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SUMMARY. Let u bs an r-semistable probability msasure on a real linear spsce 2. It
is shown that the u-msasure of any translaie of an arbitrary measursble linear subspsce over
oertain oonntabls subfield of reals is 0 or I. This result ylelds immediately the 0-1 laws for tablea
moagures of Dudley-Esnter (1874) and also a more recent 0-1 law of Fornique for quasi-stabla
moasures which ia includad in his ISI leoctures of September, 1878. It is also shown that r.semi.
stabls like stable i.e., they assign zero mass (o singlotans.

1. INTRODUOTION

Let (E, &) be a measurable vector apace in the sense of Dudley and Kanter
and # a stablo probability measure (p.m.) on E. Recently, Dudley-Kanter (1074)
have shown that the - of certain ble subap of E is 0 or
1. More recently Fernique exhibited a similar 0—1 law for what he calls
quasi-stable p.m. A natural and nontrivial generalization of atable
pm’s is the class of r-gemistable p.m’s, which was first introduced
and studied on the rea) line R by Lévy (1837). Later Kruglov (1872a) obtained
a quite explicit form of the characteristic function of istable p.m’s
on R and showed that this class has many properties similar to those exhi-
bited by stable probability messures. (This in Hilbert apace setting is also
shown in Kruglov (1872b) md Kumar (1876). Partly motivated from these
papers we raised and pletely d the questi hether r-semistable
pm’s share with stable measures the 0—1 dichotomy results obtained
by Dudley and Kanter (1074). Explicitly we prove that if (&, &) is a measux-
able vector space over B, x a 7 istable p.m. (see Section 3) on (K, &) and
@ a measurable subspace over the flald @(c), the smallest subfield containing
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Q, the rationals, and ¢ = ¢(r), then x(G—z) = 0 or 1, for every z & E (Theorem
3.1). This result includes and, in faot, extends the 0—1 th for stable
p.m's obtained in Dudley and Kanter (1974) (Corollary 3.2); also the
method of proof of the result includes a recent 0—1 dichotomy theorem of
Fernique (ISI, Caloutta, Lectures 1978) for quasi-stable p.m’s (Corollary
3.3). Further, we also show that, like stable p.m's non-degenerate
r-semistable p.m’s are continuous; that is, they assign zero mass to
singletons (Corollary 3.4). Our proof of the 0—1 dichotomy theorem seema
new a3 well as aimpler than those in Dudley and Kanter (1974) (we use only the
definition of convolution and Fubini's theorem); in particular, we do not
require any number theory results which was not the ocase in the proofs of
Dudley and Kanter (1974).

2. PRELIMINARIES
Let (B, &) be a measurable vector space and x# be & p.m. on &. Let
re(0, 1); then xis called r-semistable if there is a constant ¢r) = ¢ with
0<c¢ #1 and & semigroup {x*; s > 0} of p.m's on & and & ssquence {z{m)}
in E such that the following hold

pr=p . (2]

K =T pped,m, (22)
for each m =1, 2, ..., where for a > 0, T,x denotes the measure 7,u(B) =
#a'B), for every Be s and ¢ denotes the usual convolution.

The above definition is motivated from a characterization of a class
of measures also called r-semiatable on locally convex topological vector spaces
(LCTVS) obtained in Chung, Rajput and Tortrat (1978). It follows from
there tlmt our results are applicable for r-ssmistable (and hence stable and
G ) tudied in Chung, Rajput and Tortrat (1979).

3. 0-1 DICROTOMY THEOREM FOB r-SEMISTABLE MEASURES
The main result we propose to prove is the following :
Theorem 3.1: Let pu be a r-semssladle p.m. on a ble vector space

(E, &) over R and let G be a subspace over the subfield Q(c) such thal G & & (c i
the constant appearing v (2.2)). Then y(G—2z) =0 or 1, for allz6 E.

Proof : Let z, ¢ E and assume that u(G—z)> 0. We will show that
#@—z) = 1. Choose an integer n, 80 that 0 < l/n, < 1—r.
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Let
K= {0—z|0@—2) > 0 or 4'"™(G—2)> 0} C K6,

< K > = linear span of J in E[G over the field @(c),
and
@, = inverse image of < 4 > under natural projection =J < K >.
Then @, is a vector subspace of B over @(¢c) and clearly, Gye 2. gince G, is
a countable union of sets in .
For the sake of olarity, the remainder of the proof will be divided into

8even parts.
(1) A¥7 0 85)(G) = 1.
Proof of (i): Observe that w(@,—cly) =0, for all yeG4 and that
A=p" e pt T = Tope g7 0 85y
Thus
0 < p(@) = { Tep(Go—y)u* o Bani(dy)

= z{ MGy—cly)ut" ¢ 8310)(dy)
0
= GBI ¢ 8214)(G,).
Consequently, 41~ s 8:,)(G,) = 1.
@ £ @) =1
Proof of (i) : Since
p=p e e,
we have

0 < UG—z) = [ 4"(O—2—9)u ™" .

Thus there exists y ¢ E 8o that ,u“"'(G—z,—y) > 0, and hence /;'/n'(G',,) > 0.
Now
2T e bgny = /‘ll" . I‘l_'_”"’ * dzu

and so, from (i),

L= W e (@) = | BT S Go—y s (),
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which implies that

. T—r—1/, !
Since 2T b Ga—y) = 1 8. [41™].

1
47 (@) > 0, it follows that
I—Y-II"V . axu)(ao) - l'
Conssquently,

1= p7 b0 = | A Gy T s Bdy)

=" (Go)/‘l_'-””" 820(Gy)

= /‘l ’-'(Go)-
(i) #O) = 1.
Proof of (iii) : It follows from (i) that

wo) = | @Gy )
0

=" G ")
= @™ Ve,
='"e)™!

=1
We will use the faot that y(@) =1 to conclude that u@—z)=1
(see (vii)). To this end, we proceed.
Recall that @, is a countable (possibly finite) union of disjoint cosets of G.
Let {2y, 2y, ...} be & sequence of distinet points in E so that Gy = Z Q—ay,
]

where Z denotes disjoint union, Clearly, we may assume, without loss of
generality, that s(G—z,) > (G—2z;) > .... Let N, be tho largest integer so
that u(G@—2z)) = ;l,(G—le). For the sake of simplicity of notation, let
t=tim)y=cm, m=12..08nd let vy =p "™ ey, Then p=T,pev,
for any &.
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Ny
(iv) For each ¢, v, (Z G—x_+txg) =1,for 1<n N,

k=t
Proof of (iv) : Observe that if y 6 @—zy, then C—z,— by = G—z iz,
for all # and k.

Thus
HO—z,) = GI w(@—z,—ty) pldv)
0
= f w(G—z,+imp (G—m), - (30)
forn=12,....
Now, for 1 <n < N, we have

#O~z,) = E: v(G—z,+bxy) UG —2x)

< MO—2) T w(@=z i)

= pG—z,m (Z G—f'-‘..+h'k)

k
< p(@—z,).
Thus

MO—z,) v(G—z +izx) = p{G—zx) n{G—2z,+1zk),

for 1< ng N, and any k, which implies that »(G—z,+éxy) =20 for
1{ng Nyand k> N,.

Thus

N
HE—z,) = Ell T SN TN

Ny
= W—2,) T v(@—z,+txy)
k=1

Ny
=pO—z > (O, +toxh

k=1

for1 ¢ng N,
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Hence

N,
l=w (Z G—=,+tz,) R

=1
for 1 < » < Ny, sinoe p(@ —2,) = p(G@—2)) > 0 for 1 <n < N,.

(v) N, =1 or, equivalently, (—z,) > u(G@—ay), for all k > 1.
Proof of (v): Suppose N, »» 2 and consider the 2x N, array M, :

G—zyttzy, Q—zy+izy G-z +izy ... G—zl‘Hﬂ:N,
O—2zp+tzy  O—zytlzy,  O-zytle,...O—2tizy,

By (iv), the v-measure of row 1 of M, is 1. Thus there is an integer k,,
1€ k € Ny, 80 that wl@—z,+Hzy ) > 0, for infinitely many values of ¢
Now, the v;-measure of row 2 is also 1 (by (iv) again), which implies that
G—‘a:,+l:::,,l intersocts row 2, for infinitely many values of £. Thus there is
an integer ky. 1  k, € N,. 80 that G—z,+lz‘l = G—z,+lxh. for infinitely
many values of . Consequently, there ure integers k, and &y, 1< k < Ny,
1 < k € N, 50 that

G-z +7 = O—Yzp—23,), . (3.2)

for infinitely many values of ¢. In particular, there exist {, and 4. ) # /4,
80 that 0—11(1‘.,'—3,l) = 0—(,(2,‘—2:.1) whioh implies that G = G4(f—1)
(@ —2,) and so, (h—h)(zy,—2, )6 G from which it follows that G—z, =
G_:h' Consequently, since @, is & disjuint union, we have k, = k, which
implies. from (3.2), that G—z, = G--z,. But G—z, # G@—z,. Hence (v)
follows.

(vi) For each ¢, v(G--zy+iz) = 1.

Proof of (vi): This is immediate from (iv) and (v).

(vil) pG—2) = p(G).

Proof of (vii): Suppose p(G—z,) < u(G,). Then s(G—z,) > 0. Lot N,
be the largest integer so that u(@—z,) = /L(G—IN'). Observe that, by (vi)

we heve that for esoh ¢, v{G—z,+tx,) = 0, for all # > 2; otherwise, we got
G—z, = G—z,, for some n > 2.
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Thus by (3.1), for 2 & n < Ny,
MO—2,) = v{G—z,+ix))+ Eﬁ (G — 2,26 —xx)

= I y(@—z, -ty (G—zx)
3

< MO—2,) T v(@—2,+i)
bt

= WG—2z,) (ZG—::_-HZ;)

ITY!
< pG—=z,).
It follows that

MO—z i (Q—z,+tzx) = O —2x)vy (G—2,+b2y),

for 2§ n < N; and any & » 2, which implies that v(G—z,+2x) = 0, for
2€ ng Nyand &> N,
Cohsequently,

N,
UO—2,) = T wG—, +ia)uG—z)
k=2

N,
= MO-2,) T w(G—zyior)

N,
= pG—z) (Z G—z,+tz.) ,
k=2

for2n N,
Hence, for all ¢,

N,
l=n (Z G—=.+m). . 03
=2

for 2 € n < Ny, since p(G—z,) = p(G —x5) > 0, for 2 < n K N,

Observe that, by (vi), v(G@—azy+0z,) = 0; otherwise, G—2,+iz, =
G—z,+tz, which implies that @—z, = G—z, Consequently, from (3.3),
XN, > 3, and 80, G, contains at least three disjoint cosets of G. Now consider
the 2x (N,—1) array M, :

O—zptlzy,  G—mptlzy,  G—zptizg... O~z +loy,

O—zgtizy,  G—zytlz,  G—zytle ... G—ztley,
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Observe that the v,-measure of each row of M, is equal to 1. Now proceed,
a8 in (v), to show that there exist integors &, and kg, 2 < &y < Ny, 2 < &y < N,
k, 5 ky, 80 that

G—zgtzy = @—Hzp, — ), . (3.4)

for infinitely many values of &, It follows, from (3.4), like in (v), that k, = k.
Consequently, by (3.4), G—2z, = G—z, This iz o contradiction! Hence
our initial assumption must be false and it follows that w(G—z,) = u(G,).

To complete the proof of the theorem, observe that, by (iii) and (vii),
we have u(@—z,) = u(G,) = 1.

In view of the last sentence of the previous seotion, we have the analogue
of Theorem 3.1 for stable and Gaussian measures if $he measures are K-regular
and are defined on the Borel o-algebra of a complete LCTVS. In the following
corollary, we show, however, that the same result can be recovered from
Theorem 3.1 even if the stable measures y is defined on a measurable vector
space (E, &) provided x has the index; i.e. there exists an @ > 0 such that for
every a > 0,5 >0, Top s Top = T“,H,)m,u o8, for some ze¢X. This
corollary contains and extends various results of Dudley and Kenter (1974); we
do not, however, deal with 0—1 laws when @ belongs to the completed
c-algebra.

Corollary 3.2: Let (E, &) be a measurable veclor space and let G be a
rational subspace of B, G e 5. Then

(i) If p is a strictly slable p.m. of index a on (E, &), then for allze E,
MG—2)=00rl.

(i) If p is a stable p.m. of index « on (E, &), then u(G) = O or 1.

Proof : (i) Assume g is striotly stable of index « and set x* = T,1/a p.
Then {y*[8 > 0} is a semigroup with ! = z and (2.1), (2.2) are satisfied for all
r > 0, with 2(m) = 6, and ¢ = ¢, Then it is easy to see that x is a r-semi-
stable p.m. for all 0 < r < 1. Choose r,, 0 < r, < 1, 80 that r}a is rational.
Then Q(r}/*) = Q. Now apply Theorem 3.1 to obtain the desired result.

(ii) Leb x be o stable p.m. of index & and assumo that 4(Q) > 0. Leb

v = p+T_y s be the symmetrization of 4. Then v is a strictly stable p.m. of
index @. Observe that

UG) = 2{ ME+y) pdy) >GI ME+y) pdy)
= @& > 0.
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Thus, by (i), {G)=1, and so u(@+y)=1 ns. [x] which implics
that p (@) = 1.

Tho following corollury shows that tho method of proof of Theorem 3.1
also yiclds tho 0—1 dichotomy theorera for quasi-stablo measures recently
obtained by Fernique who usos a non-trivial incquality of Kantor for his proof.
Our proof, as wo noted carlier, uses only elementary facts about convolution,
Now wo recall the dofinition of quasi-stablo p.m. as introduced by Ferniquo.
Lot 4 bo a p.an. on o measurable veotor space (£, &), then s is said to
bo quasi-stable if 4*1 = T, for some ¢ > 0, ¢ # 1.

Corollary 3.3: Lel (E, g) be a measurable veclor apace and p be quasi-
slable on E. Let G be Q(c) veclor space which belongs to 5. Then p(G—2) = 0
or ), for everyzc E.

Proof : Let p(G—z,) > 0 and let ¥ = {G—=2:p(G—z) > 0} and define
G, as in the beginning of tho proof of Theorem 3.1 with 4 replaced by 4.
Sinco

0 < p(G) = Tep(Go) = 5*XGy) = 6[ MGs—2) pld=)
0

(as z 6 G§ implies u(G,—2) = 0), we have u(Gy) = 1. Now the definition of

. e . . d m $™_g
quasi-stability implica p* = b honoo p = Tiyyeymp® = Tyyyeymp®

m_
o Piyeymp.  Setting (1je)™ = {(m) and Tu,,,m;‘" '= v, wo sce that
p=v e Tye. Now repoating the proof of (iv) to (vii) of Theorem 3.1 without
any change at all, ono shows x(@—z,) = 1. Completing the proof.

The following corollary shows that nondegenerato r-semistable p.m’s
cannot have positivo point mass.

Corollary 3.4: Let p be anondegenerale y-semistabl of index @ on

a measurable veclor space (E, ). Assume that {z)s &, for all zcE. Then
pE} =0, forall ze E.

Proof: Lot G = {0)and z¢ E. Ifp{G+z} = pfz} > 0, then, by Theorem
3.1, pfz} = 1. Henco p is degenerato, a contradieti
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