
1.  Motivation

Several methods have been examined to enhance the

performance of standard Genetic Algorithms (GAs) [1,

2], but there seems to have been little published research

on methods which enhance performance by way of the

following techniques:  introducing better individuals

from outside the population or preserving and reintro-

ducing individuals which were dropped out at earlier

generations.

        Here we investigate a technique called substitution,

which introduces fit new individuals from outside the

current population at various stages during the search

process, and a technique called re-entry, which involves

re-introducing into the population individuals which were

discarded at an earlier stage.

        To some extent, the re-entry concept can be viewed

as extending the "memory" of the genetic algorithm,

whereas the substitution concept can be seen as a rather

more direct diversity-injection measure.  Both promise

to enhance the GA's exploration of the search space.

Re-entry reminds the GA of previously lost individuals

which, despite being rejected at an earlier stage, might

contain genetic material useful again in the current, pos-

sibly quite different areas of the search space currently

represented by the population. In some ways, this tech-

nique

promises to have a similar effect to multiploid methods

[3, 4, 5] or structured methods [6]. Multiploid methods

effectively contain extra unexpressed genes within a

single genotype, and a mask chromosome which decides

which particular genes are expressed at each locus. A

multiploid method can thus  hide recessive genes within

a genotype, until they perhaps become useful at later

stages of the search process, and are then perhaps re-

discovered by fortunate mutations of the mask chromo-
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some. Structured methods amount to a more elaborate

way of doing a similar thing, whereby the genotype is a

tree-like structure whose operators guide the chromo-

some interpretation process to a particular selection of

the tree's leaves, which then make up the expressed chro-

mosome. Both methods have been found to outperform

standard GAs on a range of problems.

        In contrast, the substitution concept is partly re-

lated to the idea of `re-initialization', which is often em-

ployed when a GA has converged. In re-initialization, a

common technique is to restart the population largely at

random, but seeded by either direct copies of certain

chromosomes in the converged generation, or mutants

of these. Thus the population is restarted with a mixture

of entirely new chromosomes and old ones.

        The re-entry method promises to yield the benefits

associated with multiploid or structured methods, but

without the considerable additional baggage associated

with chromosome interpretation and memory usage in

these techniques. The substitution method, in contrast,

promises, to some extent, to offset the potential need for

re-initialization, by way of adequate exploration of the

search space during search, rather than waiting to inject

diversity when convergence has already occurred.

        Substitution and re-entry are performed after selec-

tion and before crossover & mutation operations. A pre-

liminary version of this work was reported in [7].

2. Substitution and re-entry of individuals

In this section we describe the proposed concepts in

more detail.

2.1 Substitution

By substitution (SUB) we mean replacing the worst indi-

vidual of the existing population in a generation by a

new individual chosen randomly from outside of the ex-

isting population. We perform substitution if the fitness

value of the new individual is more than at least the

fitness value of the (existing) worst one. The concept of

substitution owes its origin to natural systems where

recruitment of better individuals is always preferred. Sub-

stitution itself is performed after selection and before

crossover & mutation operations.

        It is intuitively evident that the number of substitu-

tions will be more at the beginning of the algorithm, and

will decrease with time. Also, the substitution operation

is expected to work better for small population sizes where

the convergence rate is very high.  Since the new indi-

vidual can only be substituted if it has a fitness value

better than the worst individual of the existing popula-

tion, average population fitness following a successful

substitution will obviously increase, and we would also

expect performance to benefit from this injection of new

and fit individual.

        A number of related but different published con-

cepts exist, in addition to the  aforementioned `re-initial-

ization' techniques. For example, Cobb and Grefenstette

proposed a technique [8] to replace a fraction of the

existing population chosen randomly in order to improve

the tractability of GAs for changing environment; simi-

larly, multiploid techniques are also usually proposed in

the context of changing fitness environments [3]. How-

ever, in the present work we concentrate on stationary

fitness environments and a particular well-specified  mini-

mal substitution method, whereby a single worst fit in-

dividual is replaced by a better one, taken from the out-

side of the population, if such can be found with one

random trial.

2.2 Re-entry

By re-entry we mean replacing the worst individual of

the existing population by another individual which was

dropped out at an earlier generation. In GAs, popularly

used selection techniques are stochastic in nature and

the population size is finite; as a result at each genera-

tion a fraction of the existing individuals is selected for

the next generation. Thus some of the individuals con-

taining "good genetic material" may be lost at any time.

In this work we introduce

a concept which `stores' discarded genetic material for

later use. It's later re-introduction into the population

promises to kick-start the GA towards more fruitful ex-

ploration of its current environment. Let an individual be

dropped (due to selection) at generation g (g ≥ 1) and

then re-inserted into the population at generation g + gg



(gg ≥ 1);  we define gg to be the generation gap for the

re-entry model. Let all the individuals that are dropped

out at generation g be collected in a temporary pool tp(g).

Some of these individuals may be re-introduced at gen-

eration g+gg in two ways. We can pick up the best indi-

vidual of the temporary pool (we call this best re-entry)

or we can pick up one individual randomly from the tem-

porary pool tp(g) (we call this random re-entry).

        So as to keep the population size fixed, the re-en-

tered individual replaces the existing worst individual.

Replacement  also involves two different strategies. In

the first strategy, like substitution, re-entry is only al-

lowed if the individual which is seeking re-entry is better

than at least the existing worst individual. In the second

strategy, the re-entry is always permitted. We call these

re-entry with checking and re-entry without checking,

respectively.

3. Simulation results and analysis

In the present study the parameters for the GAs were

chosen as follows.  Population size was kept fixed at 50

and crossover probability as 0.8. We adopted

Grefenstette's scaling window (=10) concept [9] for fit-

ness scaling, and used two point crossover.  The num-

ber of simulations performed was 50 in each case. We

used Baker's stochastic universal sampling [10] for se-

lection and adopted the elitist strategy (by copying the

best member of each generation to replace the worst one

of the next generation). The value for the generation gap

gg was tuned for each problem, and the best set are as

shown in the tables. For the function optimization prob-

lems, Gray coded strings were used for chromosomal

representation. The number of bits representing a pa-

rameter and the maximum n umber of generations were

decided depending on the complexity of the problem.

Mutation probability was varied so as to optimize the

performance of the standard GA (SGA), and this set is

reproduced in the tables.

3.1 Test suit

To demonstrate the effectiveness of the proposed con-

cepts the following test suit was considered. The func-

tions tested have a large number of local optima and a

single global optimum and have various degrees of  com-

plexity. In Fig. 1 we depict a three dimensional view of

the functions, so as to have a rough idea of the complex-

ity of the problems being tried.

Davis function : The first function tested was defined by

Davis [11] as

].0.100,0.100[,,
))(001.00.1(

5.0)}{sin(
5.0

222

222

6 −∈
++

−+
−= yx

yx

yx
f

The function f
6
 describes a hilly two-dimensional land-

scape, with an optimal region that occupies a tiny frac-

tion of the total area. The maximum value of this function

is 1.0. For the function f
6
 mutation probability was 0.008,

each parameter was represented by 22 bit; and a maxi-

mum of 250000 trials were performed.

Griewank function : The second function is a modified

version of Griewank function [12] and is defined as

].1.51,2.51[,1)cos(
4000

1 5

1

5

1
2 −∈+−= ∏∑ == i i

i
i ig x

i

x
xf

This is also a highly complex multi-modal function with

the minimum value 0.0. For the function f
g
 mutation prob-

ability was 0.015 and 10 bits for each parameter, and

1000000 trials in each simulation.

Ripple function : The other function tested is a ripple

function [12] and is defined as
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This function f
r
 has many important sharp peaks of dif-

ferent heights (with one global peak having value 5.5)

occupying a small region of the search space; and each

of them is surrounded by high frequency of small peaks.

Average (over the whole search space) functional value

is very small. Here we used a mutation probability of

0.008, coded each parameter with 22 bits, and allowed

500000 trials for each simulation.

Traveling salesperson problem : The traveling salesper-

son problem (TSP) involves finding the shortest Hamil-



tonian cycle in a complete graph of n nodes. The Eu-

clidean distance between any two nodes is computed

from their coordinates. An instance of TSP is specified

by n, the number of cities, and the coordinates of the n

cities. We present here the results for the well known

Oliver's 30-city TSP [13], for which the known shortest

tour length is 420. We choose this problem as an ex-

ample of sequencing problems. For this problem we

used ordered-crossover (OX) [13] and no mutation op-

erator was used, and the maximum number of trials was

set at 1000000.

3.2 Analysis of results

We evaluated the models by measuring OPT (number

of runs in which the algorithm succeeded in finding the

global optimum solution) over the 50 trials; this indi-

cates the success rate. Also, we find  MNT, which is the

mean number of trials to find the global optimum for

those runs in which it did find the optimum. This re-

flects the convergence rate for detecting the global

optimum. These are recorded  in Tables 1 and 2 respec-

tively. In the tables b-ren means best re-entry & r-ren

means random re-entry, WC means without checking

& C with checking; and SUB stands for substitution.

        Let us first examine the results of function optimi-

zation; and first choose the function f
6
. For this case

OPT = 44 (88%) and MNT = 20627 by the SGA. For

the  substitution technique the results were OPT =  50

(100%) and MNT = 19643 (order of 95% of that re-

quired by the SGA). From the Tables we notice that

different types of re-entry models produced similar re-

sults, which are generally comparable to those of the

substitution model and better than the SGA. For re-en-

try, however, MNT is sometimes as low as 67% of that of

SGA or SUB.

        Statistical analysis via a standard comparison of

population means establishes with better than 95% con-

fidence that the re-entry and substitution models are

each superior to the SGA in terms of success rate. We

can also report with 95% confidence that the re-entry

models are usually superior to the SGA in terms of con-

vergence rate to the global optimum, except in the best-

re-entry, with-checking, generation gap 3 case, and the

best re-entry, without checking, generation gap 1 case.

        Next we consider f
g
, OPT = 5 (10%) and  MNT =

75866 by the SGA. The corresponding results for sub-

stitution are OPT =  12 (24%) and  MNT = 129972. From

Table 1 we notice that the maximum number of success is

18 (36%).

For this function also we see that the success rate is

increased significantly, although the MNT required is

more. This shows that the SGA normally gets stuck in

local optima, and even if we continue the algorithm it

does not help much. On the contrary, the re-entry and

substitution of individuals helps to escape from these

local optima, to a large extent.

        Statistical analysis shows with 95% confidence that

all re-entry methods and the substitution method are

superior to the SGA in terms of success rate, although

there are very mixed results in terms of convergence

speed.

        Now we concentrate on the function f
r
. For this func-

tion we see that the SGA and the substitution model
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Fig. 1  A three dimensional view of the functions
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produced very similar results, in terms of OPT (Table 1)

and MNT (Table 2) both. This is possibly due to the

following fact. Since the average  functional value is

small over the whole search space and the global opti-

mum occupies a tiny part of it, probability of introducing

better individuals into the existing population becomes

small and thus the performance is not enhanced much.

The re-entry model on the other hand improves the re-

sults as and when it succeeds to re-introduce "good

genetic material" which was dropped out due to sto-

chastic selection at an earlier generation. For some other

cases the improvement is not so much. It can thus be

inferred that the present techniques (specially the sub-

stitution concept) may not be of much help for a "needle

in the haystack" type problem.

        Statistical analysis in this case shows with 90% con-

fidence that the re-entry methods are superior to the

SGA or substitution methods, but little can be conclu-

sively said concerning convergence speeds.

        Overall, it appears that the substitution and re-en-

try models generally outperform the SGA for certain com-

plex function optimization problems, while re-entry in

particular seems significantly superior in success rate,

and occasionally also superior in terms of convergence

speed.

        Let us now consider the TSP. For this case the SGA

C WC C WC

1 50 50 49 50

2 49 50 49 50

3 50 50 50 49

2 11 11 11 10

3 12 18 14 10

4 15 15 8 13

4 42 41 38 33

5 39 39 36 38

6 37 38 36 41

4 37 36 26 30

5 30 31 26 27

Fu. gg
b-ren r-ren

SGA SUB

f 6 44 50

f g 5 12

f r 33 34

TSP 13 20

C WC C WC

1 16442 19852 17716 13941

2 16296 16650 17654 15825

3 19094 14433 14670 16032

2 196513 137859 52038 176842

3 238571 142290 212235 136755

4 107785 141553 120567 74347

4 182455 161627 179940 132692

5 130150 151133 177539 150913

6 171511 165598 173114 162976

4 282142 281935 197613 254294

5 239184 268260 235744 239069

Fu. gg
b-ren r-ren

SGA SUB

f 6 20627 19643

f g 75866 129972

f r 186993 181673

TSP 352764 286722

Table 1  Number of simulations succeeded in detecting global optima (OPT)

Table 2  Mean number of trials for successful completions (MNT)
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succeeded in detecting the best known solution 13 times

(26%) only; and the MNT was 352764. Under the same

environment the substitution technique succeeded 20

times (40%) with the MNT as 286722; which is much

better than the SGA with respect to both success rate

and convergence rate. Required number of trials for this

case is order of 80% of that of the SGA. Results by the

re-entry model with a similar environment are much bet-

ter than the previous two techniques. Success rate in

this case is sometimes as high as 74%; and the required

mean number of trials is sometimes as low as 56%. This

shows that the proposed techniques succeeded much

more number of times and converged faster. Scrutiny of

the results show that best re-entry model showed higher

success rate over the random re-entry model. Results

by re-entry with checking and re-entry without check-

ing are not that distinguishable. Once again, we notice

that the re-entry model performs better than the substi-

tution technique.

        Statistical analysis (using T-tests in the convergence

rate case due to reduced sample size) confirms these

observations, establishing with 95% confidence that the

re-entry and substitution models outperform the SGA in

terms of both success rate and convergence time.

        In Fig. 2 we depict the graphs showing the OPT

with restricted numbers of trials and the three algorithms.

For the re-entry model, best re-entry with generation

gap gg at 2 for the Davis function, 4 for the Griewank

function, 5 for the Ripple function, and 4 for the TSP

problem were chosen for this purpose. From the figures,

we can see that for a given number of trials, OPT is gen-

erally better with the proposed techniques than with the

SGA.

        From Figure 2(a) we see that the curves are similar

for lesser numbers of trials by all the algorithms, but the

curves for the proposed algorithms reach a higher level

with increasing numbers of trials. This indicates that the

proposed techniques detect the global optimum more

quickly. This claim is clearly evident from Figures 2(b)

and (d).  Figure 2(c) shows that OPT is better for SGA

than the substitution model for small numbers of  trials,

but the situation is reversed as time goes on. However,

re-entry clearly maintains its upper hand in this case

also.

        Generally, the tables, statistical analysis, and fig-

ures help illustrate that success rate of the  proposed

algorithms is generally better than that of a standard GA

for any given number of trials.  In particular, the re-entry

model seems particularly strong.

4. Conclusion

We have presented two modifications to standard GAs;

the idea of introducing new, relatively fit individuals from

the outside world (substitution) and re-introducing old

individuals which were discarded at an earlier genera-

tion (re-entry). These methods promise to increase the

general degree of exploration of the search space, but

without certain overhead associated with related tech-

niques such as multiploidy, structured methods, or

reinitialization.

        The effectiveness of the proposed techniques has

been demonstrated by experiments on some function

optimization problems and a sequencing problem. Em-

pirically, we find that GAs with substitution and re-entry

operations lead to generally better performance with re-

spect to success rate and convergence rate for these

problems. The re-entry model in particular shows much

promise, and seems statistically significantly superior to

SGA in most cases, and often also to the substitution

model.  Although the re-entry model has a number of

parameters which require tuning, it appears to show ro-

bust performance over their variation.

        Future work on this topic will concentrate on test-

ing the suitability of such models for non-stationary en-

vironments, and further investigation of general design

for re-entry based strategies, especially ones which

adaptively tune the generation gap, choice-from-store

method, and replacement method.
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