure 7. Segmented Mumbai image with spatial information using WinAvg approach for
window size of 3 x 3.
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window size equal to 3 x 3. The result for the WinTopDown approach is provided in
figure 8. As can be seen, here a small part of the bridge connecting Mumbai to New
Mumbai has been identified. Comparison of figures 7 and 8 with the results obtained
using the supervised classifiers (figures5 and 6) indicates that the unsupervised
scheme provides a reasonably good automatic landcover classification into the five
classes. As noted earlier (Pal e al. 2001), the Bayes maximum likelihood classifier
appears to overestimate the concrete classes, resulting in a proper extraction of the
bridge connecting Mumbai to New Mumbai, while not being able to retain the
structure of the dockyard, or the roads. Both the A-NN rule and the Bayes
maximum likelihood classifier provide some spurious regions within the wide
Arabian Sea area. In contrast, it can be observed from the results of the
unsupervised schemes (figures7 and 8) that a good balance is maintained within
the different classes, with the Arabian Sea coming out as a single waterbody, and the
structure of the dockyard extracted properly. This result is quite encouraging since
the unsupervised scheme has neither any pre-labelled training data nor knowledge
about the number of classes in the image at its disposal.

Table2 shows, in summary, the number of clusters provided by the genetic
fuzzy clustering method both with and without spatial information for the two
images.

Concr 0s Hab ™ Veg

Figure 8. Segmented Mumbai image with spatial information using WinTopDown
approach for window size of 3 x 3.
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Table 2. Number of clusters.

Number of clusters

With spatial information

Without spatial

Data WinAvg WinTopDown information
Spanner 3 2 2
Mumbai image 5 5 5

5. Discussion and conclusions

This paper describes an approach for automatic segmentation of images using
a fuzzy clustering technique. The genetically guided fuzzy clustering algorithm
incorporates spatial information that is inherent in the pixels in order to obtain good
segmentation results. Two different approaches, WinAvg and WinTopDown, are
implemented for incorporating spatial information. As a result, the feature space is
enhanced, so that its dimensionality increases from N (the number of bands in the
image) to 2N and 3N, respectively. The clustering method described here can
automatically evolve the number of clusters as well as the proper partitioning of the
data. A genetic algorithm has been used as the underlying search strategy as it has
the capability of coming out of local optima. Since the number of clusters is not
known a priori, it is kept variable in the chromosomes. Real encoding of the cluster
centres in the chromosomes, along with appropriate definition of the genetic
operators, is used. Moreover, in order to tackle the concept of variable string
lengths, a don’t care symbol # 1is also incorporated in the chromosome
representation. The Fukuyama-Sugeno index has been used as the minimizing
criterion in order to evolve the appropriate partitioning of the data.

Results are demonstrated on a Spanner image and a satellite image of a part of
the city of Mumbai. The effectiveness of incorporating spatial information is
demonstrated both qualitatively as well as quantitatively for the images by
comparing the results of the algorithm with those where the spatial information is
ignored. Results on the Mumbai image demonstrate that the method is
automatically able to distinguish between the various land-cover types present.
This can be verified by comparing with the results of supervised classification
schemes using the Bayes maximum likelihood classifier and the A-NN rule.

There are many ways in which this work may be extended further. As a scope for
further research, other ways of incorporating spatial information in the clustering
process need to be investigated and compared. Comparison with other classification
schemes and/or using features other than simple intensity values needs to be
investigated. As an example, texture based image segmentation techniques (Chen
et al. 2003) may be studied. The fitness function of the GA may be modified
appropriately so as to penalize the chromosomes that give rise to highly non-
contiguous segments. Moreover, the effect of using other cluster validity indices
(Bezdek 1974, 1975, Windham 1982, Xie and Beni 1991, Bensaid et al. 1996,
Bandyopadhyay and Maulik 2001) needs to be investigated. Other related
evolutionary algorithms such as evolutionary strategies (Schwefel 1987), simulated
annealing (Kirkpatrick et al. 1983, Maulik et al. 2001), etc., may be utilized as the
underlying search and optimization tool, and the performance may be compared
with that of the GA based scheme. Finally, parallelization of the genetic image
segmentation scheme is another important direction of further study.
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