

232 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

where the population at time t, denoted as X[t], is operated on by random variation v, and selection s to

give rise to a new population X[t + 1].
A GA uses variation and selection and the process goes on repeatedly on a population of candidate

solutions/individuals. Individuals are encoded as strings called chromosomes, like nature holds all the

basic information about an individual in the chromosomes. A GA is executed iteratively on this set

of coded chromosomes, called a population, with the basic genetic operators: selection and variation.

Variation, again, is a combination of crossover and mutation - two probabilistic operators. A GA uses

only the objective function information (for selection) and probabilistic transition rule (for crossover and

mutation). A GA works with the following basic genetic operators.

1.1. Basic genetic operators

1.1.1. Selection operator

The primary objective of the selection operator is to keep good solutions and eliminate bad solutions

from a population keeping the population size (number of individuals in the population) constant, and

progress towards a better collection of individuals from one generation to the next generation. This is

achieved by performing the following tasks:

• Identify and select good (usually above average) solutions in a population.

• Eliminate bad solutions from the population so that multiple copies of good solutions can be placed

in the population.

Popular ways to achieve the above tasks are tournament selection, proportionate selection and

ranking selection.

In tournament selection, tournaments are played between two random solutions and the better solu-

tion is chosen and placed in the mating pool (mating pool is the collection of solutions for undergoing the

operation of variation i.e. crossover and mutation). Two other solutions are picked up again and another

slot in the mating pool is filled up with the better solution.

In the proportionate selection method, solutions are assigned copies the numbers of which are pro-

portional to their fitness values (a numeric figure which signifies how fit a solution is in the competition

for selection). If the average fitness value of population members is favg , a solution with a fitness value

fi gets an expected fi/favg number of copies.

In stochastic universal sampling (SUS) only one random number r is chosen for the whole selection

process. Since N different solutions have to be chosen, a set of N equal spaced numbers are created:

R = {r, r + 1/N, r + 2/N, . . . , r + (N − 1)/N} mod l,

where l is the total fitness value of all the solutions. Number of copies of solution i having fitness fi is

equal to the number of such numbers generated by the above technique in the range [
i−1
∑

j=1
fj

i
∑

j=1
fj].

1.1.2. Crossover operator

In a natural process crossover occurs between pairs of chromosomes by exchanging parts of them. In a

GA two strings are picked up randomly from the mating pool and some portions of them are exchanged

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 233

to create two new strings. If a crossover probability of pc is used, then 100 × pc% strings are used in

the crossover and 100 × (1 − pc)% of the population is copied for possible mutation. Mutation operator

follows crossover operator.

1.1.3. Mutation operator

In the natural process information about the creatures are stored in chromosomes in the form of genes.

Each gene constitutes a behavioral aspect of that creature; mutation of a gene alters that particular aspect

of the creature. In the same way each bit in the encoded chromosome of an individual solution in a

particular GA process stores the information of a particular aspect of that solution. Changing that bit

either from 0 to 1 or from 1 to 0 mutates it and eventually mutates the information encoded. Mutation is

probabilistic in nature and helps to keep diversity in the population.

A GA with its basic genetic operators can be used to optimize a problem with one objective or multi-

ple objectives. The process begins with a randomly selected initial population and progresses gradually

towards the optimum solution. Since in this article, we will mainly be dealing with GA based multi-

objective optimization, let us brief the concept of multi-objective optimization first.

2. Multi-objective optimization

A multi-objective optimization problem, as its name suggests, has a number of objectives that need to be

optimized. One of the striking differences between single-objective and multi-objective optimization is

that in multi-objective optimization one needs to take care of two spaces.

• Decision variable (search) space.

• Objective space.

Decision variable space is the domain of the candidate solutions. Its axes are the attributes/parameters

of the candidate solutions. Objective space is the space where candidate solutions are projected through

the objective functions and its axes are the objective functions of the problem. The objective functions

map the candidate solutions from the decision variable space to objective space. Position of a candidate

solution in the objective space determines how fit it is in the competition with other fellow candidate

solutions for selection.

2.1. Criteria of multi-objective optimization

Real life problems consist of multiple objectives. In earlier attempts of finding solutions to these prob-

lems simpler single objective algorithms were used and a weighted average was considered. With this

approach proper justification to all the objectives was not possible and hence the outcome in most of

the cases remained far away from the actual solutions. To give importance to all the objectives of a

problem, multi-objective approach is adopted. In this approach, obtaining a single perfect solution that

simultaneously satisfy all the objective functions is impossible, generally a set of solutions known as

Pareto-optimal solutions are obtained; and thus to have a proper trade-off among the solutions ensuring

diversity became an important issue. So the basic objective is to provide proper justification to all the

objectives in a real life problem and to have a good trade-off among the solutions obtained.

234 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

2.2. Pareto-optimal solutions

In multi-objective optimizing problems where the objective functions are conflicting in nature, each

objective function may have a different individual optimal solution. So, to satisfy all objective functions,

a set of optimal solutions is required instead of one optimal solution. The reason for the optimality of

many solutions is that no one objective function can be considered to be better than any other. These

solutions are non-dominated solutions. Let P be a set of non-dominated solutions. Then,

• Any two solutions of P must be non-dominated with respect to each other.

• Any solution not belonging to P is dominated by at least one member of P .

Actually, a solution x1 is said to dominate another solution x2 if both the following conditions are true:

• The solution x1 is not worse than x2 in all objectives, or fj(x1) is better than fj(x2) for all j
∈ {1, 2, . . . ,M}; where fj is the jth objective function and M is the number of objectives.

• The solution x1 is strictly better than x2 in at least one objective, or fj(x1) is better than fj(x2)
for at least one j ∈ {1, 2, . . . ,M}.

Let us illustrate the Pareto optimality with ”time & space complexity” of an algorithm shown in

Figure 1. In this problem we have to minimize both time and space complexity. In multi-objective

Figure 1. Pareto optimal solutions

optimization we have two goals:

• Progressing towards the Pareto-optimal front.

• Maintaining a diverse set of solutions in the non-dominated front.

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 235

Pareto-optimal front of a multi-objective optimization problem is the ideal solution set of that prob-

lem. In a GA we start with a random collection of candidate solutions, most likely they are not the best

possible solutions and with the help of genetic operators we progress iteratively towards the best possible

solution set after a number of generations. While progressing towards the Pareto-optimal set, it is also

required to maintain a diverse set of solutions to provide good trade-off alternatives to the end user. There

are various methods (briefed in Section 2.3) to ensure diversity among the obtained set of solutions.

2.3. Methods of ensuring diversity

2.3.1. Diversity through mutation

Mutation operator is often used as a diversity-preserving operator in GAs.

2.3.2. Pre-selection

Cavicchio (1970) was the first to introduce an explicit mechanism of maintaining diversity in a GA.

Replacing an individual with a like individual is the main concept in a pre-selection operator. When an

offspring is created from two parent solutions, the offspring is compared with the two parents. If the

offspring has better fitness than the worst parent, it replaces that parent.

2.3.3. Crowding model

DeJong (1975) in his doctoral dissertation used a crowding model to introduce diversity among solutions

in a GA population. In a crowding model, crowding of solutions anywhere in the search space is discour-

aged, thereby providing the diversity needed to maintain multiple optimal solutions. In this model only a

proportion G (called generation gap) of the population is permitted to reproduce in each generation. Fur-

thermore when an offspring is to be introduced in the overlapping population, CF (called the crowding

factor) number of solutions from the population is chosen at random. The offspring is compared with

these chosen solutions and the solution, which is most similar to that offspring, is replaced.

2.3.4. Sharing function model

Goldberg and Richardson (1987) suggested another concept, where instead of replacing a solution by a

similar solution, the focus is more on degrading the fitness of similar solutions [11].

Sh(dij) =

{

1 − (dij/σshare)
α if dij > σshare

0 otherwise

where dij is the distance between solution i and solution j, σshare is the sharing parameter, α indicates

the degree of sharing, Sh(dij) is the sharing value between solutions i and j.

Then, Nci(=
N
∑

j=1
Sh(dij)) is the niching value of solution i. The modified fitness value f ′

i = fi/Nci.

236 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

2.3.5. Hyper-cube model

In this model each objective is divided into 2d equal divisions, where d is a user-defined depth parameter.

In this way, the entire search space is divided into (2d)M unique, equal-sized M -dimensional hyper-

cubes, where M is the number of objectives. The archived solutions are placed in these hyper-cubes

according to their locations in the objective space. If the offspring resides in a less crowded hyper-cube

than the parent, the offspring becomes the parent of the next generation. Otherwise the parent solution

continues to be the parent of the next generation [15].

3. Algorithms available for multi-objective optimization

Many researchers working on multi-objective optimization problems have suggested various algorithms

using genetic algorithms. These algorithms are more or less similar in utilizing the basic genetic oper-

ators like selection, crossover, mutation, elite preservation operator (wherever applicable); they actually

differ in the way the fitness is assigned to individuals. Various algorithms are available [5, 7, 13, 14, 15,

16, 18, 19, 22, 23, 24, 26, 28, 30, 31] to solve multi-objective optimization problems. Here is a brief

discussion on some of the standard multi-objective genetic algorithms.

3.1. Non-elitist models

3.1.1. Vector evaluated genetic algorithm (VEGA) [26]

The population is divided (at every generation) into a number of equal sub-populations randomly. All the

solutions in a sub-population are assigned a fitness value based on one objective function, and each of the

objective functions is used to evaluate members in the population, i.e. each sub-population is evaluated

on one objective function. Fitness proportionate selection is done in each subpopulation, and the selected

elements of all the sub-populations are aggregated to make the next mating pool. The above procedure

is repeated until convergence.

3.1.2. Weight-based genetic algorithm (WBGA) [13]

Each objective function fi is multiplied by weight wi. The weighted objective functional values are

then added together to calculate the fitness of a solution. Random weighted GA (RWGA) [22] is similar

to WBGA, except that a random normalized weight vector w(i) = (w1, w2, , wM)T is assigned to the

solution i. The fitness value of the solution is calculated as the weighted sum of the objectives with
M
∑

j=1
wj = 1, where M is the number of objectives. f(x(i)) =

∑

j

w
(i)
j fj(x

(i)). Once the fitness values

are determined, we continue with selection and reproduction operations of standard genetic algorithms.

3.1.3. Multiple objective genetic algorithm (MOGA) [7]

It is the first algorithm, which uses the non-dominated classification of a population. Each solution is

checked for its domination in the population and a rank i, equal to one plus the number of solutions ni

that dominates solution i, is assigned. In order to ensure diversity this algorithm uses sharing model.

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 237

3.1.4. Non-dominated sorting genetic algorithm (NSGA) [10, 28]

In NSGA the population is sorted according to non-domination and classifies the population into a num-

ber of mutually exclusive equivalent classes Pj . If P is the whole population, then P =

p
⋃

j=1

Pj .

The sharing function model is used to ensure diversity. It is used front-wise and ensures that the

fitness values of all the solutions of front f are less than that of any solution of front f − 1.

3.1.5. Niched-Pareto genetic algorithm (NPGA) [14]

This method differs from the previous methods in selection operator. It uses the tournament selection,

unlike the proportionate selection used in VEGA, NSGA and MOGA. One attractive aspect of NPGA is

that there is no need for specifying any particular fitness value to each solution. The tournament selection

prefers non-dominated solutions in a stochastic manner.

3.1.6. Predator-prey evolution strategy [18]

This algorithm does not use a domination check to assign fitness to a solution. Instead the concept of a

predator-prey model is used. Preys represent a set of solutions (x(i), i = 1, 2, , N), that are placed on

the vertices of an undirected connected graph. First, each predator is randomly placed on any vertex of

the graph. Each predator is associated to a particular objective function. Secondly, staying on a vertex, a

predator looks around for preys in its neighboring vertices. The predator catches a prey having the worst

value of its associated objective function. When a prey xi is caught, it is erased from the vertex and a

new solution is obtained by mutating (and recombining) a random prey in the neighborhood of xi, the

new solution is then kept on the vertex. After this event is over, the predator takes a random walk to

any of its neighboring vertices. The simultaneous presence of predators favoring each objective allows

trade-off solutions to co-exist in the graph.

3.2. Elitist algorithms

3.2.1. Elitism

Elitism is a useful concept to accelerate the process of obtaining the final optimal set of solutions by pre-

serving the good solutions already found. In a simple implementation, the best ε% of the population from

the current population is directly copied to the next generation. The rest (100−ε)% of the new population

is created by the usual genetic operations applied on the entire population. In another implementation,

two offspring are compared with two parent solutions and two better solutions are preserved.

3.2.2. Rudolph’s elitist multi-objective evolutionary algorithm [24]

In its general format, m parents are used to create l offspring using genetic operators. Now there are

two populations: the parent population Pt and the offspring population Qt. The algorithm works in

three phases. In the first phase, the best solutions in Qt (i.e. non-dominated solutions) are identified and

moved from Qt to Q∗. In the second phase each solution q of Q∗ is compared with each solution of

the parent population Pt. If q dominates any solution of Pt, that solution cannot be an elite solution in

238 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

accordance with Q∗ and is thus deleted from Pt. Since this offspring is special (at least it has dominated

one parent solution), it is taken out of Q∗ and put in a set P . On the other hand, if q does not dominate

any solution of Pt and any solution in Pt do not dominate q, then q belongs to the same non-dominated

set as all solutions of Pt. Such a solution q is also special to a lower degree than the elements of P in the

sense that at least q does not get dominated by any parent solution of Pt, it is taken out of Q∗ and put

into another set Q. In the third phase, all the above sets are arranged in a special order of preference to

fill up the next generation. N solutions from these sets are taken out in the order Pt, P,Q,Q∗, Qt, where

N is the population size.

3.2.3. Distance-based Pareto genetic algorithm [23]

This algorithm emphasizes the progress towards the Pareto-optimal front and the diversity along the

obtained front by using one fitness measure. The first population P0 of size N is created at random

and all the solutions are assigned random fitness values and are automatically added to the elite set

E0. Thereafter, each solution is assigned a fitness based on its average distance from the elite set. The

archive of the elite solutions is updated with the non-dominated set of solutions taking into consideration

the offspring population and the already existing elite solutions.

3.2.4. Strength Pareto evolutionary algorithm (SPEA) [31]

The algorithm begins with a randomly created population P0 of size N and an empty external population

P0 with a maximum capacity of N . SPEA assigns a fitness (called strength) Si to each member i of

the external population first. The strength Si is ni/(N + 1), where ni is the number of solutions of the

current population which are dominated by external solution i. Then the fitness Fj of an individual j is

assigned as

Fj = 1 +
∑

i∈P ′

t
AND i≤j

Si.

It is worth noting that a solution with smaller fitness is better. Archive is maintained to preserve

elite solutions. Clustering is used to maintain the size of the archive of the elite solutions and to ensure

diversity among the elite solutions.

3.2.5. Elitist non-dominated sorting genetic algorithm (NSGA-II) [5]

In this algorithm, parent population Pt of size N and offspring population Qt of size N are combined

to form Rt of size 2N . Then a non-dominated sorting is used to classify the entire population Rt.

The new population is filled by solutions of different non-dominated fronts, one at a time. The filling

starts with the best non-dominated front and continues with solutions of the second non-dominated front,

followed by the third non-dominated front, and so on. Since the overall size of Rt is 2N , all the fronts

may not be accommodated in N slots available in the new population. All the fronts, which could not

be accommodated, are deleted. When the last allowed front is being considered, there may exist more

number of solutions in that front than that required to fill up the remaining slots of the new population.

So, some solutions would be discarded from that front and other solutions would be selected. Instead

of arbitrarily discarding solutions, a niching strategy is used to choose the solutions, which reside in the

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 239

least crowded region in that front, to be selected in the new population. As a niching strategy, crowded

tournament selection operator [5] is used.

The main distinguishing advantage of this algorithm is that while ensuring diversity no extra niching

parameter is required. The elitist mechanism does not allow an already found Pareto-optimal solution to

be deleted. But when the crowded comparison is used to maintain the population size, convergence to

the Pareto-optimal front is hindered. Another flaw is, if the number of solutions in the first front does not

exceed the population size, diversity among the finally obtained set may not be properly ensured. So, if

in any problem it fails to converge to actual optimal set, it will also fail to provide good trade-off among

the obtained set of solutions.

In the following section we propose a multi-objective GA to overcome these limitations.

4. Non-dominated rank based sorting genetic algorithm (NRSGA)

The basic concept of this algorithm is to classify the population into fronts first and then assigning ranks

to the solutions in a front. Ranking is assigned with respect to all the solutions of the population and

each front is reclassified with this ranking. Diversity is ensured using a simple and direct nearest neigh-

bor distance approach. To ensure elitism the parent population and the offspring populations together

participate in the competition and the best set of solutions from them are selected for next generation.

The distinguishing features of this algorithm are:

• Reclassifying the solutions of the same front on the basis of ranks.

• Successfully avoiding sharing parameters though ensuring diversity among trade off solutions us-

ing the nearest neighbor method.

4.1. Procedure

In the following text we will describe the proposed algorithm using examples of a number of mini-

mization problems. For solving maximization problems, they need to be converted into minimization

problems.

First, classify the whole population into fronts on the basis of non-dominance. Put the non-dominated

solutions in the first front. To determine the elements of the next front, discard the elements of the first

front from consideration and find out the non-dominated solutions from the rest of the populations and

put them in the second front. In the same way neglecting the solutions of the first and the second front,

the non-dominated solutions of the rest of the population are put in the third front. Repeat this process

until each solution belongs to a front.

Next, assign ranks to the solutions. The rank of solution i is ri = ni + 1, where ni is the number of

solutions those dominate solution i.

Then, adjust the fitness values of the solutions. Assign fitness values to all the solutions of the

population depending on their position in the fronts. The average fitness value assigned to the solutions

of the first front is the number of solutions in the population. Thus Favg = N for solutions of the first

front.

Adjust the average fitness values on the basis of their ranking. If Favg be the average fitness value of

solution i, and Fadj be the adjusted fitness value of it, then Fadj = Favg − g; where g is the number of

240 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

solutions (in the same front of solution i) having rank less than or equal to that of solution i. Then the

density factor is considered, and the actual fitness value is defined as: F = Fadj − 1/Min; where Min

is the distance between solution i and its nearest neighbor. Proper care (rescaling etc.) must be taken to

keep the fitness value positive for all elements of all fronts.

If Fj be the minimum fitness of some solution j and Fj < 0, then add (0 − Fj) to the fitness of all

the solutions to make them positive.

Next, find out the minimum of the fitness values of the first front, and the average fitness values to

the solutions of the second front are assigned as Favg(ii) = Favg(i) − ε, where, ε is a small positive

value.

Repeat the above two steps to assign fitness values to the solutions of rest of the fronts.

In this approach it is ensured that the fitness values of all the solutions of front f is less than that of

any solution of front f − 1. Between the convergence property and diversity, the first one is given more

priority.

Maintaining elitism: From the second generation elitism is considered. The solutions of the current

population and previous population are merged to form a population of size 2N . Then the fitness values

are assigned to all the solutions according to the previously described rule. The combined population is

sorted according to the fitness values and best N solutions are selected to advance to the next generation.

So in this way the parent solutions and the offspring solutions are allowed to compete together and the

best N numbers of solutions are picked up from them.

Let us describe the above process in the form of an algorithm. (Please note that the algorithm to

formulate the whole process is quite large to accommodate in this place. Hence the main points have

been presented.)

4.2. Algorithm

4.3. Advantages and disadvantages

The proposed algorithm ensures diversity with no extra niching parameter. Elitism does not allow an

already found Pareto-optimal solution to be deleted. As ensuring diversity is parameterized implicitly

in the fitness criteria, convergence property does not get affected while ensuring diversity; and to ensure

diversity, distances between nearest neighbors are considered which is fast and simple.

The algorithm has an extra-added complexity for reclassifying the solutions of the same front based

on ranks.

5. Implementation and results

The algorithm is implemented and compared with NSGA-II (most similar, among the existing algo-

rithms, to the proposed one) using the following benchmark problems. Population size N was chosen as

100, for all problems 50 simulations were made, crossover probability pc and mutation probability pm

were considered as 0.8 and 0.01 respectively. In the tables we put the average results of 50 runs. Pareto

set cardinality was100, σshare = 0.158, andε = 0.5.

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 241

Algorithm for classifying into fronts

For each solution i in population P /* initialization

Fronts[i] = 0

Front= 0

While(true)

Start:

Front=Front+1

For each solution i in population P

If Fronts[i] = 0 then /* The solution is not assigned a front */

For each solution l in population P

If Fronts[l] = 0 or Fronts[l] =Front then

If for each objective function j

OPop[l][j] >= OPop[i][j] /* solution i dominates solution l */

Fronts[i] =Front /* solution i is not dominated by any solution which is

not assigned a front or belongs to the same front*/

End if

End of loop l

End if

End of loop I

If any element remains to be checked go to Start

Else Break

End if

End while

242 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

Algorithm for ranking

For each solution i in population P

Rank= 1 /* ranking starts with 1 (one) */

For each solution l in population P

If l 6= i then

Flag=false

For each objective function j

If OPop[l][j] <= OPop[i][j] then /* solution l is not dominated by solution i*/

Continue /* until it finds some solution which dominates solution l, continue*/

Else

Flag=true

Break

End if

End of loop j

If flag=false then

Rank=Rank+1 /* rank gets increased by one, the number of times it finds a

solution which dominates solution l */

End if

End of loop l

Ranks[i] =Rank

End of loop I

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 243

Algorithm for fitness adjustment

/* each solution is assigned a fitness value initially */

For each solution i in population P

If Fronts[i] =Front then /* considering solutions front by front */

Sum= 0

For j = 1 to Ranks[i] increment 1

For each solution k in population P

If Ranks[k] = j AND Fronts[k] =Front then

Sum=Sum+1 /* value of ’Sum’ gets increased the number of solutions have rank less than

that of solution i */

End if

End of loop k

End of loop j

FitnessValue[i] =FitnessValue[i]−Sum

Let D = the distance between solution i and its nearest neighbor in the Population P

/* D is calculated by the method described in section 2.3.4 */

FitnessValue[i] =FitnessValue[i] − 1/D.

Fitness assignment scheme

/* here goes the summary */

1. Classify the whole population P into Fronts.

2. Classify the whole population P into Ranks.

3. Assign the fitness value to each solution of a front considering front, rank and

the nearest neighbor distance parameters.

4. Adjust all the solutions if min is less than zero, by adding a value equal to zero − min,

where min is the minimum fitness value of all solutions in the previous front.

5. Assign average fitness value to all the solution of next front Favg=min.

6. Repeat steps 3 and 4 until all the solutions in population P are checked.

244 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

5.1. The benchmark test problems

SCH1 :











Minimize f1(x) = x2

Minimize f2(x) = (x − 2)2

−A ≤ x ≤ A.

It is a single variable test problem with a convex Pareto optimal set [25].

SCH2 :











































Minimize f1(x) =























−x if x ≤ 1

x − 2 if 1 < x ≤ 3

4 − x if 3 < x ≤ 4

x − 4 if x > 4

Minimize f2(x) = (x − 5)2

−5 ≤ x ≤ 10.

The Pareto optimal set consists of two discontinuous regions. The main difficulty that an algorithm may

face in solving this problem is that a stable subpopulation on each of the two disconnected Pareto optimal

regions may be difficult to maintain [25].

FON :























Minimize f1(x) = 1 − exp(−
n
∑

i=2
(xi − 1/

√
n)2)

Minimize f1(x) = 1 − exp(−
n
∑

i=2
(xi + 1/

√
n)2)

−4 ≤ xi ≤ 4, i ∈ {1, 2, . . . , n}.
The Pareto optimal set is non convex [8].

ZDT1 :



















f1(x) = x1

g(x) = 1 + 9/(n − 1)
n
∑

i=2
xi

h(f1, g) = 1 −√
(f1/g).

It has a continuous Pareto optimal front and a uniform distribution of solutions across the front. The only

difficulty with this problem is in tackling a large number of decision variables [33].

ZDT2 :



















f1(x) = x1

g(x) = 1 + 9/(n − 1)
n
∑

i=2
xi

h(f1, g) = 1 − (f1/g)2.

In the Pareto optimal region it has a uniform density of solutions. The difficulty with this problem is that

the Pareto optimal region is non convex [33].

ZDT3 :



















f1(x) = x1

g(x) = 1 + 9/(n − 1)
n
∑

i=2
xi

h(f1, g) = 1 −√
(f1/g) − (f1/g) sin(10πf1).

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 245

Difficulty with this problem is that the Pareto optimal region is discontinuous. The real challenge for

an algorithm would be to find all discontinuous regions with a uniform spread of non-dominated solut-

ions [33].

ZDT4 :



















f1(x) = x1

g(x) = 1 + 10(n − 1) +
n
∑

i=2
(x2

i − 10 cos(4πxi))

h(f1, g) = 1 −√
(f1/g).

The sheer number of multiple local Pareto optimal fronts produces a large number of hurdles for an

algorithm to converge to the global Pareto optimal front [33] for the problem.

Some standard metrics, described below, are used to evaluate the algorithms on these benchmark test

problems.

5.2. Metric for comparison

5.2.1. To measure convergence property

General distance: It is a measure of general distance between the obtained front and the ideal Pareto

optimal front. Instead of finding whether a solution Q belongs to the set P ∗ (Pareto set) or not, this

metric finds an average distance of this solution from P ∗. For p = 2, the parameter di is the Euclidean

distance (in the objective space) between a solution i ∈ Q and the nearest member of P ∗. fk
m is the mth

objective function value of the kth member of P ∗. Lesser the value, better is the performance [30].

GD =

(
|Q|
∑

i=1
dp

i)
1/p

|Q| with

di =
|P ∗|

min
k=1

√
(

M
∑

m=1

(f i
m − f∗k

m)2.

5.2.2. To measure diversity among the solutions in the obtained front

Spacing: It is a measure of average spacing among the solutions in the obtained front. This is calculated

with a relative distance measure between consecutive solutions in the obtained non-dominated set as

follows:

S =
√

(
1

|Q|

|Q|
∑

i=1

(di − d̄)2)

where

di = min
KεQ

�
K=i

M
∑

m=1

|f i
m − fk

m|

d̄ =

|Q|
∑

i=1

di

|Q|

and d̄ is the mean value of these distances.

246 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

This distance measure is the minimum value of the sum of the absolute differences in the objective

functional values between the ith solution and any other solution in the obtained non-dominated set. The

above metric measures the standard deviations of different di values. When the solutions are mostly

uniformly spaced the corresponding distance measure will be small. The lesser the value, the better is

the result [27].

Spread: It signifies how much the solutions are spread in the obtained front in the search space,

lesser the value, the better is the result [5].

∆ =

M
∑

m=1
de

m +
|Q|
∑

i=1
(di − d̄)2

M
∑

m=1
de

m + |Q|d̄
.

It is measured to determine the spread of solutions. Solutions with good spacing imply that they are

almost uniformly spaced (among them) but may be clustered in a small place over the front. In that case

spread will be poor.

5.3. Results

The results obtained in the form of standard metric when applied on the benchmark test problems are

listed below for different problems.

Table 1. SCH1

Algorithms General distance Spacing Spread

NSGA-II 148462 6 0.00009999

NRSGA 69504 8492 0.00001211

Table 2. SCH2

Algorithms General distance Spacing Spread

NSGA-II 42.002164 0.0000766 0.00009969

NRSGA 0.003967 0.0000899 0.00008110

6. Discussion of results

In the tables we have seen a statistical report on the performance of the algorithms. Now let us dis-

cuss the similarities-dissimilarities and advantages-disadvantages of these two algorithms. Both of these

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 247

Table 3. FON

Algorithms General distance Spacing Spread

NSGA-II 0.0052 0.0000000 0.00009999

NRSGA 0.0022 0.0000964 0.00003621

Table 4. ZDT1

Algorithms General distance Spacing Spread

NSGA-II 0.001330 0.000037 0.00009528

NRSGA 0.001202 0.00001431 0.00005641

Table 5. ZDT2

Algorithms General distance Spacing Spread

NSGA-II 0.001665 0.0000188 0.00007837

NRSGA 0.001360 0.00001806 0.00004920

Table 6. ZDT3

Algorithms General distance Spacing Spread

NSGA-II 0.002053 0.000082 0.00009478

NRSGA 0.001875 0.0000555 0.00007121

Table 7. ZDT4

Algorithms General distance Spacing Spread

NSGA-II 1.006070 0.00001886 0.00006182

NRSGA 0.009386 1.00004195 0.00003858

248 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

algorithms are multi-objective optimization algorithms incorporated with basic genetic operators like se-

lection, crossover, mutation and elitism. Except all these basic genetic operators there lies an important

point - fitness assignment to a solution i.e. to judge how fit a solution is in the search space than the other

solutions in a problem definition and how quick they converge to the optimum solution set.

At first both of these algorithms classify the whole search space into collection of fronts on the basis

of non-dominance. Totally non-dominated solutions lie in the first front, and in the second front the

solutions are dominated only by the solutions of the first front. Likewise solutions of the third front are

dominated only by the solutions of the first and the second fronts. At the next step NRSGA reclassify the

solution space giving each solution ni a rank ri = ni + 1, ni is the number of solutions that dominate

solution ni. The main distinction between these two algorithms is in this ranking concept. NRSGA

uses the concept of ranking among the solutions of the same front; NSGA-II does not do so. The

main motivation behind the ranking concept is to reclassify the solutions of the fronts. By selecting the

solutions of the first front we select the best possible solutions from the perspective of convergence. The

solutions of the first front would have the same rank, but solutions of other fronts would have different

ranks. Rank of a solution is less if it is dominated by less number of solutions of lower fronts. This can

be described in another way. If the whole population is subdivided with a number of equidistant parallel

lines slanting normally to the Pareto optimal front, then solutions with less rank in any front would fall

in the part where comparatively less number of solutions is there altogether. In this way diversity among

solutions also increases. The concepts of ranking and fitness reallocation using the nearest neighbor

method reduce the probability of picking up solutions from the densely populated place.

This is to be mentioned here that the concept of ranking is not new. Bentley has used the concept

of ranking earlier, but his approach is different from that of ours. Bentley used the method of ranking

introducing the concept of ’importance’, that is, rank was imposed on the solutions giving importance

to particular objective. Pareto optimal solutions are chosen based on these ranks. But in our method we

give importance to all the objectives equally. This method of ranking is not to choose a subset of Pareto

optimal solutions which is more eligible than other solutions within the perspective of any particular

important objective. Ranking is used in this method to reclassify the whole set of solutions based on

dominance to accelerate the process to converge to Pareto optimal front, and also to avoid the solutions

to be localized. This again effectively enhances the probability of preserving diverse solutions. So the

problems with deceptive nature are solved in a better way with this reclassification concept in most of

the cases. But, if the ranks of the solutions of the same front are the same in most of the cases, then

the reclassification is not much useful. So for complex problems where search space is not smooth and

multimodal, the objective functions are deceptive in nature, the proposed algorithm will be more useful.

In elite preserving operator both the algorithms follow the same policy. They merge parent and

offspring populations and assign fitness values to all the solutions of the combined population and select

the N best possible solutions from the 2N number of candidate solutions.

In case of NSGA-II, the population is classified into groups of fronts. The solutions of the first

front are selected if the number of solutions is less than N (population size), then the solutions of the

second front is selected (if the number of solutions selected does not exceed N). This goes on until for

front Fk, the number of solutions in Fk is more than the number of solutions required to fill the N slots

of the selected candidate solutions. Then Crowded Tournament Selection Operator (CTSO - discussed

earlier) [5] is used to select exactly the number of solutions that are required to fill the remaining slots.

In case of NRSGA, each solution, in addition to the front has two more parameters (information about

their dominance and position in the search space) - the first one is the rank value (how many solutions

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 249

dominate it) and the second is the distance value (distance between it and its nearest neighbor). All these

information collectively evaluate the fitness value of a solution; but it is ensured that the dominance

information (the parameter of convergence to the Pareto-optimal front) is given higher priority than

the distance information (which is the parameter of diversity maintenance among the finally obtained

solution set). It is also ensured that a solution of front f has better fitness value than a solution of front

f + 1. Then with the fitness values available for all the solutions, Stochastic Universal Sampling (SUS

discussed earlier) [4] is used to select the required number of solutions.

So in the selection procedure, NRSGA uses SUS and NSGA-II uses CTSO. As CTSO is a binary

tournament selection operator it operates in O(N log N) (N : population size); whereas SUS operates

in O(N) time complexity. Moreover in NRSGA in the fitness value both the fitness (i) fitness based on

its non-dominance in the search space, (ii) fitness based on diversity measures, are combined in a single

numerical value.

Another striking distinction between these two algorithms is in ensuring diversity among the solu-

tions of Pareto-optimal front. In NSGA-II no exclusive method is adopted to select the lonely solutions

(i.e. solutions in comparatively less dense zone). The lonely solutions are given priority in the situation

of tie breaking i.e. when the last front to be included in the final population and the size of the front is

larger than the number of solutions required then the required no of solutions are selected on the basis of

their loneliness. But in NRSGA the two principal objectives of multi-objective optimization problems,

diversity and convergence are taken into consideration simultaneously with convergence given higher

priority. Both the parameters are encoded in the fitness value, thus a solution i has better fitness value

than solution j means solution i is better in both the aspects.

This is also seen from the tables that NRSGA has come out with better results in diversity factor

in most of the problems and what is more important is that diversity is ensured without degrading the

convergence factor.

Both NRSGA and NSGA-II uses crossover and mutation in the same way; single point crossover

with probability 0.8 and mutation with probability 0.04 were used for the present experiments.

ZDT4 causes problem for many standard algorithms in finding an optimal front close to Pareto opti-

mal front due to its deceptive nature with multiple local Pareto-optimal fronts. The reclassification prop-

erty of NRSGA helps it to achieve convergence; and its results are better in comparison with NSGA-II

in ZDT4 also.

The Pareto-optimal front in SCH2 consists of two discontinuous regions; in ZDT3 the Pareto-optimal

front is discontinuous and in FON and ZDT2 the Pareto-optimal front is non-convex; the reclassification

of the fronts and usage of extra information of the solutions regarding their rank in the population helps

to come out with better results.

Many standard algorithms faced problem while solving ZDT3 to have uniformly spread solutions

in Pareto-optimal front, but NRSGA has overcome this difficulty in a better way. In comparison with

NSGA-II, results are comparable but NRSGA provides better results in most of the cases in both the

aspects (i.e. convergence and diversity).

In some problems both the algorithms give good and comparative results. As in SCH1 NRSGA

has shown better performance to converge to ideal Pareto-optimal set; whereas NSGA-II is better in

providing good diversity among the obtained set of solutions. For SCH2, NRSGA is better to converge

to ideal Pareto-optimal set but in providing diversity, both the algorithms are comparable and good. For

FON both the algorithms are almost similar in outcome and NRSGA has less general distance value. For

ZDT2 both the algorithms give good results and the results are quite comparable in all the metrics.

250 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

7. Conclusion

In this paper a new concept, ranking among the solutions of the same front, has been proposed. It

implements elitism and ensures diversity through the nearest neighbor method. This algorithm is applied

on seven benchmark multi-objective test problems and the results are compared with that of NSGA-II.

In most of the cases NRSGA has come out with better results in both the aspects of multi-objective

optimization (i.e. convergence and diversity). It is more interesting to note that NRSGA is stochastically

more reliable for deceptive problems. But the main disadvantage of NRSGA is its extra complexity due

to reclassification. In future we plan to find out a better approach to reduce this complexity and we intend

to apply NRSGA to solve other multi-objective problems.

References

[1] Bentley, P. J. and Wakefield, J. P. (1997). Finding Acceptable Solutions in the Pareto-Optimal Range using

Multiobjective Genetic Algorithms.

[2] Cavicchio, D. J. (1970). Adaptive Search Using Simulated Evolution. Ph. D. Thesis, Ann Arbor, MI: Univer-

sity of Michigan.

[3] Coello, C. A. (2000). Handling preferences in evolutionary multiobjective optimization: a survey. In 2000

Congress on Evolutionary Computation, Vol. 1, pp. 30-37.

[4] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester, UK: Wiley, 2001

[5] Deb, K., Agarwal, S., Pratap, A. and Meyarivan, T. (2000b). A fast elitist non-dominated sorting genetic al-

gorithm for multi-objective optimization: NSGA-II. In Proceedings of Parallel Problem Solving from Nature

VI (PPSN-VI), pp. 849-858.

[6] DeJong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph. D. Thesis,

Ann Arbor, MI: University of Michigan.

[7] Fonesca, C. M. and Fleming, P. J. (1993). Genetic algorithms for multi-objective optimization: formulation,

discussion, and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms,

pp. 416-423.

[8] Fonesca, C. M. and Fleming, P. J. (1995). An overview of evolutionary algorithms in multi-objective opti-

mization. Evolutionary Computation Journal 3(1), pp. 1-16.

[9] Fonesca, C. M. and Fleming, P. J. (1996). On the performance assessment and comparison of stochastic

multi-objective optimizers. In Proceedings of Parallel Problem Solving from Nature IV (PPSN-IV), pp. 584-

593.

[10] Goldberg, D. E. (1989). Genetic Algorithms for Search, Optimization and Machine Learning. MA: Addison-

Wesley.

[11] Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal function opti-

mization. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications,

pp. 41-49.

[12] Hajela, P. and Lin, C. Y. (1992). Genetic search strategies in multi-criterion optimal design. Structural Opti-

mization 4(2), pp. 99-107.

[13] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: MIT Press.

A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms 251

[14] Horn, J., Nafploitis, N. and Goldberg, D. (1994). A niched Pareto genetic algorithm for multi-objective

optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82-87.

[15] Knowles, J. D. and Corne, D. W. (2000). Approximating the non-dominated front using the Pareto archived

evolution strategy. Evolutionary Computation Journal 8(2) , pp. 149-172.

[16] Krishnakumar, K. (1998). Micro-genetic algorithms for stationery and non-stationery function optimization.

In SPIE Proceedings: Intelligent Control and Adaptive Systems, pp. 289-296.

[17] Kursawe, F. (1990). A variant of evolutionary strategies for vector optimization. In Parallel Problem Solving

from Nature I (PPSN-I), pp. 193-197.

[18] Laumanns, M., Rudolph, G. and Schwefel, H. P. (1998). A spatial predator-prey approach to multi-objective

optimization: a preliminary study. In Proceedings of the Parallel Problem Solving from Nature V (PPSN-V),

pp. 241-249.

[19] Leung, K. S., Zhu, Z. Y., Xu, Z. B. and Leung, Y. (1998). Multiobjective optimization using non-dominated

sorting in annealing genetic algorithms. Department of Geography and Centre for Environmental Studies,

Chinese University of Hong Kong, Hong Kong.

[20] Lirsawe, F. (1991). A variant of evolution strategies for vector optimization. In Parallel Problem Solving from

Nature I (PPSN I), volume 496 of Lecture Notes in Computer Science, pp. 193-197.

[21] Murata, T. and Ishibuchi, H. (1995). MOGA: multi-objective genetic algorithms. In Proceedings of the Sec-

ond IEEE International Conference on Evolutionary Computation, pp. 289-294.

[22] Neef, M., Thierens, D. and Arciszewski, H. (1999). A case study of a multiobjective recombinative genetic

algorithm with coevolutionary sharing. In Proceedings of the Congress on Evolutionary Computation (CEC

- 1999), pp. 796-803.

[23] Osyczka, A. and Kundu, S. (1995). A new method to solve generalized multicriteria optimization problems

using the simple genetic algorithm. Structural Optimization 10(2), pp. 94-99.

[24] Rudolph, G. (2001). Evolutionary search under partially ordered fitness sets. In Proceedings of the Interna-

tional Symposium on Information Science Innovations in Engineering of Natural and Artificial Intelligent

Systems (ISI 2001), pp. 818-822.

[25] Schaffer, J. D. (1984). Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms.

Ph. D. Thesis, Nashville, TN: Vanderbit University.

[26] Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In proceed-

ings of the first International Conference on Genetic Algorithms, pp. 93-100.

[27] Schott, J. R. (1995). Fault Tolerant Design Using Single and Multi-Criteria Genetic Algorithms. Master’s

Thesis, Boston, MA: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology.

[28] Srinivas, N. and Deb, K. (1994). Multi-objective function optimization using non-dominated sorting genetic

algorithms. Evolutionary Computation Journal 2(3), pp. 221-248.

[29] Test problems for multiobjective optimizers (Eckart Zitzler’s page). http://www.tik.ee.ethz.ch/ zit-

zler/testdata.html.

[30] Veldhuizen, D. V. (1999). Multiobjective Evolutionary Algorithms: Classifiation, Analyses, and New

Innovations. Ph. D. Thesis, Dayton, OH: Air Force Institute of Technology. Technical Report No.

AFIT/DS/ENG/99-01.

[31] Zitzler, E. and Thiele, L. (1998a). An evolutionary algorithm for multiobjective optimization: The Strength

Pareto approach. Technical Report 43, Zurich, Switzerland: Computer Engineering and Networks Laboratory

(TIK), Swiss Federal Institute of Technology.

252 A. Ghosh and M.K. Das / Non-dominated Rank based Sorting Genetic Algorithms

[32] Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.

D. Thesis, Zurich, Switzerland: Swiss Federal Institute of Technology.

[33] Zitzler, E., Deb, K. and Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical

results. Evolutionary Computational Journal 8(2), pp. 125-148.

	1.pdf
	2.pdf

