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ON SUFFICIENCY AND PAIRWISE SUFFICIENCY
IN STANDARD BOREL SPACES

By R. V. RAMAMOORTHI
Indian Slahisiical Institute

SUMMARY. Equivalonco of pairwiss sufficit and fReie is blished for
countably genorated ¢-flolds whon the underlying spacos are Standard Borel and tho probabilities
are discrete.  Further, somo investigations are also made on tho oxistonco of minimal sufficiont
subfiolds.

1. INTRODUCTION

This note is ossontially a continuation of Roy and Ramamoorthi (1879).
Wo proved (Roy and Ramamoorthi 1979), that for the statistical structuro
(D, A Py: 060; (0, @) whero (2. A, (6, @) aso Standard Borel and Py
discrete then under an assumption of weak cohorence, a countably genorated
sub o-algebra g of A is pairwise sufficient iff it is sufficient. In this note we
fomove tho assumption of weak cohcronce by showing that when the
underlying spaces are Standard Borel and Pys discrete then the statistical
structure is necessarily weakly coh Thus the jecture of Blackwoll
on the equivalence of Bayes sufficiency and sufficiency in the Standard Borel
caso is settled for discrote probabilities. However, theso methods do not
oxtond to tho general caso.

In tho later part of the paper we study some questions related to the
oxistence of minimal sufficient sub o-algebras. The existence of minimal
suffioient o-algebraa is shown to be equivalent to some set theoretio conditions
on the minimal pairwise sufficient partition. From this equivalence some
sufficient conditions for the existence of minimal sufficient subfields can be
detived.

Assumplions : Throughout this note we assume
(i) (@, A) wnd (0, @) aro Standard Borel.

(i) TFor oach 6¢®, P, is o disoroto probability on (2, A). Further
0— P, is a messurable transition function, ie., for all 4 in A
Py(A) is 8s » function of 8, @ measurable.

(ili) AeA, Pyd)=0forall =4 =g
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2, WEAK COHERENCE OF DISCRETE PROBABILITIES WEHEN THE UNDERLYING
SPAOES ARE STANDARD BOREL

Definition : A real valued function fy(x) on @ x X is said to be finitely
coherent if for any 6,,6, in © thereis an £ measurable function f; 4 (x)

such that
JolPy]

Sug [Py,

So(x) is said to Le cohorent if thero is u L moasurable function f such that

fa,_o, =

J == [ [Py) for all 0€O.
Definition : (2, A. X, : 0¢0)is said to be weakly coherent if any fy(z)
jointly measurable in 8 and z which is finitely coherent is coherent.
Proposition 1: Under the asswnplions Pyfz) is a lransition function
iff Pylx) is jointly measurable in A and x.

Proof :  Suppose Pylx) is a transition function.
Let M ={4dC X xX; Pyd?) is mensurable in 0 and =}

A is clearly closed undor finite disjoint unions and is a monotono class contain-
ing rectangles und henco contains tho product g-algebra. Now since D the
diagonal in X x X is in A, Pylx) = Py(D") i¢ jointly meusurable in 0 and z.
For the converso noto that let § = (0, 2} : Pe(z) > 0}. Sis a Borel sat in O x X.
Further 8 soctions of 8 are atmost countable. Thereforo there is (Kuratowski
and Mostowski, 1968) u suq of mensurable functions f, defined on ©
and taking values in X such that S = J(6,f,(4)). Define a sequence of
functions ¢,(0) as "
$\(6) = Py(fy (80
[ Py(fu) on {0 : £1(0) # f(0))

$.(0) =
: ‘L 0 othorwise

Pyl(f(6)) on {8 : f,(8) # fulf) forany i = 1,...,a—1}.
$a(0) =

0 otherwise.
Then for any Borel set 4 in A

Pyd) = >'3 Lalf (8 6.(0).
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Since for cach n, ¢,(0) and I 4(f,(6)) are & measurable as funotions of §, Py(4)
is also @ measurablo.

Proposition 2: (2, A, Py:0¢0) is weakly coherent.

Proof : By Proposition 1, § = {(0, ) : Py(x) > 0} ia a Borol sot. in @x X.

Lot fs(x) bo jointly measurablo in & and 2. Further let fy(z) be finitely
coherent.

Define f(x) = sup fylz).

8esT

Since fy(¥) is finitely coherent, for each z, fy(x) is constant on S2. Thus for
cach 7 in @, f(x) = f(x)[Pyl. We will complote the proof by showing f(z)
is Borel measurable.

fx:fz) > a} = {r: msli) fo¥) > a) = Px[{(0. 2) : fylx) > @} ()
where Py donotes the projection to the X coordinate. Since fy(z) is for each
x constant on the x section of S

friflr) Cap= (s up Ji(0) < @) = Px[((0, 2) : Jy(x) < 2} ) S).
Thus being projoctious of Borel sets {r:f(x) > a} and its complement

{v:fz) < a} are Loth analytic and consequently Borel (vide Kuratowski
and Mostowski, 1968) Honce f(x) is 4 measurable.

Theorem : A countably generated sub o-algebra of A 1s pairwise
sufficient iff il is sufficient.

Proof :  The theorem follows from Proposition 1 and Theorem 4 of Roy
and Ramamoorthi (1979). However sincs the proof is short we give an outline.

Let Ny ={de AN Pyd) =0}
We firat show that Q & V N, is sufficient.

Given any bounded _g measurable function f, since & is countably generated
there is a function fy(z) jointly measurable in 0 and z such that for all
0, fy(z) = Ey(f| B). Furthor pairwise sufficiency of &implies that f;(z) is finitely
coherent. By Proposition I there is an g measurable function f satisfying
f = fylz) [P,] for all 6. Consequently f is 8V N, measurable for cach 6 and
is also a versjon of E,U[OEVNB). ‘Hence Q A8V N, is sufficient. We will

completo the proof by showing QHV Ny = 8. Supposo E is a set in {;\GVN,
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such that for some atom F of @, E( F # ¢ and salso E° NF @, Then
there exist 6y, 8, such that P,l(E' NF)> 0and P,’(E‘ NF)>o.

But OavN, = [.)1 8V N’-’:' where N,‘,, = N,‘ Al ‘VO,'

by pairwise sufficiency of &. Therefore given £ in () @V .V, there isan &'
in @ such that P, (EAE’) = Py(EAE')= 0. Bub’ this is not possible.
We havo thus shown that every sot in ()@V N, is a union of 8 atoms.
Hence f;] B8V N, = 8. (See Blackwell, 1955). ’

Pairwise sufficiency being weaker than Bayes sufficiency the following
corollary is immediate

Corollary : A counlably generated o-algebra is Bayes sufficient iff it is
sufficient,

Certain other notions of sufficiency in terms of decision rulos namely 2
adequacy, finite adequacy, oto. wore discussed in Roy and Ramamoorthi (1979).
Pairwise sufficiency being tho woakest of theso it follows that in tho sot up
considered above all these notions are equivalent.

2. CHARACTERIZATION OF MINIMAL SUFFIOIENT SUB-0-FIELD

Wo now turn to tho existence of minimal sufficiont sub o-algebras.

Towards this wo first define a partition of X. For 866, 3, will donote the
support {x : Pylz) > 0} of P,.

P,
4 Y
Define, for 6,6’ ¢®, PPy ag
Py(z)
_PL; (2) = P‘+Po'(-"-') for ze S'
Pyt+Py
0 for z ¢ .5,

Let @ donote tho smallest o-algebra generated by —P% .0,8¢0. The
Py+Py
o-algebra @ is atomio, in fact oach atom is atmost countablo; and this gives

o pattition of X. This partition of X will bo denoted by . It is easily sen
that 4 is paitwise sufficient, containa supports of P, and is also minimal. That
is if 4, is any other pairwise sufficient o-algebra containing 3,’s then 8 G 8y
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Proposition 3: The following are equivalent for a sub oalgebra @ of A
(i) (@i minimal sufficient

(ii) @ s the smallest counlably generated o-algebra containing 8
(i) f;]BVN, i3 sufficient and Q BVN,=¢e.

Proof : (i) == (ii). By the theorem of Section 1 any countably generated
o-algebra containing & is sufficient. Hence @ is contained in any countably
generated o-algebra containing g.

(i) == (iif). Wo will show that under (ii), @ = "BV N,. Since C @,
[]

@ is pairwise sufficient. An argumont similar to tho proof of theorern 1 yields
e= Q evy,

Navy,cnevy, =e
The other inclusion will follow from the following two facts

(8) Atoms of @ are the same as atoms of 8. Suppose not, since & Ce
let E Ve an eloment of @ containing more than one atom of €. Then the
o-algebra @ = @) E¢V Eis & countably generated o-algebra containing &
and strictly contained in @. This contradicts the minimality of @ stated in {ii).

(b) Ee A and E is a union of 4 atoms then Ee() 8V N,.
[

Iglx) = Iglz)- I."lz)[Pl] all ¢0.

Since for each §, J; is a countable sot in gand E is a union of & atoms
Ig(z) . I () ia for each 6 in © & measurable. Therefore EUQ 8V N,
()

(i) == (i). NGV N, is sufficient, hence @ is countably generated
)

(Burkholder, 1961). That @ is minimal sufficient now followa from minimality
of 4, and from the faot that every sufficient sub o-algebra of { is necessarily
countably generated (see Burkholder, 1961).

Wo need the following beforo stating the next proposition. Any atomio
o-algobra on X induces an equivalence relation on X, namely z~y iff z and y
bolong to the samo atom. We say that an oquivalence relation is Boxel if tho
80t {(z,y):z~y} is a Borel set in the product. A parbition is said to be
induced by s ronl valued mensurable function f, if f ia Borel measurablo and
J(z) = fly) iff z and y belong to the same atom.
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Proposition 4 : The following are equivalent
(i) 4@ vs induced by a real valued measurable function.
(ii) The relation induced by & is Borel.

) ()@Y Ny is ryffcient.

Proof : (i) == (ii) is immediate for if 7' is a function inducing & then
2~ y &= Tla) = Tiy).
(ii) == (ili). We shall show that if & induces a Borel relation then given

any set Ae 4 there is a jointly measurable function fy{z) such that
Solx) = Eg(14]| B)[Py] for all 8¢ 0.

Define
o = BT 1 e
where R={z.y) :z~y}

An argument similar to the proof of proposition 1 shows that f(2) is jointly
measurable in 8 and z. Proof of sufficiency of () @V N, is in the same linea
]

a3 that of theorem I.
(iii)==) (i) is clear since sufficiency of () @V N, implies it is countably
[
generated and hence given by a real valued measurable function.
Proposition 4 yields some sufficient conditions for the oxistence of
minimal sufficient sub o-algebras. The relation induced by & can bo easily
characterised as the intersection of the two relations,
(i) (= y) 6 Ry iffl Pylz) > 0&= Pyly) > 0,
(ii) (z,y) ¢ R, iff for all 6,6, such that Py (2)Py (y) > 0, Py a) Pefy) >0
Py (z) Py ()
and o =
Py (y) " P, (y)

R{ can be written a8

Pi{i0. 2, ) : Py(z) > 0 Pyly) = 0}{J {(6, 2, y) : Pylx) = 0 Pyly) > 0}]

R§ can be written as
Py (x) Py la)
P [{(61!011 zy): P,l(a:)P,‘(y)P,‘(z) P,‘(y)>°)ﬁ{(5x.0zv==-y) : —P;‘—(y) #T"’(y)} ]

where P denotes projection to the X x X co-ordinate space,
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Cloarly both R{ and R{ aro snalytic or R, and R, aro cosnalytio and the
intorsoction Ry (1) Ry is nlso in goneral coanalytic.

In general & will not induco & Borel relution, equivalontly thero will not
in goneral oxist » minimal sufticient sub o-algobra oven in tho discroto caso.
Bolow wo givo an oxamplo of such a situation. Wo noto that in tho examplo
Oy # 0= Py Py,

Ezample. 0=1[0,2] X =[~1,2].

4 is a symmotrio non Borel analytio subsot of [—1, 1}.
g i3 & measurablo map from (1, 2] onto A.

Define ¢, und ¢, two monsurablo functions on O to X as

80 =0

2(0) on [1,2].
¢z(0) = {
—0 on (0,1)

PYUEY = } Tg(,(0)+} 1 5(@4(0)-

& then has atoms (x, —z) for z in A¢ and singletons otherwize and this is not
induced by a Borel function. This exsmple was suggestod to us by B. V.
Rao.
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