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X-tron: An Incremental Connectionist
Model for Category Perception

Juyunia Basak and Sankar K. Pal, Fellow, IEEE

Abstract-— A conneclivoit moddd for categorization {sell-
organization) even in the presence of multiple or mixed patierns
has been  presented. During  self-orgapizadion, (he network
sutematically adjusts the oumber of nodes in the hidden and
nutpit layers, depending on the complexity or nature of overlap
hetween the patterns. An ambigoity measure [s given based on
ot well the Fealures are heing interpreted by the oetwork, From
Lhe ambiguity measure a certainty factor about the decision
of the network 1s decived. The effect of noise on the certainty
factor §s investipated. A vigilance threshold is wsed Lo decide
whether the network’s decision is correct or nod. Yunchionglly
the network consists of iwo parts, ene of Lhem categorizes the
inconing paticrns and the ather monitors the performance of
cualegorization. The characteristics of (he mndel has also been
demonstrated experimentally on both one-dimensional hinary
strings and hnage palivrns even when they are cocrupled by
additive, subtractive, and mixed nnise,

L INTRODAUC 10

ALL binlogical sysiems exhibit self-orzanizing property,

where the entities are prouped inlg calezorics auto-
matically withowt the help of any extermal eacher. Sewerul
investigarions bave heen made on the self-organizing behavior
of comnectiomist models, Linsker [1]. |2] analyzed the seli-
erzanization property and applied 1 1o model the developmem
of curly visval processes in retina. Kolewen [3] used the
comeep of sell-organization to produce topologically cormel
teature maps. Here in the leuning process the weights over
# neighborhood change, Adaptive resonance thoory [4] was
developed to catcgerize incoming patterns where o vigilanes
Factor was defined to monitor the belongingness of an inpul
pattern to a particular cateyory. Baelh fast and slow leaming
processes have been incotporated in the self-orgunizing model.
The wdaptive tesopance theory was extended to cutegomize
analog inpul palterns to form stable category codes [3]. The
charvactenisiics of such networks for additive and subiractive
noise have alac been stwlied [6], [71 Later another model,
namaly. ARUMAP fadaptive resonance theory-supervised pre-
dictive mapping) [8]. was developed which uses 1wo Jillerent
ART modules {one of them acts as a predictive system) linked
Iw an associative leaming nelwork, An internal concroller
SnEUres AUICGHOMONE Syslem aperalion in rel me, ARTMAP
acts like a self-organizing expert svstem that calibrales the
seleclivily of its hypotheses bascd wpon the predictive success.
Recently the ARTMAP hus been extended to fuzzy ARTMADP

The authims are with the Machine Imellipence Unit, Indian Statiztical
Tisanne, Cabotlla 76 033 [ndia.

[4] to handle the bnprecise o vagus information in the inpuat
PACTE.

Amari [10]. [11] developed a sell-organizing mesde]l for
concepl formation snd the corresponding  orthoguonal  and
covariance  leaming  techrigques, Kosko |12 developed a
theoretical  groundwork  for unsupervised  learmming  under
noise. Fukushima [13] bas developel an application-specific
medel. called neocognitron, which van alse exhibic ke
self-prganization behavior. Several other applicalion-specilic
self-organization models have alse been developed. Rilter and
Kuokonen [14] produccd self-organizieg of abstract data, such
s words. The semantic relztionships in the data were reflected
in these maps. Minnix e ol [15] wsed the undetlying concept
of neocognitron [13] and developes] o self-onmmizing network
madel to recopnize ohjecls  with trunslalion  invamance.
Marshall [16] used self-organization for adapting the network
Lt long-term characteristios of the visuab motion o an object.

The concept of sell-urgunizalion in ceanccticrist models is
analogous e the idea of clustering in patiem eeogniten [17]
In general. the idea is 10 select a seed [or some calegory so
that its distance (which can be BEuclidion or Mahulanohis or
city-block or any other suitable measure) Imisn any incoming
patter can be measured. Some objective funcrion hased on this
distanue is then wsed w decide whether the partern Belongs to
Wt calegory or ek, This very concept was used in most of
the self-argamzing networks mentioned before, In our problem
mare than one calepory (in mixed lorm) can be prosent ot &
tme ina given input. In that case, it would be ratber belwoling
to compare any sngle category with the incoming patiermn
when o partivular combination of mere than one catcgory is
comparable (similar) o the input. Therefore, instead of using
the conventional concept ol clusiering i patlem eeognilion,
the concept of similarity-hased induction as posed by Stanlill
and Waltr [18] can be used m measure how well the inpul
feature train is heing imerpretsd with the exisiing set of
catcporics (cither individually or in a combination ).

In literature there exist several investigations for mixed
calggory recognition, Peng und Beggia {19] developed a model
for prediction of meltple disorders for a given set of mani-
festalions. Tn thal mawde], however, no leaming scheme wis
proposed. Latee Cho and Reggia [20], [21] develisped a learn-
ing scheme through competition and cooperation process tor
this kind of tasks, They mathematically formulated the com
petitive and cooperative process and then denved an ermor
buckpropazation leaming tule for such tasks, The leamming rule.
howerver, operales in supervised rimle. Manshall [227-[24] de-
veloped a scheme for mixed category recopnition. e confined
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the competition process within the nodes of similar nature,
i.e., getting activations from inputs which have sufficient
overlap. Cohen and Grossberg [25], [26] used the concept of
masking field for the recognition of mixed categories. The
use of masking field enables the system to find out embedded
patterns. It also allows multiple nonoverlapping patterns to
be classified simultaneously. Later, Nigrin developed a neural
network model, namely, SONNET [27]-[30] which is able to
self-organize in presence of mixed categories and form stable
codes. He introduced a concept of competition between the
links for associating a category with a feature.

The present paper describes a three-layered connectionist
model for exhibiting self-organizing behavior even in the
presence of mixed patterns (mixed pattern may result from
presence of more than one objects or occluded objects). The
model is based on the network {31] developed for recogniz-
ing multiple objects with supervised mode of learning. The
underlying concept of the present self-organizing system is
as follows. Whenever a feature train appears at the input
the network is allowed to settle with its existing links. After
settling, the output categories feed back the activation to the
input features. For each feature some kind of ambiguity is then
measured depending on the external input and the amount of
feedback. On that basis, a certainty factor is derived to monitor
if the incoming pattern is a new category or a combination of
the existing categories.

In the process of self-organization, whenever a new category
is detected an output node is allocated for the category.
Moreover, to incorporate the knowledge about input—output
association of the new category, some hidden nodes are also
added to the network. As a result, the network incrementally
changes the size of the layers (hidden and output) to accom-
modate the new unknown categories. The network is named
as “X-tron” where X stands for unknown category.

X-tron achieves the desirable property of recognizing mixed
patterns. It is able to self-organize and form stable codes. The
problem we considered is not finding out a pattern embedded
in different patterns, as performed by Cohen and Grossberg
[25], [26] or Nigrin [27]-[30]. Rather, the network would be
able to decide if more than one learned category is present
in the input even when there is a significant amount of
overlapping between the patterns. For example, suppose that
the model has learned two categories CAB and ABD. In that
case, if a new pattern CABD is presented to the network, it
would be able to decide that the new pattern is a mixture
of these two learned categories. X-tron is able to continually
form stable category codes. It accepts confidence values about
the features and produces the confidence values about the
respective categories. Here, the confidence value means the
level of firmness about the presence of a feature or category
(object). For example, if the confidence of an entity (feature or
category) is 0.0, then the entity is absent. If the confidence is
1.0, then it is present. If the confidence is (.5, then no decision
can be taken about its presence or absence. This indicates that
the system can handle imprecise or vague information (which
is also incorporated in fuzzy ARTMAP, but here it is dealt
in a different way). This capability also enables the system to
handle noisy (additive and subtractive) patterns. Moreover, X-
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tron incrementally adjusts its size (number of nodes and links)
depending on the patterns and the nature of their overlap.

The paper is organized as follows: A brief description
of a network architecture [31] for supervised learning is
presented in Section II. In Section III, some properties of
the network are analyzed which is a must for formulating the
methodology and designing the architecture for performing
the self-organizing tasks. Section IV presents the proposed
architecture and the categorization technique including noise
characteristics, certainty factor, merits, and stability issues.
Simulation results are presented in Section V. Section VI
presents the conclusion.

II. NETWORK ARCHITECTURE FOR SUPERVISED LEARNING

The network which works under supervised mode is pre-
sented in Fig 1. It has three layers, namely, input, hidden,
and output. The input layer accepts patterns in the form of
numerical values in [0, 1] indicating the confidence levels re-
garding the presence of features; the output layer represents the
confidence levels regarding the presence of output categories
while the hidden layer represents the association between the
input and output nodes. With each input node a set of hidden
nodes is connected. On the other hand, a hidden node can be
connected only to a single input and a single output node. Each
hidden node represents the association of the input and output
nodes to which it is connected. Input nodes are connected to
the hidden nodes by links of fixed weights. On the other hand,
each hidden node is connected to a particular output node by
bottom-up and top-down links. The bottom-up link carries the
activation from the hidden node to the output node, and the
top-down link carries the activation from the output node back
to the hidden node. Each hidden node consists of two parts.
One of them holds the feedback activation coming from the
output layer through the top-down links. The other competes
with the neighboring hidden nodes which are connected to the
same input node.

The input layer accepts the confidence values of the features,
and the output layer produces the confidence values of the
categories (or the objects). The term confidence value indicates
the extent of firmness regarding the presence of feature or
category (object). Whenever an input pattern is presented to
the network, it propagates to the hidden layer and then through
the bottom-up links the activations reach the output layer. This
is the initial set of outputs (O). The output layer, in turn, feeds
back the activations to the hidden layer. Each hidden node
is activated for a particular input—output combination. The
hidden nodes connected to a common input node compete with
each other. The winner-take-all node physically represents the
strongest possible hypothesis supporting that particular input
feature. The difference in activations (e) of the input node
and the WTA hidden node is again propagated through the
bottom-up link connected to the WTA node. Each output node
has a negative self-feedback. The feedback ensures that in
the process of updating, the activation of an output node
automatically decreases if it does not get support from its
constituent features. If an output node gets proper support
from its constituent features (i.e., the bottom-up differential
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¢

(b)

Fig. 1. (a) Structure of the connectionist model for supervised learning and
recognition. The hidden nodes connected to the same input node are enclosed
in a dashed box. (b) Structure and connections of the hidden nodes in the
network. fby; is the feedback signal to (:.[)th hidden node from the Ith
output node (i.e., fb;; = =z;;07). (Note that the index of hidden nodes is
varied from one to k for the sake of simplicity in representation. Actually,
only those hidden nodes are present for which the corresponding objects have
the feature i.) ¢;; represents the differential support which is either zero
or e, — b;. where b; = max; (fb;,;). The symbol * denotes the modulating
signal appearing through the corresponding link. Each hidden node is basically
a conjugation of two nodes (one in the lower level and other in the higher
level). In the lower level within the box, the nodes compete and the output of
each node modulates the activation of the corresponding node in the higher
level within the box. e;; is zero if the lower part of the (i.1)th is a loser
one, and it will be ¢; — b; if the lower part is a winner. The weights for
competitive connections are not shown here.

support (¢) and negative self-feedback cancel each other) then
its activation will stabilize to some nonzero value. In Section
IV-B we will discuss how the activation level depends on the
amount of self-feedback. The network is said to have recognize
an object only when the activation level of the corresponding
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output node, after stabilization, is greater than some predefined
threshold (this is referred to in Section III). Now onwards,
recognition of some object will mean only recognition after
stabilization.

Let us now describe the STM and LTM equations. The
details of convergence of STM and LTM equations have
been reported earlier [31]. For the convenience of the reader,
however, we are presenting it below in brief.

Equations for STM: The states of the output nodes are
updated according to the differential equation given as

% = ;w”eil — Wsy (n
where «; and v; are the total input to and output of the /th
output node. w;; is the weight of the bottom-up link from the
(%, {)th hidden node (connecting ith input node and /th output
node) to the [th output node. w, is the weight of the self-
feedback in the output layer. e;; (differential support) measures
the difference of the input activation from ith input node and
the feedback from Ith output node, provided the (¢, /)th hidden
node is enabled (winner-take-all node). Mathematically
_fei—zpvp Af zu >z,
it = { 0 otherwise vm#
where ¢; is the activation at the ith input node (i.e., confidence
value about the presence of ith feature). z;; is the weight of the
top-down link from the /th output node to the (i, /)th hidden
node. The output v; is related to the instantaneous input u; by
a semilinear nondecreasing gain function g(-) (chosen as an
S-function [31]).
Let an energy function £(t) be defined as
n m
£ =%y A;(I:I??;{kz,l1;l —e)?+dw >y v @
i=1 =1
where n is the number of input nodes, and m is the number
of output nodes. A} is a multiplication factor such that

Moo= wye)ze;  if

ZsiVs = Max 2uv.
I=1,--,m

,

The rate of change of energy can be written as

dE & O duy
it bl 3
dt = Ou dt 5%
But
dE =
8—11; = - Zzil/\ﬂbil — Wi
i=1
ie.,
9 __du
Svy  dt’
Therefore (3) can be written as
k 2
d€ _y du;
EI—ZQ 1(”1)(ﬁ> . 1C))
=1 '

From (4) it is evident that d€/dt < 0 for all ¢ > 0. As
t — oc,d€/dt — 0, and thereby the system converges to an
energy minima (local).
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The energy function (2) reveals the fact that the system
always tries to minimize the error of mismatch between the
input confidence values and the interpreted confidence values
of the output layer. The weights of the top-down links are set
in such a way that z;; is zero if ¢th feature do not belong to
object, and close to unity if it belongs to. As a result, the first
part shows the similarity of the problem to the “set covering”
problem. The second part of the energy function ensures the
fact that the feature train presented to the network should be
interpreted by the minimum possible number of objects. This
enables the network to reduce the number of redundant objects
or the chance of false alarming.

Equations for LTM: The learning rules or the rules for
iterative adjustment of the weights are set in such a way
that the weight of each link asymptotically reach a predefined
measure. The measure for each weight is defined in such a way
that it achieves the ability to capture the relative frequency of
appearances of the corresponding feature object pairs. From
the expression of the energy function (2), it is intuitively seen
that the weight of a top-down link (2;;) should be proportional
to the probability of appearance of the corresponding feature
(i) with respect to the corresponding object ([). On the other
hand, the value of A, should be proportional to the probability
of appearance of the object (corresponding to the winner) with
respect to feature ¢. Therefore, the asymptotic values can be
given as

zii = p( filor) )

and

it = ploi] f2). (6)

Note that we define a quantity A;; to represent A’ for all links.
The weight of bottom-up links should take a form

Wi X A2 @)

In the present work, since the transfer function of the output
nodes are chosen as an S-function, the output values always
saturate if the total input activations exceed unity. The weights
of bottom-up links are iterated in such a way that the total
activation reaching an output node is always less than unity.
Therefore, an additional constraint is imposed on the weights
of the bottom-up links which is

Zwi, <1. (8

Moreover, if two objects (say A and B) are such that the
feature set of one object (say A) is a subset of another one (say
B) and the probabilities of appearances of both the objects are
the same then both A and B would be fully active if the larger
feature set (corresponding to B) is presented to the network. In
that case, it would not be possible to decide that a single object
has been presented to the network. This problem can be taken
into account by using Weber’s law (as presented in adaptive
resonance theory [4]). Considering (7) and (8) and Weber’s
law, the asymptotic measure for the weights of bottom-up
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links becomes

plodfi)p(filo)
v+ Y _plodlf)p(filor)
i=1

Wi =

®

The constant « is used to get the effect of Weber’s law.

The weights of the links in the network are changed in such
a way that they become equal to the measures after sufficient
number of learning trials. In other words, the learning rules
should be such that the weights of the bottom-up and top-
down links asymptotically reach the measures (5) and (9). The
conditional probability values are approximated by the ratio of
the number of appearance of the features and the objects. The
detailed derivation of the learning rules is presented in [31].
The learning rules are

dwiy o f Wit
Pl (mﬁml + <Z Ciyl

— (e + afy)wy

1o
th'
vy (11)
where ; and o are the agility factors of the ith input node and
the [th output node. The agility factor determines the capability
of learning of the links connected to that node. The higher the
agility factor, the higher will be the rate of learning and vice
versa. Initially, the agility factor of all nodes are set to unity
and they are decreased with the learning trials. The agility
factor of a hidden node is the same as that of the input node
connected to it. The agility factors are changed according to
the following rules

= ajyile; — z1i)

dOLi 2

- C; 12
dt ac (12
da“ 02
- == u. (13)

The value of y; is the desired output value at the /th output
node. The desired output is determined by the monitor network
(if supervised mode of learning is used then it is supplied
externally. In the present work, however, it is determined by
the monitor network). If the monitor network finds a pattern
already known to the network, it sets the desired output of the
corresponding node(s) to be unity and all other nodes to zero.
If it finds a new pattern then sets the desired output for the
newly created node to unity and all other nodes to zero. The
value of &; is given as

€l

=t 14
Y9’ () 1

o1
where ¢; = y; — 0, measures the difference of the actual output
at the /th output node from its desired value (as determined
by monitor network). y is the constant used in the asymptotic
measure (9) which also controls the rate of learning (as
expressed in the learning rules). The LTM equations for top-
down links are similar to those presented by Grossberg [4],
[32].

The weights of the bottom-up links are initially set to zero.
The agility factors of all input and output nodes are initially
set to unity. Note that the agility factor of a hidden node is
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the same as that of the corresponding input node to which
it is connected. Whenever a top-down link is created (to
connect a newly created hidden node with the corresponding
output node) its weight is set equal to the activation level
of the corresponding input node (to which the hidden node
is connected) i.e., the confidence value of the corresponding
feature. With these initial conditions the weights are iteratively
changed (in the learning process) so that they reach the
asymptotic measures. In the learning process, the weights are
updated whenever a pattern appears at the input (and no batch
mode learning is followed). The agility factors control the rate
of learning. Initially the rate is high so that the network can
quickly guess the exemplar code of a category. The learning
rate decreases with time, as the age of the node increases
(i.e., the network has already gained the knowledge about the
exemplar pattern).

Some Remarks: The asymptotic values of the bottom-up
links takes care of Weber’s law. (The way of implementing
Weber’s law has been explained by Carpenter and Grossberg in
the adaptive resonance theory [4]). Therefore, if two categories
are such that the feature set of one category is a proper subset
of the other, then also the network would be able to identify
these two categories separately. This phenomenon will be
explained in detail in Section IV-F.

As mentioned before, the network is able to recognize
mixed patterns. It also tries to reduce the redundancy in the
decision. For example, assume that the network has learned
three patterns say, ab,cd. and abed. In that case, if abed is
presented as an input pattern, only the node corresponding to
abed will be activated (though the other patterns ab and cd are
proper subset of abcd. nodes corresponding to them will not
be activated). The reason is as follows.

Whenever abed is presented to the network, the initial
activations of all three nodes will be high (the rest of the
output nodes will have low activations considering that no
other category has overlap with abed). But as the Weber’s
law is considered in the asymptotic measures of the weights
of the links, the initial activation value of the node for abcd
will be higher than the remaining two (i.e., Oapeq > Oqp and
Oabed > Ocq). The output nodes feed these activation values
to the hidden layer. The hidden nodes which are connected
to the same input node compete between themselves, i.e.,
competition occurs for associating a feature with certain cat-
egory and not between the categories themselves. Therefore,
the hidden nodes connected to the node for abed will receive
higher feedback than the hidden node receiving feedback from
ab or cd. The competition in the hidden layer occurs only in
the feedback activations [this is also clear from the expression
max( ) in (2)]. As a result, the hidden nodes connected to
the output node for abed will win. In the settling process
since an input node sends activation only through the winner-
take-all hidden node, output node corresponding to abed will
receive support from input. The other two nodes (ab and cd)
will not receive any support because they have only loser
hidden nodes (1). Since the output nodes are also associated
with a negative feedback, the activation values of ab and cd
will gradually diminish while that of abcd will reach a stable
condition.
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Note that the network is not designed to learn the embedded
patterns which is performed in SONNET [28]. Rather, it takes
the advantage of dissociating the competition process from the
activation values in the output layer. The competition takes
place for associating a feature with some object which is
performed in the hidden layer. This enables the network to
recognize patterns even under high amount of overlapping.
For example, let us consider that the network has learned
two categories abc and bed. Then if the network is presented
with a pattern abed then also it will be able to recognize
them separately. Of course, the common subset of features
be will be associated to one of the categories (say, bed) (due
to competition in the hidden layer), but there would be no
inhibition from any of the hidden nodes. Due to the differential
support from the rest of the features (i.e., a) the activation level
of the category abc will stabilize to a high activation value.

Let us now consider another example where the network
has learned only three categories say, ab,abc, and cd. If a
new pattern abed is presented to the network then it will
recognize it as a combination of abe and cd. This is due to
the fact that initial activation of abc would be higher than that
of ab and consequently ab will have only loser hidden nodes
in the settling process. (Here the present system differs from
the system developed by Marshall [22], [23] where ab and cd
would be recognized.) The expression for the activation level
in the output layer is presented in Section IV-B.

III. PROPERTIES OF THE NETWORK

In this section some new properties of the aforementioned
network have been established, based on which the pro-
posed theory of categorization (or self-organization) has been
developed. Before proceeding to the logical formulation of
these properties, a couple of definitions are provided. Before
proceeding to the analysis of the behavior of the network a
couple of definitions are to be considered.

Definition 1: The network is said to have learned an object
class p if and only if the change of weights of the bottom-up
and top-down links for the corresponding input feature set is
less than some threshold e, whatever small it may be.

Definition 2: The network is said to have recognized an
object class p if and only if the output of the corresponding
node in the output layer is greater than some threshold 7'

The way of selection of T will be discussed in Sections IV
and V.

Before proceeding to the design of actual categorization
(or self-organization) methodology, we must ensure that the
network is able to recognize an object if it is claimed that the
network has learned that object. Because only in that case the
network would be able to proceed into further categorization
correctly. Since the present work is aimed at categorization
of more than one objects simultaneously (or mixed patterns),
we must, at first, ensure that the network is able to correctly
recognize the individual categories constituting the mixed pat-
terns. The following theorems reveal some properties related
to the recognition ability of the network in presence of mixed
patterns. We have tried to prove the ability of recognition by
inductive reasoning.
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Several notations are consistently followed in these theo-
rems. An object class is denoted by C. The feature sets are
denoted by F' while the individual features have been denoted
by f. The initial outputs (before stabilization of the network)
are denoted by O. Note that if a network learns some object
class, then the initial output of the node corresponding to that
class will be maximum among all the output nodes whenever
a pattern from that class is presented to the network. This is
due to the fact that the dot product of the pattern vector and
the corresponding weight vector will be maximum (this was
the basis for designing the learning rules).

Theorem 1: If the network is presented with one of its
learned templates at the input layer, then it will recognize
only the category corresponding to that template.

Proof: Let us assume that the network has learned object
class C,. The value of € has been chosen sufficiently small.
Let a sample from the object class C, be now presented to
the network. The initial output of the node corresponding to
C, is greater than the output of any other node. Mathemat-
ically, O, > 0;,Vi # p.O, denotes the initial output of the
corresponding output node before stabilization.

Let an arbitrary input feature f; belong to the object p.
In the set of hidden nodes which are connected to the node
corresponding to feature f., the node connected to pth output
will have maximum feedback (provided the feature is not
noisy, i.e., the weight of the top-down link is very close to
unity). Therefore the particular hidden node wins over the
other hidden nodes in the competition. In the recognition
process the winner-take-all hidden node will send differential
activation (e) to object p only. All other objects sharing the
feature f; will not get any active support from it. Similar
phenomena will occur for all other features belonging to object
p. By this process the outputs of objects other than p will
decrease more and more due to self-negation and absence
of any active support from the feature level. Moreover, the
features which do not belong to the object p will negate the
activations of spurious objects. Only the object p has both self-
negation and some positive activation from feature level. The
other objects have only self-negation. As a result, the response
of object p will stabilize to some positive value while the
responses of other objects will come down to zero. Therefore,
if the threshold T is selected suitably then the object p can be
claimed to have been recognized. O

Theorem 2: 1f the network is presented with two of its
learned templates then it will recognize at least two categories.

Proof: Suppose two objects a and b have been presented
to the network. Let F, and F} be the respective feature sets of
the objects classes a and b. There can be three different cases:

» There does not exist any other object whose feature set
is a subset of F, U F}.

¢ There exists no other object ¢ for which O. > O, or O.

» There exists at least one object ¢ such that F,. C F, U F,
and O, > O, or O,.

In the first case, it is evident that the outputs corresponding
to a and b will be stable to some positive value. But since
there exists no other object dependent only on the subset
of the features, the outputs of other objects will get some
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negation from the feature level itself. Therefore the outputs of
the spurious objects will reduce to zero.

In the second case, even if there exists some object which
is dependent entirely on a subset of the features present at the
input, its initial output is less than those of the true objects
present.! Therefore the spurious objects will share no active
feature and consequently, the support from the feature level
will be zero. Due to self negation, the outputs of the spurious
objects will decrease and eventually reduce to zero.

In the third case, the initial output of the spurious object ¢
is greater than those of the true objects. Therefore the spurious
object will share some active features. Again, the true objects
will have some active features. Therefore the true objects and
the spurious object(s) will coexist in the final output. 0

Now we will consider a property regarding the recognition
of mixed objects.

Theorem 3: Suppose, a network can recognize a set of n
objects simultaneously (i.e., input pattern is the overlapped
feature set corresponding to this 7 objects). If another object
(i.e., the (n + 1)th object), now presented to the network, is
such that

e It has some features not belonging to either of the n

objects, and

* There exists no other object having a feature set which is

a subset of the union of all the features of (n + 1) objects

and whose initial output is greater than any of those of

the (n + 1) objects,
then the network will be able to recognize only these (n + 1)
objects simultaneously.

Proof: The network is capable of recognizing any set of
n objects perfectly. Therefore there does not exist any other
object p such that F}, is a subset of F' = U, F} and O, > O
or Oy or Oz or ---O,,. Because in that case the object p will
share some of the active features and p may also coexist. The
system will not then recognize exactly n objects.

Again there cannot exist any other object p such that F},
is a subset of the union of F),,; and the feature sets of any
other n — 1 or less number of objects, and its initial output is
greater than that of any of these objects. Because in that case
if only those objects were presented to the network (number
of objects in that case is less than or equal to n) the network
could not be able to eliminate the object p, which violates the
basic condition.

There can be another case. The object p is such that F}, ¢ F
but £, C FUF,41,and O, > 01 or O or O3 or - -+ Opyy.
In that case the object p will share some of the active features
and in the stable state the object p will coexist. On the other
hand, if the initial response of the object p is less than those
of the other objects present, then no spurious objects will be
detected. 0

Theorem 4: The network is capable of recognizing any
set of n objects exactly if the objects and the corresponding
feature sets are such that there exist no other object p for which

e F, C UF}, where k; can be anything in the entire object

set and

* O, > Oy, for some value of k;

'The word “true” means only those objects which are presented to the
network. In the present case “true” objects are a and b.
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Fig. 2. (a) Structure of the connectionist model for self-organization. Bold lines represent the control paths from the monitor network to the categorization
network. Another node is added in each box of hidden nodes which measures the ambiguity at the corresponding feature (considering the set of hidden
nodes). Two adders are used in conjunction with hidden and input layers to compute D and C respectively. The node denoted as “/” computes the certainty
factor 1 — D/C. (b) Structure and connections of the hidden nodes in the network. The symbols have similar meanings as in Fig. 1(b). ¢;¢;; measures
the ambiguity for an individual hidden node which is either zero (if ¢,; is zero, i.e., loser hidden node in the competition) or equal to ¢; (¢; — b;) (only
for the winner-take-all hidden node). Note that the output of adder will also be ¢; (¢; — b, ).

Proof: The statement is true for two objects (Theorem and the corresponding architecture have been developed
2). Since this is true for two objects it is true for three objects here.
(Theorem 3) and so on. It is, therefore, true for any set of n

objects. . A. Overall Methodology and Categorization Architecture

IV.  CATEGORIZATION The underlying concept of the proposed categorization

Depending on the properties of the network described in  technique is as follows: Whenever a pattern (either single
Section III, the theory of categorization (self-organization) category or mixed categories) appears, it produces output
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(@) (b)

(c) ()]

Fig. 3. (a)—(d) represent the objects 1, 2, 3, and 4, respectively, used as
visual input pattern.

responses for the categories which are already learned. These
outputs actually yield a measure indicating how well the
feature set is being interpreted by the network. If the activation
to a particular input node does not match with the support
received from the output categories, then there will be an
ambiguity corresponding to that feature. If a single pattern
or a set of mixed patterns from a new class appears, the
features will not be fully interpreted by the learned categories.
If the total ambiguity for all the features is greater than
some threshold, then the pattern presented to the network
is considered to belong to a new category. In designing
the architecture for such self-organization (categorization), a
portion of the network must therefore be able to monitor the
performance of categorization and to determine the ambiguity
value.

In the architecture for categorization, an extra network is
added to monitor the performance of the network for some
given pattern. The network architecture is shown in Fig. 2.
With each hidden node there is another node which computes
the ambiguity at that particular node. These ambiguities and
the input activations are propagated to the monitor where the
certainty factor is calculated. The certainty factor is considered
to have a linear relation with the total ambiguity. If the
certainty factor is greater than some threshold, then the pattern
is considered to be already present, and the weights of the links
are iterated. If the certainty factor is less than the threshold,
then a new output node is allocated for the input pattern.
This threshold is called the vigilance threshold (p) which is
supplied externally. This vigilance threshold is analogous to
the vigilance factor used in adaptive resonance theory [4].

In the monitor network there is another part which checks
the maximum activation present at the output layer. The
maximum activation is checked if it is greater than a threshold
T. If the condition holds true then only the network is allowed
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(e) (®

Fig. 4. Mixed patterns with 20% noise level. (a)—(f) represent the mixture of
objects 1 and 2, 1 and 3, | and 4, 2 and 3, 2 and 4, and 3 and 4, respectively.

to learn the pattern present at the input. Otherwise, even if
the certainty factor is greater than the vigilance threshold
the learning is not allowed. Whenever a new output node is
allocated in the output layer the upper part of the monitor
network is activated and the network learns the new pattern.

The method of self-organization works as follows.

Step 1) Present a new pattern. The pattern may be represen-
tative of a single category or may be caused by the presence
of more than one category.

Step 2) Measure the certainty factor (CF). Measure the
maximum output (z) in the output layer. Note that there does
not exist any output node initially. In that case, CF and z are
considered as zero. The monitor network measures these two
factors.

Step 3) If CF > p and x < T, then goto Step 7).

If CF > p and z > T, then make all the output nodes whose
activations are greater than 7' fully active, and goto Step 6).

Step 4) Allocate a new output node in the output layer. If
the total number of output nodes is greater than the capacity
of the network, then exit.

Step 5) Allocate hidden nodes for having input—output
associations corresponding to the features which are present
at the input. Connect each newly created hidden node to the
corresponding input node (with a link of unit weight) and to
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the newly created output node (with bottom-up and top-down
links). Initialize the weights of the newly created links i.e.,
weights of the bottom-up links are set either to zero or to a
small value. The weights of the top-down links are set equal
to the activation level of the corresponding input node (i.e.,
z1; = ¢; where [ is newly created output node and 7 is the
input node). Make the newly created output node fully active.
(The allocation of nodes enables the network to incrementally
adjust its size i.e., number of nodes and links depending on
the input train of patterns. The dynamic allocation of nodes
has some similarity with the concept introduced by Platt [33].)

Goto Step 7).

Step 6) If a single node is activated in the output layer, check
if there exists any input node for which there is no highly
activated hidden node (which indicates that the corresponding
feature did not appear in the previous examples). If any such
input node exists then create a hidden node to represent the
association between the input node and the activated output
node. Connect the hidden node with the input node (with a
link of unit weight), to other hidden nodes connected to the
same input node (with inhibitory links), and to the activated
output node (with bottom-up and top-down links). Initialize
the weight of the bottom-up link to zero or a very small
value. Initialize the weight of the top-down link equal to the
activation value of the input node.

Step 7) Learn the weights of the links, i.e., iterate the weights
till they converge (become less than some threshold e(say)).

Step 8) Present another new pattern. Goto Step 2).

The categorization process always takes an input pattern
and self-organize accordingly. Therefore, it is able to do its
task with as many number of input patterns so long as there
is no restriction about the size of the network. It always
self-organizes in on-line mode and does not consider any
batch-mode operation.

B. Output Response

The response of an output node is now considered. Let each
input feature be represented as a tuple (¢;. w;, z;). Here ¢; is
the confidence value of the feature. w; and z; represent the
weights of the bottom-up and top-down links from the th
feature to the particular output node and from that output node
to the 7th feature, respectively (here we suppress the subscript
for the output node because an arbitrary node response has
been considered). Suppose the output of the node stabilizes to
a value z. Let the negative self-feedback of each output node
be ws. Without loss of generality, we can consider all the
features to be active, i.e., sending differential activation (¢) to
the output node. If some features are shared by other objects
and they really do not send any activation to the output nodes,
then that triplet can be omitted from the set. Under stable
condition, the positive and negative signals at the output node
will cancel each other. Mathematically

(¢i — zix)w;.

(15)
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By simple algebraic manipulation it can be shown that
Zwici
7= —=0 (16)

n ‘
ws + E wW;2;
=0

When the network has learned a particular category, the value
of ¥, w;z; is nearly unity (the learning rules are designed
in such a way). If w, is small enough and all c; values are
nearly unity, then the output = will reach unity. Depending on
the value of self inhibition w, the value of T" can be selected.
Example 1: Consider an object for which all w;s (at some
stage of learning) are equal to w. Let the object have k features
each of equal importance to the objec, and the weights of all
top-down links be unity. Then the output is given as

kw
w, + kw’

If only k; features are active and the rest are shared by others
so that they cannot send any active signal, the output becomes

kiw
we + kw’

To recognize the object, even for k; features being present at
the input, we must have

kyw
we + k1w

1
<k —=—1]).
Wws < 111)<T )

Consider kw = K. then the above equation becomes

w_e<%<% — 1)K.

If the network has to recognize the object even for 10% of the
active features then (considering K = 1.0) w, becomes

1
<01 =-1
we < (T )

1
< —.
14+ 10w,

or

or
T

If w, = 0.02 then T < 0.83, i.e., a threshold of 0.8 will work
well enough to recognize objects under heavy occlusion.
Note that, in the network design the value of w, should be
selected in such a way that the network does not take long
time to stabilize and the output threshold 7' is not too low.
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C. Principles of Ambiguity Measure

It is clear from the discussion made so far that the network
will produce some stable output for a set of active features.
For a particular output whether the object will be considered
to have been recognized or not will depend on the design
of the system. But if an object is present in the scene and
the network has learned the object, then the features must
get proper support from the output layer. This is the very
basic concept over which the categorization (self-organization)
strategy has been developed.

For example, consider the previous case (Example 1) where
an object has k features each connected to the corresponding
output node by a bottom-up link of weight w and a top-down
link of unit weight. Then the output will be kw/(ws + kw).
Therefore each feature will get the same support. If w is
small enough the input confidence value will be almost equal
to that of the top-down support (since output response and,
therefore, the top-down support are very near to unity, and
the input confidence value is considered to be unity). If
some features are shared by some other objects the mismatch
between the input confidence and the top-down support will
increase. Ideally, in a noiseless scene there should be no
mismatch between the input confidence and the top-down
support corresponding to a feature. Due to the presence of
negative self-feedback, top-down feedback will be slightly
reduced even for a perfect feature. Moreover, if more than one
object is present in the scene and they share common subsets
of features then, as seen before, the outputs will degrade
gracefully. In that case also, the mismatch between the input
confidence and the top-down feedback at the feature level
slightly increases.

There can also be other cases. Suppose a feature has suffered
from noise or some kind of degradation, and its confidence
value is less than unity. In that case the top-down feedback
may be greater than the input confidence. It may be noted
here that the importance of the mismatch is not the same as
the importance of mismatch for a perfect feature. The entire
ambiguity in the task of recognition depends on how far the
features are being interpreted (or explained or emphasized)
by the network. If the recognition is perfect, then all the
features will be well interpreted. The term “interpretation”
refers to the relationship between the input confidence and
the top-down support. If the top-down support is less than the
input confidence, then the feature is not properly interpreted
by the network. If the top-down support is more than the
input confidence, then the feature is over-emphasized. Per-
fect interpretation means a perfect matching. If the average
interpretation over the entire feature set can be quantified
(i.e., a measure of average ambiguity can be provided) then
it will certainly yield a quantitative index for the recognition
criterion.

Suppose the network is presented with a set of n features
with input confidence values given by [c1,co,---,cp]. Let,
after the network has stabilized, the top-down feedback cor-
responding to these features be [b, ba, - - -, b,]. Then the total
ambiguity D corresponding to the entire feature set can be
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defined as

n

D= Zci(ci - b,)

=1

an

Note that the mismatch between the input confidence ¢; and
the top-down feedback b; in each feature is modulated by
the confidence value of the feature itself, thereby setting the
relative importance of the mismatch. If (¢; — b;) increases, the
value of D also increases, and vice-versa. Note that D > 0
and possess a maximum value of Y%, ¢? = C (say).

The normalized ambiguity measure is given by

D
n=—=.

c (18)

D. Principles of Categorization

In the previous section it has been discussed that the
recognition criteria can be evaluated on the basis of the average
ambiguity measure y of a feature (normalized ambiguity).
It is clear that if the average ambiguity is high then the
recognition is very poor and vice-versa. Therefore the certainty
of a decision based on the interpretation of a set of features
may be quantified as

CF =1-p.

A high certainty factor (CF) means the system is more
confident about its decision, while a small value of CF
indicates that the system is less confident or confused in
making a decision. (Note that there are similar concepts in
pattern recognition problem e.g., see [34] where certainty
factor indicates the degree of firmness i.e., meaningfulness or
validity of a decision regarding belonging of a feature set to
a class. On the other hand, the certainty factor in the present
case refers to decision regarding interpretation of a feature
set for single/mixed category. In the case of single category,
however, both these concepts become analogous.)

Consider the case in the previous example where the net-
work is presented with n features with confidence values
[c1,¢2,- . cn]. Let us assume that all these features belong
to a single object. In that case all the features will be active
for that particular object. The corresponding output after
stabilization will be

n

E w;C;

=1
—=— (19)
we + Zw,zi
i=1

Therefore the total ambiguity is given by

T =

D= Z ci(ci — zix). 20)
i=1
Substituting the value of =
(ws + A)Y ef
D= =1 @n

n
ws + E Wi Z;
i=1
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where

n n
ZZ(w]'zjc? + wizic§ — (wiz; + wjz)eic;)

1=1j7=1
n
2 E c?
i=1

The average ambiguity is given by

ws + A

A=

= . @2)
ws + Zwizi
i=1
Let
n
W = W; 2;
=1
The certainty factor is, therefore
ws + A
CF =1-
we + W
or
W—-A
ws + W
or
w A
CF =—FF({1-5 ). 2
ws + W ( W> @3)

Note that if a perfect pattern from a learned category is
presented to the network, then there will be no ambiguity
which means that the value of A will be zero. In that case
also the certainty factor will be less than unity. This is due to
the fact that some negative feedback is present at the output
layer for which the output, even for a perfect pattern, will be
less than unity under stable condition. Mathematically

CF = pocf (24)
where
w

=— 25
PO= W (25

is the certainty factor for a perfect pattern, and

A

f=1-— 26
cf W (26)

is the measure of degradation in certainty factor, whenever
some noisy or unknown pattern is presented to the network.
Case 1: Suppose an object has k; features. Under learned
condition all the bottom-up links have weights w and the
top-down links have weights unity. Let a new pattern with
k1 + ko features be presented to the network. The new feature
set consists of all the k; features of the object. It is considered
that the weights of all the bottom-up links from these extra
features to the output layer are zero, i.e., these extra features
are not learned by the network. In that case the features will
receive no top-down feedback. Here, the value of A is given as

_ klkgw
- ki + kz.
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The value of W is

W = kw.
Therefore, from (26)
klkzw
= 1 _—_————
of (k1 + ko)kiw
or
kl
Cf - k] + kQ.

The certainty factor (from (24)) can be written as

CF, = poki @7
where k is the number of features of a perfect pattern in the
category. In this case this is the same as k;. &, is the number
of features of the pattern when some extra features are added
to it.

Case 2: Suppose the network has learned an object with
k1 + ks features. That is, the object is fully activated when all
the k; + k5 features are presented at the input. Now if only &k
features are presented to the input, then the question is: what
will be the certainty of decision.

In this case the value of A is given by

K1k
A= lkf“’
ie.,
A = kaw.
Now

W = (k1 + ks)w.

From (26), the value of cf is given as

kg’w
of=1- (k1 + k3)w

or

— kl
- k1+k‘3.

cf

Therefore, from (26), the certainty factor is given as

ks
CF2 = po—-

. (28)

where k& has the same meaning as in Case 1. k is the total
number of features when some features are deleted from the
feature set of the perfect pattern.
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Case 3: Consider a case where both the situations cited
above occur simultaneously. That is, an object consists of
k1 + k3 features out of which only k; features have been
presented. Moreover, a set of ko features is presented to the
network which is not at all learned by the network. In that
case what will be the certainty of the decision.

The value of A is given as

klkz + ]i?g/i?g + kgkl)w

(
A=
ki + ko

In this case
W = (k1 + k3)w.
From (26), the value of cf is given as

(klkg + koks + k‘gkl)ur
(ky + k) (k1 + k3)w

cf =1-
or
k2
(k1 + ko) (k1 + k3)’

In this case ky = k. k = k1 + k3. and k1 + ko + k3 = k.
Therefore, the certainty factor is given as [from (24)]

cf =

k2
k(ks + ke — k)

Some logical reasoning can be derived from the examples
cited before. In the first case, some extra features have been
presented. Therefore, the entire feature set either collectively
corresponds to some other object or it can correspond to more
than one object. But the network is only certain about the
learned feature set. Therefore, the certainty factor is really the
ratio of the learned feature set and the new input feature set
[which is substantiated by (27)]. The addition of extra features
may also be caused by the presence of some kind of additive
noise. For example, in a visual recognition system, some extra
(undesirable) features may be detected in the preprocessing
stage due to noisy environment. In that case also the network
will behave in the same way as cited in Case 1.2

In the second case, some features have been taken out from
the feature set of a perfect pattern. Therefore, the features
which were present in the pattern but not in the new input
will be over-emphasized (this is due to the fact that no external
input is present for these features but the network will try to
support them). Therefore the discarded features will negate the
output activation, but the activation will never reduce to zero
due to the presence of other features. As a result, there will
always be a confusion or ambiguity in the discarded features.
Consequently, the certainty of the decision will decrease.
Note that this phenomenon must not be confused with the
case of sharing of features. If a feature is shared then the
feature may not send activation to some of the output nodes,
but the presence of the feature would possibly be perfectly
interpreted. On the other hand, in Case 2, some features are
lost altogether. The decrease in certainty about the decision

CF3 = py 29)

2Note that. the structural information necessary for visual recognition is
not embedded here. The example is presented only to establish the effect of
noise.
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intuitively happens to be the ratio of the size of the new
input feature set to the size of the stored template which is
substantiated by (28). It is to be noted that the loss of features
may be due to the presence of a pattern from a new category.
It can also happen due to the presence of subtractive noise.
For example, in the case of visual pattern recognition, some
features may not be detected in the preprocessing task due to
presence of noise.

In the third case, some features have been discarded, as well
as some extra features have been added. This simultaneous loss
of features and presence of extra features may be caused by
the presence of a pattern from a new category or due to the
presence of both additive and subtractive noise.? Equation (29)
illustrates the effect of such kind of mixed noise.

From the above discussion it is clear that the categorization
process (whether a new category code has to be formed or
not for a given pattern) should be guided by the fact that how
well the features are being interpreted i.e., on the certainty
factor of the decision regarding the feature set. If a set of
features is presented at the input of a network and it is found
that the certainty factor is low enough, then it can be inferred
that the network is not able to interpret (explain) the set of
features with the current templates stored in its links. The set
of features then can be considered to represent a new object
class altogether. In this network whenever a feature set is
presented, the certainty factor, after stabilization, is compared
with some threshold (p) called the vigilance threshold. The
way of selecting the threshold will be discussed in the next
paragraph. Note that the vigilance threshold has similar effect
as that of the vigilance factor in the ART [4].

E. Vigilance Threshold and Noise Characteristics

The principle of categorization has been discussed logically.
To select the exact vigilance threshold certain characteristics
of categorization need to be investigated. The noise tolerance
of the categorization will be determined by the vigilance
threshold. If the vigilance threshold p is very high then the
system will be very prone to noise, and due to presence of
noise a large number of categories will be formed for the
same class of patterns. On the other hand, if p is very low
then more than one class may fall into the same category, and
therefore it will affect the weights of the links also, which
eventually may give rise to oscillation among categories for
the same class of patterns.

Suppose a pattern is contaminated with the same level of
different types of noise (additive, subtractive, or mixed). Same
level of noise means that the number of extra features added
to a pattern in case of additive noise, the number of features
discarded in case of subtractive noise, and the total number
of features which are discarded and added in case of mixed
noise are same. In that case

CF, > CF3 > CFs. (30)

3Now onwards the presence of both additive and subtractive noise will be
referred as the presence of mixed noise.
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Proof: Suppose the noise level is I(<1) and the total
number of features is k£. Then the total number of features
added or discarded (or both) will be kl. Therefore the CF
values in the first two cases can be written as [from (27) and

(28)]

CF, = PoL

1+1 @1

and
CF = po(1 - ). (32)

In the third case, let the number of features discarded be pki.
Then the number of extra features added is (1 — pl)k, since
the sum of the numbers of features discarded and added is k.
Therefore the noise level can be written as [from (29)]

(1 -pl)?
T+ (1—2p)l

To prove CF3 > CF,, we have to prove

(1= D(1+ 11 —2p)) < (1= pl)>.

CF; = p 33)

By algebraic manipulation this reduces to
1-p22>0

which is true for any real value of p.
Similarly, to prove CF3; < CF; we have to prove

A+ —-ph? <14+ (1-2p)l.
By algebraic manipulation this reduces to
p? —2p+ %<0
or
p(l+1)<2.

Since /<1, and p< 1. the expression holds true. Hence
proved. |

Suppose, a single pattern with & perfect features each of
equal importance has been presented to the network. Then
according to (25)

_ kw

po wes + kw
>1- L
k

This gives an idea about the maximum value of p (or py) that
can be allowed for categorizing a perfect pattern. For example,
if we consider kw = 1 and w, = 0.05 then the value of pg
is less than 0.95. :

In Case 1, the certainty factor of a decision reduces due
to the presence of some extra features. These extra features
represent some kind of additive noise in a pattern. The value
of certainty factor in the case of additive noise is, in fact

CF = pocf.

Suppose the system tolerates 20% additive noise. In that case,
value of ¢f will be [from (27)] 1/1.2. Therefore, p should be
selected less than 0.95/1.2 or 0.792.
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In Case 2, the certainty factor reduces due to the absence
of some features which can be viewed as a sort of subtractive
noise. Let the system be able to tolerate 20% subtractive noise.
From (28) it is clear that ¢ f is equal to 0.8. Therefore, the value
of p should be less than 0.95 x 0.8 or 0.76.

In Case 3, the certainty factor reduces due to presence
of both additive and subtractive noise. If the pattern suffers
10% additive and 10% subtractive noise then the value of cf
becomes 0.9 x 0.9/(1.1 + 0.9 — 1) or 0.81. Therefore, p has
to be selected less than 0.95 x 0.81 or 0.769 which is in
between the other two values.

If the system has to tolerate 20% noise in any form then p
has to be selected nearly 0.76.

Again, the value of p determines the capability of the
network in distinguishing two different patterns. For low value
of p, the network may decide two different patterns be from
the same category. Therefore the noise tolerance and the
distinction capability set the upper and lower bounds for the
selection of p. If two patterns are sufficiently overlapped then
high noise tolerance cannot be achieved which is a common
problem in pattern recognition aiso.

If multiple or mixed (occluded) patterns appear in the scene
during categorization then, as seen before, the output will
reduce gracefully for some objects. But the decrease in output
is not as severe as the decrease in output due to the presence
of noise. Therefore if several objects appear together they are
checked in the same way; and if the certainty value is less
than p then the entire feature set is considered to represent a
pattern from a new object class.

F. Issues of Stability

X-tron is able to form stable category codes even under
the presence of mixed categories. Unlike SONNET [28], it is
not designed to form stable codes for embedded patterns. It is
able, however, to operate under high amount of overlapping
and also under noisy environment.

The learning rules (Section II) reveal the fact that the initial
rate of learning for a new category is very high (because
€; is nearly unity and ¢’(u;) is very low). This enables the
network to code the incoming pattern at a faster rate. But with
several presentations the agility factor of the node decreases
and learning rate becomes slow for that particular node. In this
model, however, there is no such separate scheme for fast and
slow learning; the same learning rule behaves differently for
different nodes according to the age of that node.

The categorization technique is based on the assumption that
the templates presented to the network are perfectly learned.
Therefore whenever a new object class is detected by the
network, it is iterated for a number of learning trials until the
rate of change of weights becomes less than a small quantity
¢ (say). When the change falls below ¢, the network is ready
to accept a new pattern. Learning a particular category for
several trials ensures stability in the process of categorization.

This is also necessary because no order search, as done in
ART [4], is performed here. The certainty factor is determined
completely on the basis of output response and therefore the
network must ensure that the output responses produced are
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nearly perfect for learned set of categories. If the weights are
not iterated for several trials then patterns from a single class
may fall to different categories at different times making the
system virtually unstable or indecisive. The system is able to
handle both the additive and the subtractive noise.

The stability of categorization process can be explained as
follows. If an existing pattern is presented to the network,
the corresponding output node becomes highly active. An
output node gets activated only when the weights are learned
properly. If the weights are learned properly then the output
category would be able to interpret the features also. If the
features are properly interpreted then the ambiguity in the
hidden layer would be low and no new category will be
formed.

In the case of mixed categories also, if the pattern corre-
sponds to more than one category and the activation values of
the corresponding output nodes are high (i.e., exemplar pat-
terns have been learned) then they will be able to interpret the
features. The ambiguity is measured based on the maximum
feedback that a set of hidden nodes (for a single input node)
received. Therefore the feature will be interpreted by any one
of the object categories to which it belongs. As a result, the
ambiguity will be low and no new category will be formed.

Let us now consider that the network is presented with
a pattern which do not corresponds to any single or any
combination of the learned exemplar patterns. In that case no
single output node will be highly activated because some of its
features would be absent and they would inhibit its activation
value. Therefore, the maximum feedback from the output layer
to a set of hidden nodes (connected to a single input node)
would not be very high. Moreover, there may be some features
(in the new pattern) which do not belong to any object. For
these features there will be no feedback from output layer
(since the connections had not been formed). As a result, there
will be a high amount of ambiguity in the interpretation of the
features, i.e., certainty factor would be low. In that case the
network is able to decide that a new pattern has appeared and
consequently it allocates a new output node. This enables the
network to have its plasticity property.

The maximum output value is compared with a threshold
T as an auxiliary condition. This prevents the network from
getting confused by ghost patterns. For example, consider that
the network is presented with a learned exemplar pattern with
very low feature confidence values (say, a pattern 1 1 0
0 1 is presented in the form 0.3 0.3 0 O 0.3). In that
case the output of the corresponding node will be low, but the
outputs of other nodes will be even lower. When the output is
fed back to the hidden layer, the mismatch between the input
confidence value and the feedback will also be low and as a
result, the ambiguity will be low. In that case the network may
confuse the pattern as a case of the exemplar and flag that it has
recognized it, but this is not desirable. This can be prevented
(as mentioned in Section IV) whenever the maximum output
is compared with the threshold 7T

The most appealing part of the system is that it is able to
stably categorize patterns even when they appear in mixed
form (i.e., mixed set of patterns). This is because of the fact
that no single object is flagged as winner in the output layer.
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TABLE 1
PATTERNS ARE PRESENTED AGAINST FEATURES. FULL
CONFIDENCE 1S REPRESENTED BY 1 AND NO CONFIDENCE AS 0

[ [ [ s s [ [ s Lo [ [ [ fia [ s [ e
paty |[O]O]O|1J0]|0|O]|]2|O] O 0 1 1 1
pat | 1 | 1| O[O0 {1 [1]0]1 0 0 0 1 0
pat3 | 1 [0 0|0 |0 |1 }0|0]1 1 1 0 0 0
paty [ O [ 11|01 |O0Of2[0O]0]1 0 0 1 1
pats | L1 1 LO [ 1|1 10]0]O|0O}|O 0 0 0 1
pats [ 11|01 |1]0ojo|1|[1[0|O0O{0O]O]O
TABLE 11

WEIGHTS ARE PRESENTED AGAINST FEATURES AND CLASSES. A ZERO WEIGHT
INDICATES THAT THE CORRESPONDING LINK IS ABSENT IN THE NETWORK

[ Cs Cy c, [ ||
0 0.0 Q003 | 0087 | 00 0.162 | 0121
2 || 00 [0003]00 0.170 | 0.127

P 0.0 0.0
I 0117 [ 00 0.0 0.0 020 [ 0.149

Is 0.0 0.007 | 0.195 | 0.0 0.0 0.0
I 0.0 0.007 | 0.0 0.184 | 0.0 00
Is 0.184 | 00 0.0 0.0 0.0 0.235
% || 00 0004 [ 0124 [ 00 [00 [ 0172

ho [ 00 100
fu || oo 0.0 0.344 | 0.0 0.0 0.0
fiz 0366 [ 00 [0o0 [uo [ou |00
fiz || 0146
fi 0126 |00 [ 00

Rather, some of the hidden nodes representing the input—output
associations are flagged as winners.

V. RESULTS AND ANALYSIS

The connectionist model was simulated on SUN 3/60 work-
stations using sequential codes. Both binary pattern and visual
pattern were considered as input. The purpose of the present
investigation is to establish the power of the network in cate-
gorizing these inputs. Note that, the application of the network
in practical domain like two-dimensional object recognition or
medical diagnosis etc., needs domain specific knowledge and
that is not incorporated here.

A. Binary Strings

The set of binary patterns which was presented to the net-
work is shown in Table I. The patterns are chosen arbitrarily.
At first, the patterns are presented to the network without any
noise. The self-feedback was chosen to be 0.05. The value
of v was selected as 0.15. The constant -y was used to realize
Weber’s law (as done in ART [4]) in the weight updating rules
of bottom-up links. The effect of + is discussed in detail in
[31]. The threshold 7. above which an output category would
be considered to be present, was selected as 0.8.

The categorization (self-organization) property of the net-
work was tested for different vigilance thresholds like 0.8,
0.85, and 0.9. Since the patterns were perfect in all cases they
were categorized correctly. As an illustration, the weights of
the links attained after 600 presentations are shown in Table
II. The weights of the bottom-up links represent the relative
importance of the features with respect to output categories.
Note that. the weights of the top-down links, created in the
network, were unity since the patterns were perfect. Therefore
the weights of the top-down links are not presented separately.
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TABLE III
CERTAINTY FACTORS FOR DIFFERENT NOISE LEVELS ON THE PATTERNS
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TABLE IV
RESULTS OF CATEGORIZATION WHEN PATTERNS ARE PRESENTED
INDIVIDUALLY WITH VIGILANCE FACTOR = 0.9 AND NOISE LEVEL = 0.3

case || yattern certainty factor
i o Jo Jo J1 Jo To Jo [1 Jo Jo Jo [1 |1 J1 |osw < -
2 o [o fo Joos]o Jo o los[0 [0 [0 |o9|o0s]|o9] oo Actual cluss category
3 orforfor]1r JorJorJor{1 Jorfor]o1 |1 |1 |1 |osewe 1 1{0{0{0 {0 [0 [42/0|0 fO|O[0 [0]|O [OfO]|1]O
4 o1[o01fot[09]01[01 0109 01]01]01]05]05]09] 099 5
S I N N N N O S R i S 2 0[1|0{0 {0 |0 [0 [G|O [1[1]|26]0|0 (8{0]|0O]|1
6 JJo Jo jo t1 Jo Jo Jo [1 [o Jo fo [t [1 o |os20 3 0f/0]1]0 |0 |0 j0 |Oj4L]0fO]O JOJO JOjOjL]O
7 It Jo Jo i1 Jo Jo Jo J1 o Jo {o [1 [1 |0 [omes 4 0]1]0139{0 (0 [0 [0]0O [O]O]JO0 (1|0 jO|1{0]2
8 1 Jo To fo Jo [1 Jo Jo [r J1 J1 Jo Jo Jo |oseer

P e
9 090 Jo Jo [o [os[o {o [o09]09]os[0 |o |o |osswer 5 010)2/0 |32]6 U Juju |010/0 |0/10/0]0]0]0
10 [t Jor{orjoi|or|s Jorlea |1 |1 |1 Jo1]o1]01] 083" 6 0j0]0]0 JO j44]0 [0Ju [0[O]O OO [0]0[0)0
1 [[o9for{o1]o1[01][09 0101 ][09]09]08]|o01]01]01]0802
12 2 jo Jo fo Jo 1 [o fo [r [t |1 [0 o [T |osse
13 |1 Jo o Jo o [1 Jo fo o [1 |1 [0 o |o |osue
4 [l1 jo o Jo Jo 1 Jo Je Jo |1 [1 Jo o |1 [onse

1) Effect of Noise on CF: In the next phase of experiment
the effect of noise on a particular pattern was studied. For
this purpose input patterns were contaminated with various
levels of additive and subtractive noise. The effect of noise on
the certainty factor for the concerned pattern is presented in
Table III. From this table it is clear that when a perfect pattern
(Case 1 in Table III) from the first category of Table I was
presented then CF was 0.9494 which is the value of pg (25).
The confidence values of the features were replaced by 0.9,
and it was found that CF retains the same value. This is due
to the fact that in finding CF, the total ambiguity is always
normalized by the total input confidence (26). Therefore,
apparently it seems that even if the confidence values of the
features, which were present in the perfect pattern, go on
decreasing, the value of CF will retain its original value (pg).
This is the basic reason for which the value of output threshold
was always considered in the process of self-organization.
Although CF retains its original value, the maximum output
goes on decreasing with the decrease in the confidence values
of the features. Since the output decreases proportionately with
the confidence values of the features, the average ambiguity
remains constant and thereby CF retains its value.

The pattern was again contaminated with some additive
noise where all the features which were actually absent have
now confidence value equal to 0.1 (Case 3). In that case
it (Table III) shows that CF slightly decreases. When both
the noise are present simultaneously then also CF decreases
slightly. In fact, in all three cases the maximum output in
the output layer will determine if the noisy pattern is from
the present category or from a new one, during the process
self-organization.

We have then checked the performance of the network by
adding one extra feature to the pattern, namely the first feature.
Results (Case 5) show that CF decreases by a great extent,
from 0.94 to 0.84. This is due to the fact that there was no
top-down support to that feature from the category concerned.
Therefore the ambiguity at that feature is very high and hence
the average ambiguity also increases and, as a result, CF
decreases. Note that, in Case 4 (Table III), the effect of noise
was not very high to any particular feature, and therefore there
was a graceful degradation in the performance, which is not
true in the present one (Case 5). Case 6 shows the performance
when a feature is deleted from the pattern, namely, the last
feature. Result indicates a drastic reduction in CF from 0.94

to 0.82. This has also the same explanation as in Case 5. Case
7 presents the result when an extra feature is added and a
genuine feature is discarded. In effect, CF reduces from 0.94
to 0.72.

Note that the objective of the investigations performed
through Cases 1-7 is to establish the nature of CF and not
the nature of maximum output. Because in the categorization
process the output threshold is always kept fixed (chosen as
0.8 with negative self-feedback of 0.05), and the categorization
property was studied with different vigilance thresholds. Cases
8-14 show the similar effects on another pattern, namely the
pattern from third category in Table L

2) Categorization of Individual Patterns: In this experi-
ment the values of self-feedback and ~ are chosen as before.
It is found that when the patterns are contaminated with 10%
and 20% random noise, the network is able to categorize
them perfectly with vigilance thresholds 0.8 and 0.9. Here,
10% noise means the maximum level of noise is 10% of the
maximum confidence value that can occur. For example, in the
present experiment, the maximum confidence value is unity,
and hence maximum noise level (additive or subtractive) can
be 0.1. When the patterns were contaminated with 30% noise
the network is able to categorize correctly with a vigilance
threshold (p) equal to 0.8. On the other hand, if p is selected
as 0.9 then it is seen that a large number of categories are
created. Since perfect categorization occurs in the first two
cases the results are not presented here. Table IV shows the
results of categorization with 30% noise and p equal to 0.9.
It may be noted that 7" is always kept fixed at 0.8. From the
table it is clear that although quite a few redundant categories
have been formed, there are only six distinct categories into
which the patterns fall most of the times. This shows that
although the network is initially confused with such a high
noise level and high value of p, it has been able to associate
a particular node with a particular category finally.

The network behavior is then studied with very low CF (p).
The patterns were again contaminated with a high noise level
of 30% and p was selected to be 0.65. Table V shows the
categorization performance of the network. The results show
that the network has been able to categorize almost perfectly.
Only thing is that initially two classes (1 and 6) fell into the
same category, but afterwards, class 1 was allocated to some
new category.

3) Categorization of Mixed Patterns: Here the capability
of the network to categorize both the individual and mixed
patterns simultaneously is studied. The results corresponding
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TABLE V
RESULTS OF CATEGORIZATION WHEN PATTERNS ARE PRESENTED INDIVIDUALLY
WITH VIGILANCE THRESHOLD = 0.65 AND NOISE LEVEL = 0.3

Actual class category

1 1 [0 (0 [0 [0]49}0
2 0 [50]0 |0 |00 |0
3 0 [0 |50 |0]0 |0
4 0 [0 |0 [350]0(|0 |0
5 0 10 |0 jO |1]|0 [49
6 5010 {0 |0 (010 |0

TABLE VI

RESULTS OF CATEGORIZATION WHEN INDIVIDUAL AND
MIXED PATTERNS APPEAR RANDOMLY TO THE NETWORK.
“cls” STANDS FOR CLASS AND “ctg” STANDS FOR CATEGORY

ctgl | ctg? [ ctgd [ cgd [ cegs [ ctgs | cug?
cls1 0 0 0 0 58 |0 [
cls2 0 0 o 0 0 63 Jo
cls3 o o 60 0 0 " v
clsd 74| 0 ) o 0 [ 0
clss [ ) 0 6 [0 [ v
clsé 0 1 ) ) 0 0 58
csi&z {0 [ ) 1 6 B 3
cls1&3 | 0 o 6 0 6 0 0
clslkd [ 6 0 ) 0 6 [ 0
cls1&5 [ 0 0 0 3 3 0 0
cls1&6 | 0 o 0 1 4 0 3
cls2&3 | 0 [ 4 o 0 4 0
cls2kdq | 7 0 0 0 0 i [}
cls2&5 [ 0 0 0 6 0 © 0
cls2&6 | 0 0 0 R 7 i
cls3kd | 5 0 5 0 u 3 0
cls3&s | 0 0 8 8 0 o [}
cls3&6 | 0 0 3 [ 0 0 3
clsd&s | 6 o 0 6 0 [ 0
clsdk6 | 2 0 0 0 [ 0 2
clss&6 [ 0 0 o 5 o o <

to 10% noise level and 0.8 vigilance threshold are shown in
Table VI when the patterns were presented in random order.
Note that if a mixed pattern appears it was treated either as a
new category or as a superposition of two different categories.
In Table VI the output categories are presented against the
actual classes.

It is clear from Table VI that whenever the pattern from an
individual class appears it has been categorized perfectly. For
example, all 74 patterns from class 4 have been identified as
the first category. Only one pattern from class 6 fell into second
category which is really a redundant one. Whenever mixed
patterns appear, they are identified either as a new one or as
a mixture of the learned categories. For example, whenever a
mixture of patterns from classes 1 and 5 appears, it is identified
by the network as a mixture of categories 4 and 5. This is, of
course, a correct decision because all patterns from class 1
fell into fifth category and those from class 5 went to fourth
category. In the table the most confusing result corresponds
to the entries for the mixture of classes 1 and 2. Note that
patterns from class 1 and class 2 went to categories 5 and 6,
respectively. This reveals the fact that these categories were
learned after the first four (one of them is redundant) which
correspond to classes 3, 4, and 5. Initially, when a mixture
from classes 1 and 2 appears, the network was not able identify
them as a mixed category and therefore a new category was
allocated (category 4). Later, this category is taken over by the
patterns from class 5. Whenever the network becomes able to
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TABLE VII
CONFUSION MATRIX WHEN VISUAL PATTERNS ARE PRESENTED
WITH VIGILANCE THRESHOLD = 0.8 AND NOISE LEVEL = 0.2.
“cls™ STANDS FOR CLASS AND “ctg” STANDS FOR CATEGORY

ctgl | ctg2 [ ctg3 [ cgd
cls1 0 12 o 0
cls2 23 o o 0
cls3 0 o 19 0
clsd 0 ) ) 18
csi& 2 || 7 7 0 0
csiz 3 || o 3 3 ]
casik 4 [[ o B 0 5
cls2& 3 || 4 0 4 0
cls2& 4 | 2 o 0 2
cs3k 4 |[ o o 7 7

categorize the patterns from classes 1 and 2, the mixture of 1
and 2 is no more confusing. The network is able to identify
the mixture five times (from Table VI). Results show that the
network is able to identify the mixtures of other patterns also.

B. Visual Patterns

Here, the parameters of the network, namely, amount of
self-feedback, v are selected as before. The visual patterns
are contaminated by both additive and subtractive noise and
then categorized by the network with a vigilance threshold
equal to 0.8 and output threshold 0.8. It is found that the
network is capable of correctly categorizing the patterns (both
individual and mixed) even in the presence of 30% noise. As
an illustration, the results for 20% contamination are presented
in Table VIL

VI. DISCUSSION AND CONCLUSIONS

In this article we have presented a new self-organization
technique which is capable of extracting out individual cate-
gories even when they appear in mixed form. An ambiguity
measure, depending on the interpretation of the input features,
is defined, based on which the categorization process has been
formulated. The corresponding network architecture (X-tron)
is also proposed here. The network automatically adjusts the
number of nodes in the hidden and output layers, depending on
the complexity or nature of overlap between the patterns. Note
that the entire structure of X-tron basically follows from the
mathematical formulation (2) which was derived for properly
interpreting a feature set.

The effectiveness of the method is demonstrated for both
binary and visual patterns in presence of additive, subtractive,
and mixed noise. Note that the binary strings considered in the
present investigation have a higher degree of overlap between
themselves compared to the visual patterns. As a consequence,
the categorization of the binary strings (individual or mixed
patterns) seemed to be more difficult than the visual patterns.
That is why the characteristics of the network has been studied
in detail on the binary strings to establish the exactitude of the
self-organizing capability. The categorization results for visual
inputs also have been provided.

The characteristics of the proposed system well compares
with the self-organization property as shown in adaptive
resonance theory. First, in ART an order search is necessary
among the output categories to find if one of them interprets
(explains) the input pattern. In the proposed system no such
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search is necessary. This is due to the fact that the ambiguity
is in the featural level and the activations of all output nodes
are kept in tact; none of them are disabled. Second, ART does
not deal with multiple or mixed categories. On the other hand,
if a mixture of known categories appears at the input, the
present network is able to detect it and no new category is
formed. Note that the system provides output in continuum
grades (fuzzy). The concept of continuum grades was also
considered in ART2, ART3, and fuzzy ARTMAP for forming
stable codes for individual categories.

X-tron is able to self-organize in the presence of mixed
categories. The model proposed by Cho and Reggia [20]
can also do the mixed category recognition, but the learning
process is supervised. Moreover, the way X-tron operates
is entirely different from that proposed in [20]. The system
developed by Marshall [22]-[24] does the task of mixed
category perception by limiting the competition process within
similar types of nodes, whereas X-tron performs this task
(with high overlap between the patterns) by dissociating the
competition process from the output layer. SONNET [27],
[28], [30] is able to form stable categories for embedded
patterns. X-tron forms stable category only when it finds the
pattern separately (and the problem of embedded patterns has
not been addressed). Note that SONNET uses a concept of
competition between the links for associating a feature with
an object, whereas the process of competition takes place in
the hidden layer of X-tron. Amalgamation of SONNET with
X-tron may possibly lead to a more powerful one. Cohen
and Grossberg [25], [26] have considered the mixed category
recognition problem using masking fields, but their network
does not form any stable category.

X-tron also compares with other self-organization models
(which do not perform the task of mixed category recognition)
in a similar line. For example, in Neocognitron [13], the case
where the feature set of a category is a proper subset of the
feature set of another category, was solved by employing in-
hibitory connections. On the other hand, the same phenomenon
has been solved here by using Weber’s law as in the case of
ART. If inhibitory connections were used then the activation
of the genuine categories would have reduced if a pattern
representing a set of mixed categories is presented to the
network. This is due to the fact that the inhibitory connection
will ensure that if a redundant feature is presented at the input,
it will reduce the output of a category. In the case of a mixed
pattern, the features of one pattern would play the role of
redundant features with respect to other patterns (provided the
feature is not shared). Therefore, the activation of the true
categories would decrease to a great extent if the mechanism
of inhibitory connections were embedded.

Although the network has been tested on synthetic data
(binary and visual patterns), it can be used to solve real life
object recognition problem under occlusion, partial informa-
tion loss or noisy environment. It may be mentioned here
that in practical visual recognition problem, the degree of
high overlap, as considered for binary strings, may be rarely
possible. For example, if we use “corner” as features for object
recognition then it is unlikely that a particular corner feature
is shared by more than one object in the scene. The results on
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binary strings indicate the fact that if the structural information
from the feature space to the object space can be embedded
into the connections of the network, then it can possibly be
applied to object recognition tasks.
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