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In the NF paradigm, much research effort has been made (Abe,

2001; Baraldi, Binaghi, Blonda, Brivio, & Rampini, 2001; Boskovitz

& Guterman, 2002; Gamba & Dellacqua, 2003; Ghosh, Pal, & Pal,

1993; Han, Lee, Chi, & Ryu, 2002; Keller & Hunt, 1985; Kwon,

Ishibuchi, & Tanaka, 1994; Pal & Ghosh, 1996; Pal & Mitra, 1999;

Qiu & Jensen, 2004). NF hybridization is done broadly in twoways:

NNs that are capable of handling fuzzy information (named as

fuzzy-neural networks (FNN)), and fuzzy systems augmented by

NNs to enhance some of their characteristics such as flexibility,

speed and adaptability (named as neural-fuzzy systems (NFS)) (Pal

& Ghosh, 1996; Pal & Mitra, 1999). Other than these two, fuzzy

sets/logic can also be incorporated inNNs in variousways. All these

methodologies can be broadly categorized into five NF integration

procedures, and the details on these methodologies can be found

in Pal and Ghosh (1996).

The main aim of the present work is to explore various

possible degrees of belonging of all features independently

to different classes; normally not used in conventional NF

classification systems. The proposed hybrid classification model

assigns memberships for each feature of a pattern to different

classes forming the membership matrix. The number of columns

and rows of the matrix are equal to the number of classes and

number of features (spectral bands for remote sensing images),

respectively. Therefore, the input vector will have a dimension

equal to the product of the number of classes and the number of

features. In other words, the number of input nodes of the NN is

equal to the number of elements of the membership matrix. This

membershipmatrix is converted into a vector by cascading all rows

(columns) and becomes the input to the NN. Number of output

nodes of the NN is equal to the number of classes. Defuzzification

operation is then performed on theNNoutput. A hard classification

of the input pattern can be obtained using a MAX (maximum)

operation on the output of NN as in the case of a conventional fuzzy

classification system.

The organization of rest of the article is as follows. A detailed

description of the proposed NF classificationmodel has beenmade

in Section 2. Section 3 describes the experimental results with

comparative analysis. Various performance measures used in the

present investigation are also discussed in this section. Finally,

concluding remarks are provided in Section 4.

2. Proposed neuro-fuzzy classification model

A new model for the neuro-fuzzy (NF) classification system

is proposed in the present article. The proposed NF classification

system extracts feature-wise information of input pattern to

different classes. Since all features are not equally important in

discriminating all classes, the feature-wise belonging is expected

to help in the classification process. The block diagram of the

proposed NF model is shown in Fig. 1.

The proposed model works in three steps. In the first step,

the system takes an input and fuzzifies its feature values using

membership functions (MF), and provides the membership of

individual features to different classes. A membership matrix thus

formed contains number of rows and columns equal to the

number of features and classes, respectively, present in a data

set. In the present study, we have used a popular π-type MF

to model a class (Pal & Majumder, 1977). Thus, the first step

of the proposed NF classification system extracts the hidden or

interrelated information of features to all classes through the MF

that may be helpful for obtaining better classification accuracy.

The advantage of using π-type MF is that it has a parameter,

called fuzzifier (m), which can be tuned easily according to the

requirement of the problem. This provides more flexibility for

classification. Thus the generalization capability can be controlled

by selecting a proper value ofm.

Fig. 1. Proposed neuro-fuzzy classification model.

In the second step, the membership matrix is converted into a

vector by cascading all rows or columns. This vector becomes the

input to the NN and thus the number of input nodes of the NN is

equal to the product of the number of features and classes. The

number of output nodes in the NN is the same as the number of

classes present in the data set.

The last step of the proposed NF classifier is a hard classification

by performing a MAX operation to defuzzify the output of the NN.

A pattern is assigned to class c with the highest class membership

value. However, we can also use the fuzzy output of NN for

higher level processing, if desired, particularly for image analysis

problems.

2.1. Fuzzification

The MF generates a feature-wise degree of belonging of a

pattern to different classes by fuzzification. The membership

matrix fd,c(xd) thus generated, expresses the degree of belonging

of different features (D) to different classes (C), where xd is the

dth feature value of pattern x; with d = 1, 2, . . . ,D and c =

1, 2, . . . , C . A pattern is thus represented as

x = [x1, x2, . . . , xd, . . . , xD]
T. (1)

Various types of MFs are used in fuzzy systems for modeling

input values. Here we have used a popular π-type MF to model

a class (Ghosh, Meher, & Shankar, 2008; Pal & Majumder, 1986).

Note that it is a bounded function having a shape similar to that

of Gaussian/exponenital function; and by varying the value of

the fuzzifier m we can control the steepness of the function. The

function is defined as (shown in Fig. 2):

π(x; a, r, b) = 0, x ≤ a

= 2m−1[(x − a)/(r − a)]m, a < x ≤ p

= 1 − 2m−1[(r − x)/(r − a)]m, p < x ≤ r

= 2m−1[(x − r)/(b − r)]m, r < x ≤ q

= 1 − 2m−1[(b − x)/(b − r)]m, q < x < b

= 0, x ≥ b

(2)

where m is called the fuzzifier. In the present investigation, we

have selected the fuzzifier value as 2. The MF has a center at r ,

with r = (p + q)/2, where p and q are the two crossover points.

Membership value at the crossover points is 0.5 and at the center

r its value is 1.0 (maximum). Assignment of membership value

is made in such a way that a training data gets a membership

value of 1.0 when its feature value is at the center of the MF,

and when it is away from the center its value gradually decreases

and attains 0.5 at the boundary of the training set. The extended
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Fig. 2. π-type membership function used to compute the membership value of a

feature to a class.

region beyond p and q will have membership values less than

0.5. This region is considered to incorporate the portion (of the

pattern class) possibly uncovered by the training samples, which

provides a scope/flexibility for improved generalization ability of

the system. The center r is computed as the mean of the training

data set. It is defined as r = mean(y) (i.e., average value of

the data set for a feature y). The crossover points p and q are

estimated as p = mean(y) − [max(y) − min(y)]/2, and q =

mean(y) + [max(y) − min(y)]/2, where min and max are the

minimum and maximum value, respectively, of the data set for

a particular feature y. Such a choice of p and q ensure that most

of the training patterns have a membership values ≥0.5; and test

patterns can have membership value in [0, 1]. For a pattern x, the

membership matrix after fuzzification process is expressed as:

F(x) =







f1,1(x1) f1,2(x1) · · · f1,C (x1)
f2,1(x2) f2,2(x2) · · · f2,C (x2)

· · · · · · · · · · · ·

fD,1(xD) fD,2(xD) · · · fD,C (xD)






(3)

where fd,c(xd) represents the membership of the dth feature to the

cth class.

For example, f2,3(x2) represents the membership grade of the

2nd feature to class 3. This fuzzified pattern matrix (membership

matrix) is used as input to a NN as described below.

2.2. Neural networks

The proposed NF classification method has been implemented

using the most popular feed forward multi-layer perceptron

classifier (Anthony & Bartlett, 1999; Baldi & Homik, 1995; Haykin,

1997; Marinai, Gori, & Soda, 2005; Ripley, 1996; Zhang, 2000;

Zurada, 1992) having three layers — known as input, hidden and

output layers, respectively. The number of nodes in the input-layer

is equal to the number of elements in the membership matrix and

the number of nodes in the output-layer is equals to the number

of classes present in the data set. Number of nodes in the hidden

layer is chosen to be equal to the square root of the product

of the number nodes in the input and output layers (Rumelhart

et al., 1986). We have used a single hidden-layer for the present

investigation.

2.3. Defuzzification

The last step of the proposed NF system is a hard classification

by performing a MAX (maximum) operation to defuzzify the

output of the NN. The pattern is assigned to class c corresponding

to the highest output value. Mathematically, assign the pattern to
class c if

Fc(x) ≥ Fj(x) ∀j ∈ 1, 2, . . . , C and j 6= c (4)

where Fj(x) is the activation value of the jth neuron in the output
layer.

However, the output of the NF system can be used as fuzzy
output also for further analysis, if desired.

3. Experimental results and analysis

For establishing the usefulness of the proposed model we
considered four conventional fully labeled data sets (including
a satellite image data) and two partially labeled multi-spectral
remote sensing images. A brief description of the conventional
(labeled) data sets is given in Table 1, and the remote sensing
images used are shown in Figs. 3(a) and 5(a).

Selection of the training and test samples for all classes in case
of conventional (fully labeled) data sets have been made after
dividing the whole data set into two parts. The first part (training
data) is taken for estimation of the parameters of the classifiers.
The second part (test data) is taken for testing the performance.We
have taken 10%, 20% and 50% as training data and the rest 90%, 80%
and 50% are considered as test data. Selection of the training data
is random and an equal percent of data is collected from each class.
This means 10% or 20% or 50% of data from all available classes
of the data sets have been used for training purpose. However
the selection of the training samples for all classes in case of
multispectral remote sensing images (partially labeled) is made
according to a prior assumption of the land cover regions. A brief
description of the quantitative measures used for the evaluation of
the proposed method are provided in the following sections.

3.1. Performance measurement indexes

To examine the practical applicability of the proposed classifi-
cation model we used Misclassification (MC), Percentage of overall
class Accuracy (PA) and Kappa Index of Agreement (KIA) (Card, 1982;
Congalton, 1991) as performance measures (for fully labeled data
sets). TheMC value denotes the number of overall sample patterns
that are wrongly classified. The PA value shows the total percent-
age of correctly classified sample patterns. The MC and PA param-
eters are calculated with respect to the total number of patterns
with true class labels. They do not provide the class-wise agree-
ment/matching between the true and estimated class labels. Thus,
to get an overall class-wise agreement based on the individual
class accuracy, we have used KIA. A good KIA value signifies better
agreement of the estimated datawith the true one. The KIA value is
estimated from a confusion or error matrix (CM) (Card, 1982; Con-
galton, 1991). A CM is a square assortment of numbers defined in
rows and columns that represents the number of sample patterns
assigned to a particular class relative to the true class. This ma-
trix producesmany statisticalmeasures of class accuracy including
overall classification accuracy (the sum of the diagonal elements
divided by the total number of samples) and KIA. KIA is defined as:

KIA =

N
r
∑

i=1

Xii −
r
∑

i=1

(Xi+.X+i)

N2 −
r
∑

i=1

(Xi+.X+i)

(5)

where the confusion matrix (CM) has

r = number of rows,

Xii = number of observations in row i and column i,

Xi+ = total number of observation in row i,

X+i = total number of observation in column i, and

N = total number of observations in the CM.

(6)
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Fig. 3. IRS-1A Calcutta images: (a) Enhanced input, (b) land cover classified by MLP, (c) land cover classified by conventional NF, and (d) land cover classified by proposed

NF methods.

Table 1

Summary of the benchmark (fully labeled) data sets used in the present study.

Name of the

data set

Number of

classes

# of features

available

# of features

used

# of

patterns

VOWEL 6 3 3 871

PHONEME 2 5 5 5404

BLOCKS 5 10 10 5473

SATIMAGE 6 36 4a 6435

a As suggested by the contributor of the data set.

For the remote sensing image data, a very small set of training

patterns is picked up from the known regions for classifying rest

of the image (unlabeled). Therefore, it is not possible to assess

the results with the indexes described above. Hence, we have

used two other indexes, one is β index (Pal, Ghosh, & Shankar,

2000) of homogeneity and the other one is Davies–Bouldin (DB)

index (Davies & Bouldin, 1979) of compactness and separability and

they are discussed below.

β index of homogeneity

The β index has been successfully used in the assessment of

image segmentation quality (Acharyya, De, & Kundu, 2003; Mitra,

Shankar, & Pal, 2004; Pal et al., 2000). It is defined as the ratio of the

total variation and within-class variation (Pal et al., 2000). Since

the numerator is constant for a given image, β value is dependent

only on the denominator. The denominator decreases with increase

in homogeneity within the class for a fixed number of classes (C). Thus

for a given image and a given number of classes (land covers), the

higher the homogeneity within the classes, the higher would be the β

value. Mathematically β is represented as:

β =

C
∑

i=1

Mi
∑

j=1

(xij − x)2

C
∑

i=1

Mi
∑

j=1

(xij − xi)2

(7)

where x is themean grey value of the image pixels (pattern vector),

Mi is the number of pixels in the ith (i = 1, 2, . . . , C) class, xij is the
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Table 2

Misclassification (MC), Percentage of overall class Accuracy (PA) and Kappa Index of Agreement (KIA) values for VOWEL data set.

Classification method % training data

10 20 50

MC PA KIA MC PA KIA MC PA KIA

MLP 179 77.08 0.7123 153 77.95 0.7210 92 78.80 0.7411

Conventional NF 166 78.74 0.7412 143 79.39 0.7740 86 80.18 0.7835

Proposed NF 148 81.04 0.8001 128 81.55 0.8123 79 81.79 0.8214

grey value of the jth pixel (j = 1, 2, . . . ,Mi) in class i, and xi is the

mean of Mi grey values of the ith class.

Further, in the presentworkwe have evaluated the correspond-

ing percentage of gain with β values Gainβ using the following

formula:

Gainβ =
(β value with classifier-2 − β value with classifier-1)

β value with classifier-1
× 100

(8)

where classifier-1 is the old classifier and classifier-2 is a relatively

new classifier (the classifier for which the gain is measured) which

is performing better than the old one.

Davies–Bouldin (DB) index of compactness and separability

Davies–Bouldin (DB) index for cluster validation has been

defined and used in Davies and Bouldin (1979). Here we are

using the index for validating our classification results on partially

labeled data sets. The idea behind DB index is that, for a good

partition, inter-class separation as well as intra-class homogeneity

and compactness should be high. The DB index is based on the

evaluation of some measure of dispersion Si within the ith cluster

and the distance (dij) between the prototypes of clusters i and j. It

is defined as:

Si,q =

(

1

|Xi|

∑

xεXi

‖x − vi‖
q

2

)
1
q

, (9)

and

dij,t =

[

p
∑

s=1

|vsi − vsj|
t

]
1
t

. (10)

Si,q is the qth root of the qth moment of the points in cluster i

with respect to their mean or centroid (vi), and is a measure of

dispersion of the points (x) in cluster i. |Xi| is the cardinality of

cluster i. dij,t is the Minkowski’s distance of order t between the

centroids of the extracted clusters i and j. In the present experiment

we have taken q = t = 2. We compute:

Ri,qt = max
j=1,2,...,C and j6=i

[

Si,q + Sj,q

dij,t

]

, ∀i = 1, 2, . . . , C . (11)

The DB index is then defined as:

DB =
1

C

C
∑

i=1

Ri,qt , (12)

with C as the number of clusters/classes. The smaller the

DB value, better is the partitioning (Davies & Bouldin, 1979).

The corresponding percentage of gain obtained with DB values

(i.e., GainDB) is computed as:

GainDB =
(DB value with classifier-1 − DB value with classifier-2)

DB value with classifier-1
× 100.

(13)

3.2. Classification of conventional data sets (i.e., completely labeled

data sets)

We have chosen four benchmark data sets for the present

experiments. The data sets used here are VOWEL, PHONEME,

BLOCKS and SATIMAGE. The BLOCKS and SATIMAGE data sets are

chosen from machine learning repository at UCI, USA (Asuncion &

Newman, 2007) and PHONEME data set is from ELENA Database at

MLG/UCL, Belgium (ELENA Database, 1995), whereas the VOWEL

data set is from our institute’s collection (Pal & Majumder, 1977).

3.2.1. VOWEL data

The VOWEL data is a set of Indian Telegu vowel sounds in

consonant–vowel–consonant context uttered by three speakers in

the age group 30–35 years (Pal & Majumder, 1977). The data set

consists of 871 sample patterns. It has three features and six classes

/δ/, / a /, / i /, / u /, / e / and / o / with 72, 89, 172, 151, 207 and 180

samples, respectively. The classes are highly overlapping.

Table 2 depicts the results of classification of VOWEL data set

for three different percentages of training sets. For 10% training

data MLP provided an MC of 179 and the PA as 77.08. These values

are 166 and 78.74 with conventional NF method. The proposed

NF method provided an improved MC and PA values and they are

148 and 81.04. Thus there is an increase of nearly 4% of PA by the

proposedmethod, and the correspondingMC value is decreased by

31 compared to MLP. Similarly an increase in PA of nearly 3% and

decrease in MC of 18 is obtained compared with the conventional

NF classificationmethod. For 20% training data, nearly the same PA

increment is there as in the case of 10%, i.e., with the proposed NF,

conventional NF and MLP methods these values are 81.55, 79.39

and 77.95, respectively. Also there is a decrease in MC of 15 with

the proposed NF method compared with the conventional NF and

of 25 with MLP. A similar improvement with the proposed NF

classification can be observed with 50% training data. Table 2 also

reveals that the accuracy obtained with the proposed NF classifier

for minimum percentage of training data is nearly the same as

with the conventional NF and MLP at 50% training data. This is

particularly important when there is a scarcity of training data set

(e.g., in classification of remote sensing images).

The superiority of the proposed NF classification method is also

validated with KIA as shown in Table 2. A comparison is made

among the three methods mentioned earlier. Table 2 shows that

the KIA with the proposed NF method at 10% training data is

0.8001, which is more than 0.7412 and 0.7123 obtained using

conventional NF and MLP. A similar improvement of KIA value is

obtained with 20 and 50 percent training data. For example, at

20% training data, the KIA values are 0.8123, 0.7740 and 0.7210,

respectively. From these values, it is obvious that the proposed NF

classification method provided a better class-wise accuracy along

with overall accuracy comparedwith the conventional NF andMLP

methods. It is true for all percentages of training data. TheKIA value

also justifies that at the minimum percentage of training data the

classification accuracy (class-wise and overall) of the proposed NF

method is more promising than conventional NF and MLP.
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Table 3

Misclassification (MC), Percentage of overall class Accuracy (PA) and Kappa Index of Agreement (KIA) values for PHONEME data set.

Classification method % training data

10 20 50

MC PA KIA MC PA KIA MC PA KIA

MLP 1245 74.39 0.4012 1079 75.03 0.4137 662 75.49 0.5651

Conventional NF 1160 76.14 0.4672 1009 76.65 0.4905 613 77.31 0.5873

Proposed NF 968 80.09 0.5861 832 80.74 0.5976 495 81.68 0.6432

Table 4

Misclassification (MC), Percentage of overall class Accuracy (PA) and Kappa Index of Agreement (KIA) values for BLOCKS data set.

Classification method %training data

10 20 50

MC PA KIA MC PA KIA MC PA KIA

MLP 480 90.25 0.5732 386 91.18 0.6101 229 91.62 0.6428

Conventional NF 405 91.77 0.5981 334 92.36 0.6431 179 93.45 0.6671

Proposed NF 265 94.61 0.6436 228 94.79 0.7001 127 95.35 0.7220

Table 5

Misclassification (MC), Percentage of overall class Accuracy (PA) and Kappa Index of Agreement (KIA) values for SATIMAGE data set.

Classification method %training data

10 20 50

MC PA KIA MC PA KIA MC PA KIA

MLP 1277 77.94 0.7456 1125 78.13 0.7553 655 79.63 0.7701

Conventional NF 1192 79.40 0.7578 1010 80.36 0.7694 602 81.28 0.7976

Proposed NF 1036 82.10 0.7976 901 82.48 0.8103 529 83.55 0.8334

3.2.2. PHONEME data

The aim of this data set is to distinguish between nasal and oral
vowels (two classes) (ELENA Database, 1995). It contains vowels
coming from 1809 isolated syllables (for example: pa, ta, pan,. . .).
Five different attributes were chosen to characterize each vowel.
They are the amplitudes of the five first harmonics. The data set
has 5404 samples.

The performance comparison results are shown in Table 3. From
the table it is seen that for 10% training data the proposed NF
method provided nearly 5% increment of accuracy compared to
the MLP. Correspondingly the MC values are 968 and 1245 using
the proposed NF and MLP methods, respectively. The proposed
NF method also maintained its supremacy over the conventional
NF. These improvements are retained in case of 20% and 50%
training data also. Using an analysis with KIA which provides
the overall class-wise agreement, we found a superiority of the
proposed method over MLP and conventional NF methods. At 10%
training data, the KIA with the proposed NF, conventional NF and
MLP methods are 0.5861, 0.4672 and 0.4012, respectively. The
improvement of the proposedmethod is also obtained for both 20%
and 50% training data.

3.2.3. BLOCKS data

The problem involved in this data set (listed as Page Blocks
Classification (Asuncion & Newman, 2007)) is to classify the blocks
of a page layout of a document that has been detected by a
segmentation process. This is an essential step in document
analysis in order to separate text from graphic areas. The five
classes are: text (1), horizontal line (2), picture (3), vertical line (4)
and graphic (5). BLOCKS data set has 10 features and 5 classes with
5473 sample patterns.

It is observed that the proposed NF classifier provides a
better classification accuracy compared with those obtained with
conventional NF and MLP. With 10% training data the MC and PA
values for the proposedNFmethod are 265 and 94.61, respectively.
These results are superior compared with the MC and PA values
as 405 and 91.77, respectively obtained by conventional NF. In
comparison with MLP the proposed NF method also provided

improved results. It is seen that there is an increase of around

3.1% and 4.5% of accuracy and decrease of 145 and 215 in

classification error with the use of proposed NF method compared

with conventional NF and MLP. A similar trend of increment in the

PA value is observed for both 20% and 50% training data by the

proposed NF method. These results are depicted in Table 4. The

table also reveals that with a minimum number of training data,

the proposed method provided promising results compared with

others with more training data.
In addition to the above comparison,we havemade a class-wise

overall accuracy measurement in terms of KIA and found that the

KIA is clearly supporting the superiority of the proposed method.

The KIA for the proposed NF, conventional NF and MLP are 0.6436,

0.5981 and 0.5732, respectively, for 10% training data. Similar

improved KIA values are obtained using the proposed NF method

for both 20% and 50% training data, which justified its better class-

wise agreement compared with the other two methods.

3.2.4. SATIMAGE data

The SATIMAGE data set was generated from Landsat Multi-

Spectral Scanner image data (listed as Statlog (Landsat Satel-

lite) (Asuncion & Newman, 2007)). The data patterns used for the

present investigation are a sub-area of a scene of 82 × 100 pix-

els. Each pixel value contains information from four spectral bands.

The aim is to predict six different land cover classes present in the

data set. The data set contains 6435 patterns with 36 attributes

(4 spectral bands × 9 pixels in neighborhood). In our experiment

we have used four features (17–20) only as recommended by the

database designer (i.e., the four spectral values) (Asuncion & New-

man, 2007).
The performance comparison of results in terms of MC and PA

with this data set is shown in Table 5. It is observed that with

10%, 20% and 50% training data, the performance of the proposed

NF classification method is better compared with conventional

NF and MLP. For example, with 10% training data, the MC values

are 1036, 1192 and 1277 using the proposed NF, conventional

NF and MLP based classification methods, respectively. Similarly,

the corresponding PA values for these classifiers are 82.10, 79.40
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and 77.94. We have also measured the class-wise overall accuracy

with the KIA index and observed that these values supported the

improvement of the proposed method compared with the other

two as mentioned above. Table 5 depicts the results in terms of

KIA.

3.3. Classification of remote sensing images (i.e., partially labeled data

sets)

In the present study, two multispectral remote sensing images

(size 512×512) obtained from two different satellites (IRS-1A and

SPOT) with different spatial and spectral resolution are used. The

satellite images considered here contain a small number of labeled

patterns. The actual classes (land covers) present in the original

images (not shown in themanuscript) are not visible clearly. Sowe

have displayed the enhanced images in Figs. 3(a) and 5(a), which

highlight the different land cover regions properly. However the

algorithms are implemented on the original images (not shown in

the manuscript).

IRS-1A images
The IRS-1A image (shown in Fig. 3(a)) was obtained from Indian

Remote Sensing Satellite (IRS Data Users Hand Book, 1989). We

have used the images taken from the Linear Imaging Self Scanner

(LISS-II). LISS-II has a spatial resolution of 36.25 m × 36.25 m

and works in the wavelength range of 0.45–0.86 µm. The whole

spectrum range is decomposed into four spectral bands, namely,

blue band (band1), green band (band2), red band (band3) and

near infrared band (band4) with wavelengths 0.45–0.52 µm,

0.52–0.59 µm, 0.62–0.68 µm and 0.77–0.86 µm, respectively.
The image in Fig. 3(a) covers an area around the city of Calcutta

in the near infrared band having sixmajor land cover classes. These

are pond or fishery water (PW), turbid water (TW), concrete area

(CA), habitation (HAB), vegetation (VEG) and open spaces (OS). The

PW class contains pond water, fisheries etc. Sea water, river water

etc., where the soil content is more, belong to TW class. CA class

consists of buildings, roads, airport runways, bridges etc. Suburban

and rural habitation, i.e., concrete structures are comparatively

lower in density than the previous class (CA) and come under

HAB class. VEG class essentially represents crop and forest areas.

OS class contains barren land. More specifically, a pixel with less

greenery and fewer concrete structures falls into this class.

SPOT image
The SPOT image shown in Fig. 5(a) is obtained from SPOT

satellite (Systeme Pour d’Observation de la Terre) (Richards &

Jia, 2006), which carries an imaging device HRV (High Resolution

Visible). The Calcutta image used here has been acquired from

the HRV that uses the wavelength range 0.50–0.89 µm. The

whole spectrum range is decomposed into three spectral bands,

namely, green band (band1), red band (band2) and near infrared

band (band3) of wavelengths 0.50–0.59 µm, 0.61–0.68 µm and

0.79–0.89 µm, respectively. This image has a higher spatial

resolution of 20 m × 20 m. We have considered the same six

different classes for the land cover classification of the SPOT image.

These are pond or fishery water (PW), turbid water (TW), concrete

area (CA), habitation (HAB), vegetation (VEG) and open spaces (OS)

as mentioned above.

3.3.1. Classification of IRS-1A Calcutta image

The classified (IRS-1A Calcutta) images obtained are shown

in Fig. 3(b)–(d). From the visualization point of view, it is clear

from the figures that the proposed NF classifier performed better

in classifying the land cover (i.e., segregating different areas)

compared to the conventional NF and MLP methods. Various

regions or land cover classes in the IRS-1A Calcutta image

are clearly identified from the classified image. From Fig. 3(d)

(classified image using the proposed NF method) we see that the

Fig. 4. Zoomed version of a selected region (Saltlake area and pure water) of

classified IRS-1A Calcutta image with (a) MLP, and (b) proposed NF method.

Hooghly (Ganges) river, situated in themiddle of the image, belongs
to TW class. The pond or fishery water (PW class) is easily identified
from the classified image. The other classes such as CA, HAB,
VEG and OS are also clearly visible. The above mentioned objects
are more or less visible in case of the classified images obtained
with conventional NF and MLP classifiers. A zoomed version of
some classified regions such as Saltlake area (CA and HAB classes)
and pure water class are shown in Fig. 4 to get an improved
visualization.

It is observed that the Saltlake area is more clear, distinct and
well shaped using the proposed NF method compared with the
other two. Similarly, the separation of the pure water regions with
the proposed method is comparatively more distinct. With the
use of the proposed method, the classes became more separated
and well identified. A concrete distinction between various classes
obtained by different classifiers is properly justified with the
estimation of quantitative indexes rather than only visualizing the
regions.

We have used two performance measurement indexes (β and
DB) to justify the findings obtained by visualization. As discussed in
the previous section, for a fixed number of classes, the greater the
homogeneity behavior within the class, the greater is the β value
and Table 6 depicts the results of β to support this. As expected,
the β value is the highest for the training data, i.e., 9.4212 for IRS-
1A Calcutta image. Its values are 7.1587, 7.7535 and 8.6129 for
the three classifiers, i.e., with MLP, conventional NF and proposed
NF, respectively. From these values it is clear that the proposed
NF classification system yields better results (highest β value)
comparedwith the other twomethods. As awholewe can establish
the following β relation i.e.,

βtraining > βproposed NF > βconventional NF > βMLP .

From this relation we can get a gradation of performance quality
of these three classification methods. We found that there is a
gain (Eq. (8)) of 11.08% in β with the proposed NF method over
conventional NF and 20.31% overMLP, which is highly appreciable.
Similarly, the DB value is also supporting the superiority of the
proposed classification method over the other two methods. The
DB values are 0.7019, 0.8113 and 0.9390 for the proposed NF,
conventional NF and MLP classification methods, respectively. As
expected, the possible lowest DB value for the training data is
found to be 0.5621. These results are depicted in Table 7. The
corresponding gain obtainedwith respect toDBusing the proposed
NF over MLP and conventional NF are also evaluated. It is found
that about 25% and 13% gains are achieved with the proposed NF
method over the other two and the results are quite significant.
Thus, it is clear that the proposed classification method is more
suitable for the classification of the IRS-1A Calcutta image as it
provides better compact and separable classified regions.
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Fig. 5. SPOT Calcutta images: (a) Enhanced input, (b) land covers classified by MLP, (c) land covers classified by conventional NF, and (d) land covers classified by proposed

NF methods.

Table 6

β value and corresponding gain for different classification methods.

Classification method IRS Calcutta

image

SPOT Calcutta image

Training patterns 9.4212 9.3343

MLP 7.1587 7.0542

Conventional NF 7.7535 7.6978

Proposed NF 8.6129 8.5575

Gain of proposed NF over MLP 20.31% 21.31%

Gain of proposed NF over

conventional

11.08% 11.16%

3.3.2. Classification of SPOT Calcutta image

In case of SPOT Calcutta image, the classified images are

shown in Fig. 5(b)–(d) for MLP, conventional NF and proposed

NF classifiers, respectively. From the figures it is observed that

there is a clear separation of different regions. The classified image

shown in Fig. 5(d), using the proposed NF classifier, different

classes or regions are more clearly identified compared with other

two images (Fig. 5(b) and (c)), which are generated by other two

methods. A zoomed version of some portions, e.g., two roads just

above the bottom left of the image are shown in Fig. 6 to see the

Table 7

DB (Davies–Bouldin) value and corresponding gain for different classification

methods.

Classification method IRS Calcutta

image

SPOT Calcutta image

Training patterns 0.5621 1.4943

MLP 0.9390 3.3512

Conventional NF 0.8113 2.4561

Proposed NF 0.7019 1.9801

Gain of proposed NF over MLP 25.25% 26.71%

Gain of proposed NF over

conventional

13.48% 19.38%

difference in the classified regions more clearly. From the figure,
it is evident that the proposed method produced well structured
and properly shaped regions (roads in CON class) compared with
other methods considered in this investigation. However, a better
performance comparison with the help of β and DB indexes can be
seen from Tables 6 and 7. Table 6, shows that the β value for the
training data set is 9.3343. Its values are 7.0542, 7.6978 and 8.5575
for the classified images using MLP, conventional NF and proposed
NF classifiers, respectively. In this case an improved performance
of the proposed NF classifier over others is also observed. It is seen
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Fig. 6. Zoomed version of a selected region of classified SPOT Calcutta image with

(a) MLP, and (b) proposed NF method.

that β is the highest for the proposed NF classificationmethod that

conveyed the message of its superiority. The same β relation in the

classification of SPOT Calcutta image is observed as in the case of

IRS-1A Calcutta. In this case, the gain obtained with the proposed

NF classification method is 21.31% over MLP and 11.16% over

conventional NF, which clearly justified the better classification

ability of the proposedmethod. Similarly, theDB value as shown in

Table 7, is the minimum in case of the proposed NF classification

method compared with the other two methods. These values are

1.9801, 2.4561 and 3.3512 for the proposed NF, conventional NF

and MLP based classification methods, respectively. The DB value

for the training data is the lowest for the SPOT image and found to

be 1.4943. The gain calculation on the basis of DB also supported

the superiority of the proposed NF method and thus, develops

more compact and separable land cover classes compared with

other two methods.

From the classification results of four different conventional

fully labeled data sets and two partially labeled multi-spectral

remote sensing images, it is observed that for all cases the

proposed NF method outperformed the conventional NF and

MLP. The investigation revealed that with a lower percentage of

training data also the proposed method performed well compared

with the other two methods. Similarly, from the land cover

classification of two partially labeled remote sensing images,

we found that the proposed NF based classification method is

superior as observed visually from the different classified regions.

Performance comparison among these classifiers has been made

using two quantitative indexes. The values of quantitative indexes

also supported the superiority of the proposed NF classification

method. It is justified that the classified regions using the proposed

NF classification method are very distinct and the structures

are more crisp, homogeneous, compact and easily separable

compared with the conventional NF and MLP methods. However,

the computational complexities of the proposed NF classification

system will increase in data sets having a greater number of

features and classes. Although after fuzzificationwewill havemore

features, since the system learns from a lower number of training

patterns, the total time required will not be very large.

4. Conclusion

We have proposed a novel neuro-fuzzy model for classification

and demonstrated successfully its effectiveness for classification

of fully and partially labeled patterns. The method exploits and

incorporates the basic advantages of neural networks such as

massive parallelism, robustness, adaptivity and optimality in one

hand; and impreciseness and uncertainty handling capability of

fuzzy sets on the other hand. Besides these generic advantages,

the proposed model develops a membership matrix that provides

information of feature-wise degree of belonging of a pattern to all

classes instead to a particular class. This in turn provides better

generalization capability.

Various performance measures such as the number of misclas-

sifications, percentage of classification accuracy, Kappa index of

agreement for completely labeled data sets and quantitative in-

dexes such as the β index of homogeneity and the DB index of

compactness for partially labeled data sets are used to justify the

promising performance of the proposed method. The percentage

gain obtained in β and DB values corroborates these finding. It is

observed that the proposed classification method provides an im-

proved performance even with less training data. In case of re-

mote sensing images, the performance is very high (gain is more

than 20%).

The computational complexity of the proposedNF classification

model is little high. However, its learning ability with small

percentage of training samples will make it practicably applicable

to problems with a large number of classes and features. In future,

we plan to compare this NF technique with some other existing NF

techniques, in all aspects such as time complexity and classification

accuracy.
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