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AN INEQUALITY FOR MOMENTS OF SUMS OF
TRUNCATED ¢-MIXING RANDOM VARIABLES
AND ITS APPLICATIONS

By G. JOGESH BABU
Indian Stalistical Institule

SUMMARY. Let (X.) bo a sequonce of ¢-mixing random varinbles. For d > 1, let
Ya,« = Xa or O sccording as |Xa| < d or not. In this papor, nontrivial bounda for moments
of sums of (¥a.4) are obtained. Thess bounds aro then applied to got the convergenco rats in
the Marvinkiowioz-Zygmund strong law for ¢-mixing sequonces.

1. INTBODUOCTION
Let {X,) bo a sequonce of random variables. Let & be the o-field gene-
rated by X,, ..., Xn 8nd 82 be tho o-field genorated by X, Xmyy, ... . The
sequence {X,) is called ¢-mixing if there exists a sequonce

1 > ¢l > ¢l e
such that
lim ¢,=0
R o
and

| P(A (" B)=P(A) P(B)| < ¢mP(4)
forallde g}, Bega hplandmp 1,
Lot d > 1 be a real number and lot
X if [X¢) €d
Y=
0 othorwiso.
TFor any real numbor & > 2 and integers a2 » 1, & > 0, lot

14
D(n, k, k) = E

Z Yo
I=1

and
Din, k) = aup D(n, k, k).
A0

Al2-]
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In this paper we obtain bounds for D(n, k), which are useful in studying con-

vergence rates for partial sums of @-mixing random variables, Sco Ghosh

and Babu (1977) and Babu, Ghosh and Singh (1978). In tho last scction we

give somo applications of theso bounds. Throughout this note K denotes

agenorio constant. Tho object of the paper is to prove the following proposition.
2. MarN RESULT

Proposition : Let {X,) be a $-mizing sequence with
£ g <o . (2]
ne=l

Jor some 0 < & < 1 and salisfying for some p > 0 and A > 1,
sup E|X,|? < M. . (22)
P

If p>1, we further assume that E(X,)=0 for all n3>]1,
and 0 <8 max (%—, l—%). Then for each k> 2, ¢>0 and p>gq,
there exists a conslant a = a(k, p, g, M, §) such that
Din, k) < a[n*/*+ndt-»), . (23)
Jorall 1 < ndv.
Proof : Tho main idea of tho proof is borrowed from Doob (1953), (sco
Lomma 7.4, p. 225).  Wo first noto that for r, s 3 1 such that %-}-’L =1,

| E(XY)=EX)E(Y)| < 28L(E| X |"WHE| X [4)vh, - (24)

whenever X is measurablo with respoct to g, (E|X]")Vr < o0, Y is measur-
ablo with respoct to 3., (E| Y|4Vt < o0, and k 2L llr=1(B|Y|9v
is to be interpreted as ess.sup |¥]. For a proof of this incquality see
Billingsloy (1908, 170-171). Sinco ¢2 < g2 for all 0 < 7€p ond 23],

without loss of generality wo can assumo that & = max (—l, l——l—) ifp>1,
b4 ?
and 8 =1ifp 1. Obscrve that if p > 1, then
|E(Y)| = | B(Xi—Yy)| < d"PE|Xy|? & Mar-»
and that if p & 1
IE(Y)| < E| Y| < d2E|X,|» < Md*-.
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So in any caso
|E(Y))| & Md-», . (2.6)

Noxt noto that if p > 0> 1, thon
EIV' < EIXi|° 1+ e (2.8)
and that if 0> 1 and 0 > p, then

E| Y| < d-PE| Xy|? < Mdo-p. w (27
Henco
d*? ifdp g land p(1—8) < 1
(E) Vi VWE| Y, jvudy-~4g < 1 if p>1,1&8p — (28)
and 1 < p(1-8).

Since, for » > 1, we assumed & = max (%. 1—-’1’-), wo have by (2.4), (2.5)
and (2.8) that for 1,5 > 1.
|E(Y1Yeug)| < 20UE| Yo VOHE| Yiyg| VO-9)'~24 | E(Y)E(Yiy5)|
L BY1+drr)dr-, e (29)
Since

" -1 a-f
D(n, 2, h) 2; E(Yha+2 E‘l ;‘3 1E(YoaYeugin)

{=

wo have by (2.1), (2.0), (2.7) and (2.0) that if 1 < n & d9, then

D(n, 2) & n+ndt-»4ntdt-tp
< n{l4dp).
To prove tho proposition by inducti next that 1 < n < d¢ and for
some intogor m > 2,
Dn, 1) < nn/tfndm-» o (2.10)

oand provo a similar incquality for D(n, k), whoro k—m =¢ and. 0 <e 1.
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Fix an integer A > 0. Dofino Z,=‘£ Yiune Zaw = Zynyt—2Znyy ond
£

Sni= Z Yaas, ¢ > 1isan intoger. Then
(=1

E|Zut Zna* < EUI Zul+ | Zaal(1 Zal 4| Zil )
3290 (EALSITP MIPATSE T
=0 ')

By (2.4) wo have for j=1,...,m,

|E1Z,|*!| Zaa V! —E| 24| *~1E| Znu| ! < 26§+ Din, k).

It followa from (2.1), (2.11), (2.12) and Hélder's inoquality that
"E| 2yt Zna| ¥ < A1+ K4m)Din, 1)+ KD¥m(n, m).
Since n  d7, wo have

(ndm-p)khn - (ndl-l)(nd-p)clm < n'dt-»

. (211)

. (219)

. (213)

. (214)

for some ¢ (0, 1), which deponds only on %, p and g. Obscrve that for any

v>0,

2M if vgop.
sup E| Y |® <11(v)=ﬁr
420 | Mde~?  if v>p.

Using Minkowski's inoquality (2.13) and (2.14) we obtain that

D(2n, k, b) = EIZ-+Z.:l+sn-l—Su»l|.

. (2.15)

< 2014+ KE+1m) Dln, k)4 K(ntn - nt HH(E)] /e 2UITHE)E
& 2(14 Kt=+28m) Din, %)+ K(nt/4n® II(E)))(14 Kin-ok)k

Taking 2n = 2/ < d¢ and ¢ = [2Y/2¥] in (2.16), we obtain that

D, k) & 21+ Kbl) D2, k) R2kny K2seII(k),

where {z] donotos tho largost integor < z and b =2

_ml-(u Homk « nk)

. (2.10)

. (217)
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Noto that 0 < b < 1. Ropeating {2.17) j times and observing that IT (14 Kb4)
(L3}
< ¢0, we obtain that

D2k K [2!D(|. B)osen (% 2-;(k-:)/:)+11(k)2;: ( 2'-;02.4:_:))]
>~ ki

& 2dbp ek,
Tho last step above follows from (2.15).

To complete tho proof wo uso a binary decomposition of 2 for any positive
integor » < d¢ and obtain inequalities similar to (2.22) and (2.23) of Ghosh
ond Babu (1977). Tho dotails are omitted.

3. APPLICATIONS

In this scction wo apply the momont inequality proved above to obtain
the following theorems. Theorem 1 is similar to tho results of Lai (1077).
The method adopted hero is different from his and is comparatively simplo.

Theorem 1: Let {X,} be a $-mixing sequence salisfying, for some p >0
and £> 1,

aup E{| X,|?(log (14| X))} < c0. . (30)
Let 22> 1 and px > 1.

o Ifp<lad T ¢, <o, then
Am]

f np*-tp ( sup
ne=l jen

]
by x,l >nt) <. . (32)
i=1

() If p>1, EX,)=0 for all 2> 1 and E‘ #8 <o, for some
0 < 8 § maz(lfp, (p—1)/p), then (3.2) holds.

Theorom 2: Suppose {X,} is a slalionary $-mizing sequence satisfying,
for aome p > 0 and ¢ > 0,

E(| Xy |7(log (14 X, ]))'} < 0. - (33)

Then the assertions in Theorem 1 hold.
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Remarks : Lai (1077) has proved a result similar to Theorem 2, assum-
ing further for some 7 > 1and m > 1, as 2> 0,

mp PS>z | X >2) = 0P X] > ). . (34)

But tho result is proved under E| X, |? < 0 and without any condition on ¢.
Theorem 1 generalizes theso results to non-stationary mixing sequences. Qur
proofs depend on the repeated uso of tho proposition given in Section 2.

Wo first prove the following lemmas :

Lemma 1: Let A>0 and > 0. Under the assumptions either of
Theorem ) or Theorem 2, there exists a K(A, f) > 0 such thal for all n > 3,
hp0and1 < j < n—h,

)
P(| £ Sun, | > 40) < Kt M- togns, . (@5)

where Xy 4 = Xy or 0 according as | Xy| € n® (log n)~? or nol.
Proof : Put Sy=0and §5= ‘2';'.\',_... By the proposition, for cacl
0> 2, there exists & K(0) such that
E|Syin— 54| & K(ONG¥2+jn=0-(log n)-#0-").

Sinco 22 > 1, by taking 0 = max (3, (2px+4)/(22—1), p+4-") and using
Chebyshev’s incquality, wo obtain that

P(|Sgp=8p] > An?) A0 PE Sy =S|
& 24-9K(0) jn-r(log n)-1 .
This completes the proof.

Lemwma 2: Let B> 0and A>0. Let Xy, and S; be as in Lemma 1.
Then

P( ,aup |84] > 34n%) = O(n'~?*(log n)-?).
an
Proof: We follow tho method given in Billingsloy (1968). For
1€1<n, lot
E= (ls:[: 18] € 34n°, S| > 34n%).
Notico that the events {E;, 1 < § € »} aro disjoint and

E= (JE=(sup |§)] > 34n%).
=1 ien
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Wo havo

P(E) < £ PEN(IS.] < An)+PIS,] > 4n)

< ,iP(Eaﬂ(IS.—SxI > 24n)+P(|8,] > AnT). ... (3.)

Lot ¢ bo & positive integer such that 43(g) < 1. Letn,> g bo such that
4K(A, f)n}-P* < 1, where K(d,p) is as in (3.56). Then for 1 i < n—g,
n > ng, wo have, by the ¢-mixing inequality, that

PE;N(]8,—8] > 24nr%)
< PE (| 8a=Stsql > An)+P(1Styq— 51 > An?)

< PENP(| Su=Suyql > An)+IOH-XI Sty =St > 4ne). ... (37)

Now by Lemma 1, (3.6) and (3.7), wo have for all n > n,,

P(B) < 5 PUE)+ .-..i.q | PSS, 1> 24n)
+ X PISg=Sil > AnVHP( 5] > n)

< 5 PUB) +O(nt-(log n)).

This complotes the proof of tho lomma.
Lemma 3: Lel IV be a non-negative valued random variable with E(1V) < 0,
Then for any 0> 1,
Inf1P(IV > nf) < co.

Proof : b n8-1P(IW > nf)
nw=l
= ;Jln’—‘ T P < W& (k1))
ne k=n

o k
- Y] . 9~
E P < W < (k41)) (.El" l)

=0 (5:‘. BPRE < 7 < (k1))

= O(E(IV})) < e0.
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Proofs of Theorems 1 and 2: By Lomma 2, it follows for any >0,
that

£ w2 Pl aup | 8] > 1) < .
A=1 i&n
Since

]
I X
f=1

>nt) < P sup || >n7)
isn

P(, s,

+ £ P Xi| > n*log w4,

it is enough to show that

‘3 no-1 )5 P(| X¢} > n{log n)™*)) < co0.

a=l l=1
Put ;= |X|? (log(1+| X))}~ In the case of Theorem 1, thero exists &
¢> 0, n, > 0 such that for all n > %,

E KX > wlog ) < £ P Wi > neolog ny-22)
& -2 (log n)*»=* 12 Ssu;) B\ W)
Ed
Since in this case (3.1) holds with some € > 1, Theorem I follows by taking
A =(=1)2p.
To provo. Theorem 2, take f = ¢/p. There exists & 5> 0 and 7, >0
such that for all n > n,,
E PUXI| > nflog m)*) < n KLy | > b2,

Now Lomma 3, with 0 = ap and W = |17, |-}, yiolds Thoorom 2.
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