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Image Ambiguity Optimization for Object Extraction: A Soft Computing
Approach

Susmita Ghosh, Ashish Ghosh

Abstract

Object extraction 1is performed using soft
computing tools (e.g., neural networks, genetic
algorithms and fuzzy logic) and image ambiguity
optimization. Hopfield type neural network is used
for object background classification. Genetic
Algorithms (GAs) are used to evolve such a Hopfield
type optimum network architecture where each
chromosome represents an architecture. Fuzzy sets
are introduced into this Neuro-GA framework.
Output status of neurons at the converged state of
each network is viewed as a fuzzy image subset.
Measures of image ambiguity, in terms of gray level
as well as spatial, of this image subset are considered,
in isolation and in combination, as the index of fitness
of chromosomes. Gray level ambiguity measures take
care of global information whereas spatial
(geometrical) ambiguity measures use local and
shape information. The best chromosome of the GA
that corresponds to the least image ambiguity of the
final generation represents the optimum network
configuration for object extraction. It is seen that
spatial ambiguity measure based algorithms have an
edge over gray level ambiguity based ones, especially
for highly corrupted and compact objects, so far as
the preservation of shape and elimination of noise are
concerned. For non-compact objects, gray level
ambiguity based optimization techniques produce
superior performance.

Keywords: Object extraction, image ambiguity,
Hopfield type network, genetic algorithms, soft
computing.

1. Introduction

Soft computing [9] 1s a consortium of methodologies,
which work synergistically, and provides, in one form or
another, flexible information processing capabilities for
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handling real life ambiguous situations. Its aim is to
tolerate the imprecision, uncertainty etc. in order to
achieve tractability, robustness, low solution cost, and
close resemblance with human like decision making. At
this juncture, artificial neural networks (ANNs), genetic
algorithms (GAs) and fuzzy logic (FL) are the three
principal components of soft computing; where FL
provides algorithms for dealing with imprecision and
uncertainty, ANN the machinery for leaming &
adaptation; and GA for optimization & searching.

ANNs [S] try to emulate the biological neural
networks, especially, some aspects of human information
processing system, with electronic circuitry and act as
the machinery for learning and adaptation. They are
designated by the network topology, connection
strengths between pairs of neurons/nodes, node
characteristics and rules for updating status. Since there
are interactions among the neurons, the collective
computational  property inherently reduces the
computational task and helps to produce output in real
time and makes the system fault tolerant (with respect to
noise and component failure). This assists the ANN
models to be suitable for solving tasks requiring
collective decision-making. Most of the image analysis
operations are co-operative in nature and the recognition
tasks mostly need formulation of complex decision
regions. ANN models have the ability to achieve these
properties.

The architecture/configuration of the network depends
on the goal one is trying to achieve. (For example, in
case of a Hopfield type neural network [6] performing
object extraction [3], a neuron of the network
corresponds to a pixel of the image.) In spite of the wide
range of applicability of ANNSs, there i1s no formal
procedure to design an optimum network for a given
problem. Finding out such a network for a given
problem requires efficient searching in complex spaces
in order to obtain optimal solutions in real time. This
further makes the process computationally intensive.

GAs [4] are computational procedures modeled on the
mechanics of natural genetic systems. They iteratively
perform the following cycle of operations on a set of
coded solutions/chromosomes, called a population, until
some termination condition 1is achieved: selection
(including fitness evaluation of each solution),
reproduction (including crossover and mutation), and
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replacement of the old population with a new one.

GAs are viewed as efficient & adaptive search and
optimization techniques. They are able to produce (near)
optimal solutions having a large degree of implicit
parallelism. Therefore, application of GAs for solving
certain problems of image processing/pattern recognition
appears to be appropriate and natural. Let us consider the
example of finding out an optimum neural network
architecture (say, Hopfield type network for object
extraction, as mentioned earlier). This needs searching a
complex space and thus GAs can find their application.

Fuzzy sets (FS) [12] are generalizations of
conventional (crisp) sets. Conventional sets contain
objects that satisfy precise properties required for
membership. Fuzzy sets, on the other hand, contain
objects that satisfy imprecisely defined properties to
varying degrees. The deficiency of information available
from incomplete/imprecise/noisy images suggests the
use of fuzzy set theory to obtain solution (output) of the
system with least uncertainty. Let us again consider the
situation of object extraction using Hopfield type
network, as mentioned earlier. The output status of the
neurons, at the converged state, of each network can be
viewed as a fuzzy image subset [10]; and thus objects
can be extracted with least image ambiguity (uncertainty)
measures [1,9].

In the present article soft computing tools are used for
extracting object regions from both binary and gray
images. A preliminary attempt in this line is reported in
[2]. Hopfield type network is used for object extraction.
The optimum architecture of such a network is evolved
using GAs where each chromosome of a GA represents a
network architecture [7]. The output status of the
neurons, in the converged state, of each network is taken
as a fuzzy image subset. Image ambiguity measure of
this subset 1s considered as a measure of error/energy of
the network, which in tum reflects the fitness of the
corresponding chromosome in GA. Here, instead of
making crisp decisions for the output status of the
neurons (either O or 1), they are scaled to lie in the range
[0,1] and is viewed as a fuzzy set. This, in tum, mimics
the human reasoning process for making decisions in
labeling the class of the pixels as object or background.
This sort of uncertainty (indefiniteness in deciding
whether a pixel has a label 1 or 0) is known as grayness
ambiguity [1,9] and it considers global information. On
the other hand, the fuzzy geometrical properties [8,10,11]
of this image subset reflect the spatial ambiguity
(indefiniteness in shape/geometry of the object) of the
image by incorporating local information.

For the present investigation, we considered index of
fuzziness and entropy of a fuzzy image subset as gray
level ambiguity measures. As spatial ambiguity,
compactness measure is used. A weighted combination
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of them is also explored. From experimental results, it is
seen that for compact objects spatial ambiguity measure
performs better than the corresponding gray level
ambiguity based methods for preserving shapes and
removing noises; whereas for non-compact objects gray
level ambiguity based techniques produce superior
performance.

2. Image Ambiguity

A gray tone image possesses ambiguity within each
pixel because of the possible multi-valued levels of
brightness. If the gray levels are scaled to lie in the range
[0, 1], we can regard the gray level of a pixel as its
degree of membership in the set of high-valued bright
pixels - thus a gray tone image can be viewed as a fuzzy
image subset. Regions, features, primitives, properties,
and relations among them, that are not crisply defined,
can similarly be regarded as fuzzy subsets of images
[8,9].

A L level image A4 (of size M xN) can therefore
be considered as an array of fuzzy singletons, each
having a value of membership denoting its degree of
possessing some property (e.g., brightness, darkness,
texture etc.). In the notation of fuzzy sets one may
therefore write that
A={,uA(xmn):m=l,2,...,M;n=1,2,...,N} ; where
4,(x,,) denotes the grade of possessing such a
property WU by the (m,n) pixel. For convenience, we

may use W and i interchangeably. Incertitude in an

image may be explained in terms of grayness ambiguity
or spatial (geometrical) ambiguity or both. Grayness
ambiguity means indefiniteness in deciding whether a
pixel is object or background. Spatial ambiguity refers to
indefiniteness in the shape and geometry of a region
within the image. Gray level ambiguity considers only
global information whereas spatial ambiguity takes care
of local information. Some commonly used grayness
ambiguity measures are index of fuzziness, fuzzy
entropy and fuzzy correlation [1]; the spatial ambiguity
measures are extracted from fuzzy geometrical
properties e.g., compactness, [OAC etc. [8,10,11].

2.1 Gray Level Ambiguity

A few gray level ambiguity measures [1,9] relevant to
the present work are described here.
Index of Fuzziness: The index of fuzziness (fl) of a
fuzzy image subset 4 having n supporting elements
is defined as

7oA =217 (4, )

nt
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when 17( A,Z) denotes the distance between fuzzy set

A and its nearest ordinary set A. An ordinary set A4
nearest to the fuzzy set A4 is defined as:

[0 i p,(0<05
”Z(X)‘{l i 1,(x)> 0.5 =

We used quadratic index of fuzzinessie., p=2.

Entropy: Entropy (DeLuca & Termini) of a fuzzy image
subset (£2) using logarithmic gain function is given by

H(A) =—— 35, (4 (x)} ©)

nln2 [
with

S, (e, (x,)) = = (x)nfu, (x)}

(4)
— = Cefinfl -, ()
and that of Pal and Pal (f3) using exponential gain
function is given by
1
H(A)=—F—21S, x;))—1 5
(= oo -} 5)

with
S, (1)) = 1, (x)e L= g1, (x)}e . (6)
Another definition of entropy, which involves the

distance of the fuzzy image subset from its furthest
ordinary set, is given by Bart Kosko (f4). It says

- 1
f{mmm(x,),I—Mx,-))}"}" (7)

:
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where A4 1s an ordinary set furthest to the fuzzy set

A4, defined by
[0 (x)>0.5
“ﬁ(x)_{l if 1,(x)<0.5. ®

Note that, these entropy measures, first of all, compute
the fuzziness related to individual pixel of the image and
then make an average over all the pixels to get a
quantification of the amount of average ambiguity, the
Image possesses.
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2.2 Spatial Ambiguity

In image analysis we often want to measure
geometrical properties (reflecting spatial ambiguity
measure) of regions in an image that are not crisply
defined. The concept of digital picture geometry is
extended to fuzzy subsets and is called fuzzy geometry
[10,11], which includes area, perimeter, compactness,
height, width, length, breadth, etc. [8,10]. After
generalizing the standard geometric properties, it
becomes possible to use these definitions to construct
image description without committing to a specific
segmentation of an image. A few fuzzy geometrical
properties relevant to the present work are described
below.
Area: The area of a fuzzy image subset p is defined as

a(p) =3 1 ©)
Hi
The area 1s therefore the weighted sum of the regions on
which u has constant value weighted by these values.
Perimeter: If | is piece-wise constant, the perimeter
of 1 isdefined as
P = Y @) —p()]x|4rG. k)
i,f.k
This is just the weighted sum of the lengths of the arcs
Ar(i, j, k) along which the regions having p values

(10)

u(@) and p(j) meet. In case of an image if we
consider .the pixels as the piece-wise comnstant regions,
and the common arc length for adjacent pixels as unity
then the perimeter of an image is defined by

p(1) = 3 (@) —u())|
i,j
where (i) and p(j) are the membership values of
two adjacent pixels.
Compactness: The compactness of a fuzzy image subset
i 1is defined as

11y

comp() = az(“) :

po(W)

(12)

Figure 1. Topology of the network
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Table 1. pcc for the synthetic images

pee with fitness evaluation Image with
based on ambiguity measure =15 c =24 c=32
NE | E | NE | E | NE | E |
Quadratic index of fuzziness (f1) | 98.56 | 98.61 96.46 | 96.29 | 90.33 | 90.16
Entropy (DeLuca & Termini) (f2)| 98.95 | 98.63 | 96.95 | 95.80 | 90.45 90.45
Entropy (Pal & Pal) (f3) 98.32 | 98.68 | 9532 | 96.70 | 90.67 | 92.31
Entropy (Kosko) (/4) 98.34 | 98.78 | 95.61 95.53 | 89.65 | 90.36
Fuzzy compactness (f6) 99.15 | 98.39 | 98.29 98.07 | 96.90 | 95.78
Combination of f6 & f1 (f7) 98.76 | 98.88 | 95.61 96.46 | 91.46 | 89.67
Combination of f6 & f2 (f8) 99.00 | 98.90 | 97.71 | 97.80 | 90.97 | 91.09
Combination of f6 & f3 (f9) 98.88 | 98.83 | 97.27 | 97.02 | 90.43 | 91.60
Combination of f6 & f4 (f10) 98.97 | 98.73 | 96.17 | 96.97 | 90.38 | 90.14

In the present article we will use grayness and spatial
ambiguity measures both individually and in a combined
way to compute the error or energy of a Hopfield type
network, which in turn will reflect the fimess of each of
the chromosome while executing GA.

3. Object Extraction

As mentioned earlier, object extraction is performed
using Hopfield type neural network. GA evolves such
optimum Hopfield networks to produce segmented
output. The fitness evaluation of each chromosome of
GA is done using various types of image ambiguity
measures. Let us describe the whole process in the
following subsections.

3.1 Hopfield Type Neural Network for Object
Extraction

To use a Hopfield type neural network for object
background classification, a neuron is assigned
corresponding to every pixel. Each neuron can be
connected to its neighbors (over a window) only. The
connection can be full (a neuron is connected to all of its
neighbors) or can be partial (a neuron may not be
connected with all of its neighbors). The network
topology for a fully connected third order neighborhood
1s depicted in Figure 1. Here, the maximum number of
connections of each neuron with its neighbors is 8. In
practice, all these connections may not exist. Again
different neurons may have different connectivity
configuration within its neighbors to produce optimum
segmented output. There are various ways to design such
an optimum architecture. One way to design such an
optimum network is the use of genetic algorithms. The
status updating rules of these neurons are similar to

those of Hopfield's model [6]. The energy function of
this model consists of two parts. The first part is due to
the local field or local feedback and the second part
corresponds to the mput bias of the neurons. The first
part is viewed as the impact of gray levels of the
neighboring pixels. The total energy contributed by all

pixel pairs will be —Z W,J-V,»Vj, where VI-,VJ»
i J

the status of the ith and jth neurons, respectively

and Wy

these two neurons. In our experimental study

arc

represents the connection strength between

Z

either 0 or 1 (connection is absent or present) and the

value of W isevolved by GA.

For every neuron i there is an initial input bias /;

18

which is taken to be proportional to the actual gray level
of the corresponding pixel. If the gray value of a pixel is
high (low), the corresponding intensity value of the
scene is expected to be high (low). The input bias value
1s taken in the range [-1,1]. Under this framework an ON
(1) neuron corresponds to an object pixel and the OFF
(-1) one to background. So the threshold between object
and background can be taken as 0. Thus the amount of
energy contributed by the input bias values i1s — Z[ Vi
1
Therefore, the expression of energy takes the form

E==3 2 WiV =21V
I i

From a given initial state, the status of a neuron is
modified iteratively to attain a stable state. The stable
states of the network (local minima of the energy
function) are made to correspond to the partitioning of a
scene into compact regions of object and background.

(13)
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(@) (b) (©) (d

Figure 2. Synthetic image: (a) Original
Noisy versions: (b) =15 (¢) 6=24 (d) c=32

@ ® ©

Figure 3. Output images for the input image of Figure 2(b)
using NE and (a) /2, (b) 16, (c) /8

» y o 3
, ,
@ ® o

Figure 4. Output images for the input image of Figure 2(c)
using NE and (a) /2, (b) /6, (c) /8

(@) (b) © )

Figure 5. Biplane image: (a) Input
Output image using elitism and (b) /2, (c) /6, (d) /8

3.2 Optimum NN Evolution by GAs
Each chromosome of the GA represents a network
architecture, as described above, where each bit of the

chromosome represents W,j .Foran mxn image, each

pixel (neuron) being connected to at most k of its
neighbors, the length of the chromosome i1s mxnxk
bits. If a neuron is connected to any of its neighbors, the
corresponding bit of the chromosome is set to 1, else 0.
The initial population is generated randomly. Each
network is then allowed to run for object extraction till it
attains a stable state (converges).

Image ambiguity measure is taken as an index of
fitness of the corresponding chromosome for its
selection for the next generation. Crossover and
mutation operations are performed on these selected

chromosomes to get new offspring (architectures). The
whole process is continued for a number of generations
until the GA converges. The best chromosome of the
final population represents a (sub) optimum architecture
w.r.t. image ambiguity measures for object extraction.

3.3 Image Ambiguity as Fitness

In the stable states of the network, output value of
each neuron will be in [0,1] representing its degree of
belonging to the object class. Each pixel of the extracted
output image (the output status of the neurons of the
converged network) can thus be considered as an
element of the fuzzy image subset object. Different types
of image ambiguity measures of this subset are
considered as measure of fitness of each network
(chromosome).
a) Gray level ambiguity (/,)

@ Quadratic index of fuzziness, f1 (Eq. (1)).
® [Entropy given by Deluca and Termini, /2 (Eq. (3)).
® Entropy given by Pal and Pal, /3 (Eq. (5)).
® Entropy given by Bart Kosko, f4 (Eq. (7)).
b) Spatial ambiguity (/)
® Compactness, 16 (Eq. (12)).
¢) Combination of gray level ambiguity and spatial
ambiguity (/,)
® Quadratic index of fuzziness and compactness, f7.
® Entropy of Delluca & Termini and compactness, /8.
® Entropy of Pal & Pal and compactness, /9.
® Entropy of Bart Kosko and compactness, 10.
For the present investigation, we used a linear weighted
combination of gray level and spatial ambiguity
measures as follows.

Ia:w1]g+w2(l—ls), (14)

where w,,w, >0.

4. Experimental Results

The effectiveness of the proposed technique has been
demonstrated using some synthetic images, which are
generated by adding N(0,6%) noise (c=15,24,32)
to each pixel of the binary (two-tone) image shown in
Figure 2(a); which has a highly compact object. The
corresponding noisy versions are shown in Figures 2(b)-
2(d). Size of each image is 64 x 64 . The range of pixel
value is [1, 32].

A chromosome is represented as a binary string of
length 64x64x8 (8 neighbors are taken). The
population size is kept fixed at 30. Generational
replacement technique and linear normalization selection
procedure are adopted. Number of copies produced by
the ith chromosome with linear normalized fitness
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value f; in a population of size » is taken as round

X1 Both the elitist model (E)
>t fi

and the standard GA (non-elitist model, NE) are
implemented. The crossover and mutation probabilities
are taken as 0.8 and 0.002, respectively. To attain the
stable states (convergence of the network) each network
1s allowed to iterate for 20 times. GAs have been run for
200 iterations. Since the target values of pixels for these
synthetic images are known, one can measure the
percentage of correct classification of pixels (pcc) of the
converged (evolved) network. The pce of the best
chromosome in the final generation using grayness
ambiguity, spatial ambiguity and their weighted
combination (we used wl=450,w2=1, for /8, /9 and
wl=45w2=1 forf7, /10 in Eq. (14); this choice maps
the gray level and spatial ambiguity values in a similar
range) based fitness evaluations for different noisy
versions of the synthetic image is depicted in Table 1. It
1s seen from Table 1 that the pcc is more for /6 (where
compactness is maximized); whereas pcc is less for f1-f4
(minimization of gray level ambiguity); and as expected,
f7-f10 (combination of the above two) produced
intermediate pcc values. It is also found that non-elitist
model evolved networks with less connectivity than the
corresponding elitist version. Various image ambiguity
optimization based methodologies produced similar
architectures.

For visual illustration let us consider the results of
input image of Figure 2(b) (o =15). The output images
obtained for the non-elitist model using entropy of
DeLuca & Termini (f2), compactness (f6) and their
combination (f8) are depicted in Figures 3(a)-3(c),
respectively. For the input image of Figure 2(c) (o = 24),
the corresponding output images are shown in Figures
4(a)-4(c). By analyzing the results we can infer that
spatial ambiguity optimization (compactness
maximization) (Figures 3(b), 4(b)) produced the best
segmented output, in terms of preserving shape and
eliminating noise. This is more evident when the noise
level is high (Figure 4(b)). This is possibly due to the
fact that compactness optimization takes care of local
information and works better for compact/circular
objects. From the results it is noticed that non-elitism has
an edge over the corresponding elitist version so far as
shape preservation and noise removal are considered.
Gray level ambiguity optimization techniques produced
comparatively inferior results (Figures 3(a), 4(a))
compared to other techniques, especially, for higher
level of noise, as it considers only global information. As
expected, a combination of spatial and gray level
ambiguity measures produced an intermediate

(c;); where ¢; =
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performance (Figures 3(c), 4(c)).

The proposed approach is also considered for
extracting objects from a real image namely, 'Biplane'
(Figure 5(a)) that has an elongated object. The size of
this image is also 64x64. Again, for typical illustration,
the corresponding objects extracted using /2, f6, and /8
for elitist models are shown in Figures 5(b)-5(d). It is
seen from these figures also that the proposed technique
is able to segment the real objects satisfactorily. In this
case we noticed that gray level ambiguity optimization
(Figure 5(b)) showed superior performance over spatial
ambiguity based one (Figure 5(c)) and the combination
of them produced intermediate results (Figure 5(d)).
Since the object in this image is not compact and has no
noise, global information based techniques performed
better.

5. Conclusions

Soft computing methodologies are used for extracting
object regions from gray images. Object extraction is
done using Hopfield type networks whose architectures
are evolved by GAs and image ambiguity measures.
Both gray level ambiguity and spatial ambiguity
measures are considered, in isolation and in combination,
as fitness measuring criteria for GAs. A synthetic image,
corrupted by different levels of noise, and a real image
are used for object extraction. It is found that spatial
ambiguity based fitness evaluation has an edge over
grayness ambiguity based ones for preserving shapes
and eliminating noise when the objects in the images are
compact in nature (for the synthetic image). On the other
hand, gray level ambiguity based evaluation produced
superior results for non-compact objects (for the real
image). Combination of both spatial and gray level
ambiguity based optimization mostly produced
mtermediate results. Moreover, non-elitist model is seen
to provide better results (as far as number of connections
and shape of the objects are considered) than the
corresponding elitist version. It is to be noted that, in the
present work the connection strengths are taken as either
0 or 1 (ie., connection is absent or present).
Investigation involving weighted connection may
constitute a part of future study.
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