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The change-detection problem can be viewed as an unsupervised classification
problem with two classes corresponding to changed and unchanged areas. Image
differencing is a widely used approach to change detection. It is based on the
idea of generating a difference image that represents the modulus of the spectral
change vectors associated with each pixel in the study area. To separate out the
changed and unchanged classes in the difference image automatically, any unsuper-
vised technique can be used. Thresholding is one of the cheapest techniques among
them. However, in thresholding approaches, selection of the best threshold value is
not a trivial task. In this work, several non-fuzzy and fuzzy histogram threshold-
ing techniques are investigated and compared for the change-detection problem.
Experimental results, carried out on different multitemporal remote sensing images
(acquired before and after an event), are used to assess the effectiveness of each of
the thresholding techniques. Among all the thresholding techniques investigated
here, Liu’s fuzzy entropy followed by Kapur’s entropy are found to be the most
robust techniques.

1. Introduction

In remote sensing applications, change detection is the process of identifying differ-
ences in the state of an object or phenomenon by analysing a pair of images acquired
on the same geographical area at two different instants (Singh 1989). Such a prob-
lem plays an important role in various domains, like studies on land-use/land-cover
dynamics (Cihlar et al. 1992), monitoring shifting cultivations (Bruzzone and Serpico
1997), burned area assessment (Bruzzone and Prieto 2000), analysis of deforesta-
tion processes (Hame ez al. 1998), identification of vegetation changes (Chavez and
Mackinnon 1994), monitoring of urban growth (Merril and Jiajun 1998) and so on.
Since all these applications usually require an analysis of a large area, development
of automatic change-detection techniques is of high relevance in order to reduce the
effort required by manual image analysis.

In the literature (Gopal and Woodcock 1996, Yuan et al. 2005, Canty 2006, Celik
2009), several supervised and unsupervised techniques for detecting changes in remote
sensing images have been proposed. Supervised methods require the availability of
‘ground truth’ from which a training set, containing information about the spectral
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signatures of the changes that occurred in the considered area between the two dates,
is generated. The statistics of different classes can be more easily estimated, given the
a priori information. Moreover, it is also possible to estimate the kind of changes
occurred. In contrast, unsupervised approaches perform change detection without
using any additional information, besides the raw images considered. The difficulty in
collecting ground truth information regularly compelled researchers to develop unsu-
pervised change-detection technique to support the analysis of temporal sequences
of remote sensing images. The unsupervised change-detection problem can be viewed
as a classification problem where, given the input image, a ‘changed’ class and an
‘unchanged’ class have to be distinguished.

Unsupervised change-detection techniques require three sequential steps (Singh
1989): (i) pre-processing, (ii) image comparison and (iii) image analysis. During
pre-processing, two raw images are taken as input and are made compatible using
operations like co-registration, radiometric and geometric corrections and noise
reduction (Richards and Jia 2006). In the next step, two pre-processed images are
compared pixel by pixel to generate a third image, called the difference image, where
differences between the two acquisitions (images) are highlighted. There are several
approaches to generate the difference image (Singh 1989). One of the most widely
used approaches is the change vector analysis (CVA) technique, which differences out
the two images (vectors) in order to produce a ‘spectral change vector’. The grey
value of the difference image is equal to the modulus of this change vector (Bovolo
and Bruzzone 2007). Image analysis is performed on the difference image, in order
to obtain a final change-detection map. Several image analysis techniques for unsu-
pervised change detection already exist in the literature (Bruzzone and Prieto 2000,
2002, Kasetkasem and Varshney 2002, Bazi et al. 2005, Carincotte et al. 2006, Pajares
2006, Ghosh et al. 2007, 2009, Bovolo et al. 2008, Patra et al. 2008, Celik 2009).
Although these techniques are robust to solve the change-detection problem, they are
computationally expensive.

In the image analysis step, land-cover changes can also be detected using a decision
threshold to the histogram of the difference image (Bruzzone and Prieto 2000, Melgani
et al. 2002, Moser and Serpico 2006). For instance, when the CVA technique is used to
generate the difference image, changed pixels can be identified on the right side of the
histogram as they are associated with higher grey values and unchanged pixels can be
identified on the left side of the histogram as they are associated with lower grey val-
ues. Therefore, a simple thresholding algorithm (Sezgin and Sankur 2004, Radke et al.
2005) may be used to distinguish between these two possibilities. Since in thresholding,
only the evaluation of a criterion function is required and the algorithm is executed
only once, it becomes fast. In addition, given the histogram, the computation time is
independent of the size of the image. It depends only on the number of grey levels
of the image. However, in this approach, the selection of the decision threshold is of
major importance as the accuracy of the final change-detection map strongly depends
on its choice. Since in many cases only a few changes occur in the study area between
the two considered dates, the density function (histogram) of the pixel values in the
difference image could be confused with the density function of the unchanged pix-
els. In this situation, conventional thresholding techniques will not be able to detect
a suitable decision threshold. In this article to obtain a suitable threshold on the dif-
ference image, we have investigated several non-fuzzy and fuzzy global thresholding
techniques that exist in the image processing literature.
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2. Histogram thresholding

Let us consider two co-registered and radiometrically corrected y-spectral band
images X1 and X>, of size p x ¢, acquired over the same area at different times 77 and
Tr,andlet D = {l,,|l <m<p,1 <n<q,ly,€zz=(0,1,...,L— 1)} be the differ-
ence image obtained by applying the CVA technique (Ghosh et al. 2009) to X; and X;
with L possible grey levels. Then

Y
lmn = (int) % (Z (lgm(Xl) - lgm(XZ))z) :

a=1

Here /%, (X1) and /%, (X>) are the grey values of the pixels at the spatial position (1, n)

in the ath band of images X; and X, respectively. Given a threshold value ¢ € z, the
thresholded image (change-detection map) D; = {/,,,(¢)} takes the following values:

. 0, if lmn <1
lmn(t) - { L — 1’ otherwise. (1)

Therefore, the purpose of thresholding is to classify the difference image into two
groups, namely, @, and w,, corresponding to ‘changed” and ‘unchanged’ classes. Let
the number of pixels in the image with grey level i be f;. Then the total number of pix-
els in the difference image is ZiL:_Ol fi(= p x q). The probability of occurrence of grey
level i (denoted as p;) is

Ji
P xq

Di=

2.1 Non-fuzzy thresholding

In this section we will discuss a few popular classical thresholding techniques to be
used to discriminate the changed and unchanged pixels of the difference image D.

2.1.1 Otsu’s method. In this method (Otsu 1979), the optimal threshold ¢, is deter-
mined by analysing the behaviour of the variances of changed and unchanged classes
obtained assuming different threshold values in the range 0 to L — 1. Let af,,(t) and
o3(7) be the within-class variance and between-class variance, respectively, at thresh-
old ¢ and let o2 be the total variance. An optimal threshold 7, can be determined by
maximizing one of the following three criteria with respect to ¢:

B aé(t) B oé(t) B o2
oo " VT aw

2

As n is the simplest criterion among the three, in this study we have used it to obtain
the optimal threshold ¢;, which is obtained as follows:

11 = Arg max{n},

tez
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where oﬁ(t) = Py, Po, (e, — Iew,)?  and =3 l(1 — wu)’p;,  considering

i ipi b
nw=3Sripn e, = ’—l, fo, = =52—> Po, = X _piand P, =1—P,.
2.1.2 Kapur’s method. In this method (Kapur ez al. 1985), the optimal threshold
is determined based on the concept of entropy (Shannon 1948). Two probability dis-
tributions, one for w, and the other for w,, are derived from the original grey level
distribution of the difference image D by assuming a threshold value ¢ where,

P() pl Dt

P+l D2 PL-1
L) 5
Pwu P(Uu Pwu

P, ,P(DF,‘.., P

c

and o, :

c

The entropies of the unchanged (w,) and changed (w,) classes are then computed as

’ 3)

The optimal threshold ¢, is selected by maximizing the total entropy {H,, (¢) + H,, (1)}
using the following rule:

I = Arg l’l;laX{ku(l) + Hw((z)}~
rez

2.1.3 Kittler’s method. In Kittler’s method (Kittler and Illingworth 1986), the his-
togram is viewed as an estimate of the probability density function pp(i) of the mixture
population comprising the grey levels of the changed and unchanged pixels. It is
assumed that the probability density functions p,, (.) and p,, (.) of the changed and
unchanged classes, respectively, are normally distributed with mean p,, and u,,,, and
standard deviation o,, and o,,. Let P, and P,, be the a priori probability of w. and
wy, respectively. The probability density function pp(.) of the mixture model is written
as

pD(’) = Pw,l Pw,,(i) + Pw,v sz(l’)a (4)

where

(=)’ N (i — po,)’
exp e and p,, (i) = NP exp 52 |

According to Bayes’ rule the minimum error threshold #; is obtained by solving the
following quadratic equation:

1
W, (l) =
P V2mo,,

(l - Mw(- )2
202

(i — Mw,,)

- loga —2logP,, = + log Jf,r —2log P,,. (5)

(l)u

To find out the minimum error threshold ¢, instead of solving the above quadratic
equation, Kittler and Illingworth (1986) defined a criterion function J(¢) for threshold
t as follows:
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J(H)=1+2(P,, logo,, + P, logo,,) — 2(P,, log P,, + P, logP,), (6)
where

ol — [Zio( — 1o )pi] and o — (250G = 1a)?pi
Wy Pwu e Pa)L N

The optimal threshold #; is obtained by minimizing J(¢), that is,
t) = Arg ntlin{J(t)}.
€z

2.2 Fuzzy thresholding

Fuzzy set theory is a generalization of classical set theory. It has the flexibility of
capturing various aspects of incompleteness or imperfection in the information of a
situation. The flexibility of fuzzy set theory is associated with the concept of its mem-
bership function. The higher the value of membership, the lesser will be the amount
to which the concept represented by a set needs to be stretched to fit an object. Since
the regions in an image are not always crisply defined (due to both greyness ambiguity
and geometrical ambiguity), the use of hard decisions for image classification may not
work well. Thus, it is natural to consider fuzzy sets for these kinds of problems (Pal
and Ghosh 1992a).

Let wp(/,,) denote the membership value representing the degree of possessing a
certain property by the (m,n) pixel in D. In the notation of fuzzy sets (Pal and Dutta
Majumder 1986), the image set D can be written as

D= {(lmn)a (,U«D(lnm))}a

where 0 < up(/,,) < 1. The membership value of a pixel in D can be defined by con-
sidering its degree of belonging to the changed and unchanged classes. In the following
sections, we will discuss some fuzzy thresholding techniques that exist in the image
processing literature.

2.2.1 Fuzzy ambiguity minimization methods. Most of the thresholding techniques
are based on the measure of fuzzy greyness ambiguity (DelLuca and Termini 1972, Pal
and Ghosh 1992b) and fuzzy geometrical ambiguity (Rosenfeld 1984, Pal and Ghosh
1992a). The optimal threshold is selected by minimizing the fuzzy ambiguity. All the
thresholding techniques, based on the minimization of fuzzy ambiguity, follow the
same procedure. Here we will discuss only fuzzy entropy and fuzzy correlation-based
ambiguity measures (the latter is to be maximized) to be used to select the optimal
threshold. Let us construct a fuzzy subset bright image characterized by a membership
function wp(.) using the standard S(i; a, b, ¢) function of Zadeh (1965). It is defined as

0 if i < a
2{(i — a)/(c — a)}? if a <i<bd
pp() =1 1=2{((i—o)/(c—a)}* if b <i <ec, @)
<

1 if ¢
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where pp(i) (i € z) is a function of grey level only and represents the degree of belong-
ing of the level i to the fuzzy bright image; b = (a + ¢)/2 is the crossover point (for
which the membership value is 0.5) of the membership function wp. The fuzzy entropy
at threshold ¢ = b of an image D is (DeLuca and Termini 1972)

Yo [=rp() In(p(i) — (1 = up(@)) In(1 — ro@fi

H(t) = 8

(1) < g)n2 @®)
Let uj(.) be the nearest two tone version of p(.) such that
o0 if 0 < pp(i) < 05

() = { 1 otherwise. ©)

The fuzzy correlation between a fuzzy representation of an image and its nearest two
tone version for a threshold 7 = b is expressed as (Pal and Ghosh 1992b)

4 L-1
Corln =1~ = (Z {[p()PA) +”Z+l{1—un(z)] ’f) ) (10)

with Cy = Y15 2up(i) — 1P and Cy = Y1 Rup() — 175 = X0 fi = p x 4.
Here we write the whole process in the form of an algorithm.

Algorithm for threshold selection: Given an image D with minimum and maximum grey
value Ly, and L.y, respectively, the algorithm to determine the optimal threshold #
is given below:

Step 1: Construct the membership plane using the standard S(i; a, b, ¢) function as
up(i) = S(i; a, t, c) with crossover point ¢, and bandwidth At =t —a=c—t.
Step 2: Vary t between L, and Ly,,x. Compute the entropy H(¢) and correlation

Cor(z) for different values of 7 using equations (8) and (10), respectively.
Step 3: Select the optimal threshold #; for which H(#;) has a global minimum or
Cor(t1) has a global maximum, that is,

t; = Arg min {H(t)} or t = Arg (mgl)x {Cor(?)}.
I=b)ez

(t=b)ez

The above threshold selection techniques, based on entropy minimization and correla-
tion maximization, will be referred to as DeLuca-Entropy (DeLuca and Termini 1972)
and Pal-Correlation (Pal and Ghosh 1992b) technique, respectively, in the subsequent
sections.

2.2.2 Huang’s method. In this method (Huang and Wang 1995), assuming a certain
threshold value ¢, the average grey levels of the changed pixels 1, and the unchanged
pixels ., are computed. These average grey levels, ., and u,,, can be considered as
the target values of the changed and unchanged regions for the given threshold z. The
membership function for a pixel with grey value 7 in D is then defined as

e S (1)

woli) = if P>,

T~ 110, 1/C
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where C is a constant and set in a way so that 0.5 < up(i) < 1. To measure the fuzzi-
ness of the fuzzy set, Huang and Wang introduced two commonly used measures: one
is entropy measure (Pal and Dutta Majumder 1986) and the other is Yager’s measure
(Yager 1979).

Entropy measure: For threshold ¢, the entropy H(¢) of an image D is computed by
equation (8) using the membership function defined in equation (11).

Yager’s measure: Yager’s measure is based on the distance between a fuzzy image
subset D and its complement D as follows:

-1 1/p

i=0

where 15(i) = 1 — up(i). Assuming threshold ¢, the measure of fuzziness of D can be
computed as

Y,(D,D)

(13)

When up(i) = 0.5, Vi, both the measures defined in equations (8) and (13) will have
maximum value of fuzziness. On the other hand, when up(i) = 1, Vi, both the mea-
sures will have minimum value of fuzziness. Considering different thresholds ¢, the
fuzziness of the image D is measured using either entropy or Yager’s measure. The
optimal threshold ¢, is selected where the measure of fuzziness is minimal, that is,

= Arg min{H(n)} or 7 = Arg min{§(1)}.

The above threshold selection techniques based on the entropy measure and Yager’s
measure will be referred to as the Huang-Entropy and Huang-Yager techniques,
respectively, in this work.

2.2.3 Liu’s method. Using fuzzy entropy, several threshold selection algorithms
have been proposed in the image processing literature (Huang and Wang 1995, Cheng
et al. 1998, 1999, 2000, Tao er al. 2003, Liu et al. 2006). Liu et al. (2006) selected the
optimal threshold #; based on a fuzzy entropy measure which considers both inter-
class distinctness and intra-class variation. As defined by Huang and Wang (1995),
the fuzzy membership value for a pixel with grey value 7/ in D is obtained using equa-
tion (11). The fuzzy entropies of unchanged (w,) and changed (w,) classes, denoted as
H,, (t) and H, (1), respectively, are then computed as

t
— Pi Pi
Ho, () = = X 1ot 108 1ors

[Zfl (14)
— Pi ydi
H, (1) = 21 0P 108 E

‘ L-1
where P, =Y -L-and P, = ) -L-
=

; .
5 wp(i) i (i)
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Equation (14) defines the entropy of distribution of the ratio of the grey-scale his-
togram and fuzzy membership of unchanged and changed pixels for threshold z. The
optimal threshold 7, is selected by maximizing {H,, (1) + H,,(t)} over ¢, that is,

n = Arg n,qax{ku(t) + Hw(-(t)}-
ez

3. Description of the data sets

In order to carry out the experimental analysis aimed at assessing the effectiveness of
different thresholding approaches, we considered three different multitemporal data
sets corresponding to geographical areas of Mexico, the Island of Sardinia, Italy, and
the Peloponnesian Peninsula, Greece. A detailed description of each of the data sets is
given below.

3.1 Data set related to the Mexico area

The first data set used in the experiment is made up of two multispectral images
acquired by the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor of the
Landsat-7 satellite in an area of Mexico on 18 April 2000 and 20 May 2002. From the
entire available Landsat scene, a section of 512 x 512 pixels has been selected as test
site. Between the two aforementioned acquisition dates, a fire destroyed a large por-
tion of the vegetation in the region. Figure 1(a) and 1(b) shows channel 4 of the 2000
and 2002 images, respectively. In order to be able to make a quantitative evaluation of
the effectiveness of the proposed approach, a reference map was manually defined (see
figure 1(d)) according to a detailed visual analysis of both the available multitemporal
images and the difference image (shown in figure 1(¢)). Different colour composites
of these images were used to highlight all the portions of the changed area in the best
possible way. This procedure resulted in a reference map containing 25 599 changed
and 236 545 unchanged pixels.

Analysis of the behaviour of the histograms of multitemporal images did not reveal
any significant difference due to light and atmospheric conditions at the acquisition
dates. Therefore, no radiometric correction algorithm was applied. The 2002 image
was registered on the 2000 image using 12 ground control points. The procedure led to
a residual average misregistration error on ground control points of about 0.3 pixels.

3.2 Data set related to the Island of Sardinia, Italy

The second data set used in the experiment is composed of two multispectral images
acquired by the Landsat Thematic Mapper (TM) sensor of the Landsat-5 satellite in
September 1995 and July 1996. The test site is a section of 412 x 300 pixels of a scene
including Lake Mulargia on the Island of Sardinia, Italy. Between the two aforemen-
tioned acquisition dates, the water level in the lake increased (see the lower central part
of the image). Figure 2(a) and 2(b) shows channel 4 of the 1995 and 1996 images. As
done for the Mexico data set, in this case also a reference map was manually defined
(see figure 2(d)) according to a detailed visual analysis of both the available multitem-
poral images and the difference image (see figure 2(c)). In the end, 7480 changed and
116 120 unchanged pixels were identified. As the histograms did not show any signifi-
cant difference, no radiometric correction algorithm was applied to the multitemporal
images. The images were co-registered with 12 ground control points resulting in an
average residual misregistration error of about 0.2 pixels on the ground control points.
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Figure 1. Image of the Mexico area. () Band 4 of the Landsat ETM+ image acquired in
April 2000, (b) band 4 of the Landsat ETM+ image acquired in May 2002, (¢) correspond-
ing difference image generated by the CVA technique and (d) reference map of the changed
area.

3.3 Data set related to the Peloponnesian Peninsula, Greece

The third data set used in the experiment is composed of two images acquired of the
same area by a passive multispectral scanner installed on a satellite, that is, the Wide
Field Sensor (WiFS) mounted on board the IRS-P3 satellite. The area shown in the
two images is a section (492 x 492 pixels) of a scene acquired in the southern part
of the Peloponnesian Peninsula, Greece, in April 1998 and September 1998. As an
example, figure 3(¢) and 3(b) shows channel 2 (i.e. near-infrared spectral channels)
of both the images. As is readily apparent, various wildfires destroyed a significant
portion of the vegetation in the aforesaid area between the two dates. Like the pre-
viously mentioned data sets, a reference map was manually defined (see figure 3(d))
to assess change-detection errors. This reference map contains 5197 changed and
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(@) (b)

(©) (d)

Figure 2. Image of Sardinia Island, Italy. (¢) Band 4 of the Landsat TM image acquired in
September 1995; (b) band 4 of the Landsat TM image acquired in July 1996; (¢) corresponding
difference image generated by the CVA technique using bands 1, 2, 4 and 5; and (d) reference
map of the changed area.

236 867 unchanged pixels. The images were registered using the multispectral image
acquired in April as a reference image. The analysis of the histograms of the April and
September images did not reveal any significant difference in the light conditions at
the two dates.

4. Experimental methods

In this work, an investigation is carried out to check the suitability of various
histogram thresholding techniques, applied on the difference image, for generating
change-detection maps. The change-detection results provided by these techniques are
compared with those produced by the Manual Trial-and-Error Thresholding (MTET)
technique. The MTET technique generates a minimum error change-detection map
under the hypothesis of spatial independence among the pixels by finding a minimum
error decision threshold for the difference image. The minimum error decision thresh-
old is obtained by computing the change-detection error (with the help of the reference
map) for all possible values of the decision threshold. Comparisons are carried out in
terms of both overall error (OE), number of false alarms (i.e. unchanged pixels identi-
fied as changed ones, denoted as FA) and number of missed alarms (i.e. changed pixels
categorized as unchanged ones, denoted as MA).
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7~

() (d)

Figure 3. Images of the Peloponnesian Peninsula, Greece. (¢) NIR band of the IRS-PE WiFS
image acquired in April 1998, (b) NIR band of the IRS-PE WiFS image acquired in September
1998, (¢) corresponding difference image generated by the CVA technique using the NIR band
and (d) reference map of the changed area.

4.1 Analysis of results

Table 1 shows the change-detection results obtained by different thresholding tech-
niques. For the Mexico data set, it is found that, except for Kittler’s method, all
methods detected thresholds which are close to the optimal threshold (¢; = 39) derived
by the MTET technique. For visual analysis, figure 4 depicts the change-detection
maps produced by these techniques. It is apparent that the techniques which select
higher threshold values produce higher MA and lower FA, whereas the techniques
which select lower threshold values produce lower MA and higher FA.

For the Sardinia data set, by analysing the results shown in table 1, it is seen
that Kittler’s and Huang’s (Huang-Entropy and Huang-Yager) methods fail to detect
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Table 1. Detected thresholds (z;) and the corresponding change-detection results obtained by
applying different thresholding techniques.

Peloponnesian
Mexico data Sardinia Island data Peninsula data
OE OE OE
Methods used 1 (MA+FA) t (MA+FA) t (MA+FA)
MTET 39 4591 95 1890 64 3553
(2404+2187) (10154-875) (2424+1129)
Otsu’s method 45 5111 73 6122 26 65518
(3860+1251) (199+45923) (65+65453)
Kapur’s 37 4697 84 3051 55 4845
method (1981+2716) (458+4-2593) (13954-3450)
Kittler’s 24 15131 62 12824 24 75873
method (0+15131) (77412747) (47475826)
DeLuca- 38 4625 88 2343 64 3553
Entropy (2187+2438) (645+1698) (2424+1129)
Pal-Correlation 36 4811 88 2343 60 3724
(1743+3068) (645+1698) (1891+41833)
Huang- 31 6445 46 30643 19 109602
Entropy (760+5685) (19+30624) (194+109583)
Huang-Yager 42 4776 49 25825 19 109602
(3131+41645) (26+25799) (194+109583)
Liu’s method 39 4591 85 2645 55 4845
(2404+2187) (545+2100) (1395+-3450)

the proper threshold and also Otsu’s method detected a threshold which is far
away from the optimal threshold (¢; = 95) as detected by the MTET technique. All
other methods, for example, Kapur’s, DeLuca-Entropy, Pal-Correlation and Liu’s
methods, detected thresholds which are close to the optimal one. For visual illus-
tration, the change-detection maps produced by all these techniques are shown in
figure 5.

By analysing the results shown in table 1 for the Peloponnesian Peninsula data set,
it is noticed that Kapur’s, DeLuca-Entropy, Pal-Correlation and Liu’s methods are
able to detect the proper thresholds which are close to the optimal threshold (7, =
64) obtained by applying the MTET technique. The other methods failed to find a
suitable threshold. Figure 6 shows the change-detection maps produced by different
techniques. Visual analysis also conform the above findings.

It should be noted that Otsu’s method detects a threshold by maximizing the
between-class variance criterion. This criterion may fail to select the proper thresh-
old when the size of the changed and unchanged regions are significantly different
irrespective of their intensity contrast (Qiao er al. 2007). For the Sardinia and
Peloponnesian Peninsula data sets, since the sizes of the unchanged regions are
much larger than the changed regions (see figures 2(d) and 3(d)), Otsu’s method
detected thresholds which are far away from the optimal one found by the MTET
technique.

In Kapur’s method the optimal threshold is detected by maximizing the entropy of
the changed and unchanged classes. It tries to modify the histogram of the difference
image so as to have a more or less equal distribution for changed and unchanged
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Figure 4. Change-detection maps (black and white represent the changed and the unchanged
areas, respectively) obtained for the Mexico data set using (¢) MTET, (b) Otsu’s method, (¢)
Kapur’s method, (d) Kittler’s method, (¢) DeLuca-Entropy, (f) Pal-Correlation, (g) Huang-
Entropy, (h) Huang-Yager and (i) Liu’s method.

classes. As the method uses the a priori probability of both the classes to modify the
distribution of the histogram, unlike Otsu’s method, it selects a threshold irrespective
of the sizes of the changed and unchanged regions. Also, unlike Kittler’s method it is
independent of the distributions of the two classes. Kapur’s method is considered to be
one of the best approaches to thresholding (Radke er al. 2005). In this investigation,
for all the data sets, the results obtained by this method also confirm the validity of
the above findings.

Kittler’s method defines a criterion based on the assumption that the histograms of
the changed and unchanged pixels are normally distributed and a threshold is selected
by minimizing this criterion. The smaller the overlap between the density functions
of the changed and unchanged pixels, the lower is the criterion value. Figure 7 shows
the histograms of the difference image of the Mexico, Sardinia and Peloponnesian
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Figure 5. Change-detection maps (black and white represent the changed and the unchanged
areas, respectively) obtained for the Sardinia Island data set using (¢) MTET, (b) Otsu’s method,
(¢) Kapur’s method, (d) Kittler’s method, (¢) DeLuca-Entropy, (f) Pal-Correlation, (¢) Huang-
Entropy, (#) Huang-Yager and (i) Liu’s method.

Peninsula data sets. From these histograms we can say that the density function of the
pixel values in the difference image can be confused with the density function of the
unchanged pixels. As a result, the overlap between the density functions of the changed
and unchanged pixels becomes a minimum when the threshold is far left of the optimal
threshold. The results shown in table 1 confirm the validity of these findings.

In fuzzy ambiguity minimization techniques, users have to specify the width of the
window w (w = 2A¢), which is shifted over the dynamic range of the fuzzy region
of the histogram. Depending on the size of the window, different global thresholds
may be detected. In this experiment, the value of w was chosen by the trial-and-error
method. From the results it is seen that, for all the considered data sets, the fuzzy ambi-
guity minimization techniques detected the thresholds which are close to the optimal
threshold (obtained by MTET).

Thresholds detected by Huang’s method (both Huang-Entropy and Huang-Yager)
depend on the statistical mean of the assumed changed and unchanged classes
(Melgani et al. 2002). In this experiment, this method produces good thresholds for
the Mexico data set, but fails to produce acceptable thresholds for the Sardinia and
Peloponnesian Peninsula data sets. This may be because only information (class mean)
on which the technique relies may not be a proper representation of the classes to
detect an appropriate threshold.
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© n 0

Figure 6. Change-detection maps (black and white represent the changed and the unchanged
areas, respectively) obtained for the Peloponnesian Peninsula data set using (¢) MTET,
(b) Otsu’s method, (¢) Kapur’s method, (d) Kittler’s method, (¢) DeLuca-Entropy, (f) Pal-
Correlation, (g) Huang-Entropy, (#) Huang-Yager and (i) Liu’s method.

Liu’s method produced good results for all three data sets used in this experiment.
Unlike Huang’s method, Liu’s method considers not only inter-class distinctness,
but also intra-class variation which may help select better thresholds. Basically, the
entropy defined by Liu contains Kapur’s entropy (Kapur et al. 1985) in itself and
introduces a fuzzy concept to manage the natural fuzziness of images.

In this experiment, we have used three multitemporal remote sensing data sets
for two different applications. The Mexico and Peloponnesian Peninsula data sets
are used to assess the burned regions and the Sardinia data set is used to assess
the flood-affected regions. From these applications, we found that the fuzzy ambi-
guity minimization methods (DeLuca-Entropy and Pal-Correlation), Liu’s method
and Kapur’s method are the most effective thresholding techniques. All these methods
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Figure 7. Histograms of the difference image generated by using the multitemporal images of
(a) the Mexico area, (b) Sardinia Island, Italy and (c) the Peloponnesian Peninsula, Greece.

provided fewer MA compared to the MTET method which is sometimes important
for this kind of application.

5. Conclusions

Histogram thresholding is one of the cheapest and fastest techniques for unsuper-
vised image classification. In the present work, several global non-fuzzy and fuzzy
thresholding techniques have been used and compared for detecting changes of mul-
titemporal remote sensing images. All the described techniques are used to detect
thresholds from the histogram of the difference image that represents the modulus
of the spectral change vectors associated with each pixel in the study area.

Considering the present investigation, among the various thresholding techniques,
fuzzy ambiguity minimization techniques (DeLuca-Entropy and Pal-Correlation) pro-
duced the best results (compared to other non-fuzzy and fuzzy techniques), but they
need an appropriate window size as an input parameter from the users. On the other
hand, Liu’s fuzzy entropy-based technique also provided better performance, followed
by Kapur’s non-fuzzy entropy-based technique without using any user-defined param-
eters. All other algorithms are found to show moderate performance. In this regard,
we plan to do some more investigations for multidimensional histogram thresholding
which take local information into account.
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As a final remark, the histogram thresholding-based change-detection methods
are simple and suitable for applications like management of natural resources (e.g.
forests, sea), damage mapping (e.g. burned areas, floods areas, earthquake) and so on.
However, their suitability for land-use and land-cover change detection is limited.
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