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SUMMARY. For row sums ofindopondont random variables in a trianguler array

infc ratos of g to normality aro utwliod. Theso results unify and oxtend
sarlior availablo rosalts in this diroction. Tneludod ns spocinl coana aro ratos for standardized
sums of i.i.d random variablos, Noxt thoso rcsults aro usod in proving moment convorgencos
of such sums, in deriving Lp vorsions of tho Burry-Eiscon thoorom, and also in finding
probabilitics of moderate doviations. Alio, somo gororal rosulta rogariling nonuniform rates of
convorgencs to normality for nonlinoar statistice aro given. Applications aro mado in tho case
of L-statistics.

1. INTRODUCTION

Consider s suquence {Xy; i 2 1} of indopendent and identically distributed
n
random  variables with E(X,) =0, E(X})=1. Let S,=Z X, F,(0
1
= P(n-iS, < 1); ¢ real, n > 1. Tho colebrated Borry-Esseen theorom statos
that if p =FE| X,1? < oo, then sup| F,(t)—®(t)| < Cpr-i, where € is a universal
constant and @(f) is tho distribution function of a N(0, 1) variable. This result
was later strengthenod by Katz (1063).  Tle showed that under tho assump-
tion E[X% g(X,)] << o0, where g(z) is u nonnegative, oven, nondecreasing
function on [0, c0) satisfying

lim g(z) = ¢, . (LD)
Z2) = =
and
| z| Jg(z) ia defined for all 2z and nondeereasing on [0,e0), ... (1.2)

ono has

sup | F.()—®()] = O((g(nh)-1. o (13)
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Moro rocontly Michol (1076) has given rates of convergoneo of F (1) to
O(t) depending on both n and ¢ undor thoe rssumption E| X, |+ < oo for somo
¢> 0. Thoso bounds reflect that retss of convergonco to normality aro much
fastor for lnrgo valuos of || than for its small values. ‘Theso nonuniform rates
(as wo shall soo later) are quite usoful in studying probabilitios of moderats
dovintions, in gotting Lp versions of tho Berry-Esscon thoorom, and also in
studying certain moment convergonces.

In this paper, wo first goneralizo and oxtond Michel’s (1976) results to row
sums of indepondent randam variables in o trinngular array. Consider the
doublo sequence {Xne; 1€ i< », 2> 1f of random variables, whoro tho
random variables within oach row are independontly distributed and satisfy
E(Xa¢) = 0 and

sup  sup E[| Xut|t*u{Xa()] < o, e (14)
A%l 1&i&n
where,
u(z) is 8 nonncgative, evon, nondecreasing function on
[0, o0} with u(z) < |z|*+L for all € > 0, with somo L > 0

and lim u(x) = 0 when ¢ = 0. .. (LB)
2=>0

Examplos of functions u(z) aatisfying (1.5) aro n(z)=1, u(z) = log(1+|z]),
u(2) = log log(e+|z|) cto. Dafine sf = EXZ(n> 1). Itis also nssumed
(=)
that

inf -1 > 0. . (r0)
a3l

In tho sprcinl caso when the X¢'s aro j.id r.v'a, our assumptions aro identical
with those of Kntz (1963) whon 0 < ¢ < 1 or ¢ = 0 and

Jim ulzr)=o, or e=1 and ufz)=1.
I1X1 o

Wo dofine now 8, = b X Folt) = P(S,671 € ). InSoction 2, wo dorive
1

womo nonuniform bounds for | F,(1)—®(t)] for difforent valuos of ¢, and uso
thero to study tho apsed of convergonor of 1 —F,(¢) to zoro ag t— o0, tho apeod
of eonvorgonco of tho momonts of |s;1S,| to those of tho | N(0, 1)] variablo,
and cortein Lp-vorsions of the Berry-Essoen thoorom. In Soction 3, the
rosunlts of Saction 2 aro oxtonded to cortain nonlincar statistics. As an
application, wo includo in Sootion 4 tho L-statistics.
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2. THE RESULTS ON ROW SUMS OF RANDOM VARIABLES
IN A TRAINQULAR ARRAY

First wo prove two thooroms giving rates of convorgonce of F(f) to O(¢)
doponding on both # and ¢, In tho spocinl caso of suma of i.i.d random variables,
thoso includo moro gonoral vorsiona of Thooroms 1 and 2 of Michol (1976).
For sums of i.i.d random variables, our thooroms aro quito in tho apirit of
Katz's (1963) oxtonsion of the oclassical Borry-Essoon theorom.

Thoorom 1: Suppose (1.4)-(1.6) hold. Then for
1
ng K (7 clog ntlog u(+/n) ) K >0,
there exists positive coneanls b and r (depending on w, ¢ and K) such that

[Fa)—® (1) | < bwezp [—%:2(1—3r)]+’ilp(|x..‘|> raalt]) - (21)

where
w=w(n, [t][,c) = (nd]t])c (ulrs,|t])" or n—

according as 0 ¢ <1 or e 1.
Thoorom 2: Suppose (1.4) - (1.6) kold. Then for

"> K[-;— log n+log u(\/i)]
there exist b( > 0), r( > 0) depending on u, ¢ and K such that

| F o =0(0)| & b[nc/tu(y/a)]-ME-1 [s] ~tksn g £ P(| X 4| > ra,|t]).
o =3

(2.2)

Proof of Theorem 1: Throughout the proof b,,b,, ... donoto positive

constants which might dopend on » and ¢, but not on n and ¢&. Tho theorom

ia obvious for ¢ = 0. Wo prove the thoorem only for ¢ > 0, as tho proof when

t < 0 is analogous. For 0 <t < 1, tho theorom follows immediately from
Katz’s (1063) thoorom. For ¢ > 1, lot

Yi=Yar= Xn I1Zul<rout). §=1,...m, - (2:3)

I boing tho usun)l indicator function, Defino S,',=§-.‘. Y¢(n» 1). Thon,
1

| Pst S, < )= Fo(t)] <'§‘ P(1 Xnt] > ra,0). e (24



350 MALAY GHOSH AND RATAN DASOUPTA

Noxt dofino
Sy =fne(t) = Eoxp(tYys,), i=1,..,n; e (2.8)
m(t) = fiNOE[Yeexp(tYyls,)), i=1,..,m

Tl = n-1 B myfh); e (2.8)
=)

mitt)fad(ty = fi (OE[ Y oxp (tYfs,)), i=1,..,n;

G4 =1 8 o) ; . (27)
i=1
Ho(2) = PUS.—nii (O)(v/25.(1)) < 2). o (28)

Thon standard methods (svo 0.5, Cramér, 1938 or Bahadur and Rangna Rao,
1960) yiold

PS> 1) = A_(l)njf“oxp(—la;‘ G 2)dH (2), (29
alt
whero
A0 = 'ﬁf‘(l) oxp (—te! nim, ()i e (210)
-1
B(1) = (15, ~nii () (v/15o(1). e (21

Using (1.4) - (1.6), one has the estimates
|EY(| = O((rs,)-C+Mu1(rs 1)), 1&i&n ... (212)
0§ EXY —EY} = O((rs)~Su='(rs,0)), 1K1 .. (2.13)
on) ife> 1,
E|Y,|* = . (219)
O(rapt)'~<(u(rs,))™) if0gec <.
Now, using (2.12) - (2.14)

12
=1~ 5 EXY

< bwn-1 oxp (—i— rl’). . (215)

5
Noxt wo show that woxp (T rt’) =o(1), Ly proper choico of r> 0. For
0ge<])

5 G
woxp(Trl’)((n'l)"u"(n,l)(n‘/‘u(\/n)) =o(l) .. (218)
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4
if r < min (? K-, l). Aguin, for ¢ > 1, sinco u(z) < |z|*+4L for all ¢ > 0,
ono gots

L
wexp (-f— w) = n"(n‘/’u(\/n)) o o(1) v (20D

if r < 4/(5Kc). Chooso 0 < r < min (1, (5K)"}cvl)-!, o that both (2.16)
and (2.17) hold, Now from (2.15) - (2.17),

«i:llo'”"f‘(') = % ""“’(“’ “XP(—i‘"‘))‘ . (218)

Noxt noto that
E[Yq oxp (163! Y] = ts3} EX£,+o(n-aw °-‘P(% ,,:))_ o (210)
E[ Tioxp (“’:l Y‘)] = Ex='+°(”"w oxp (% 'l’)). e (2.20)

Hence, from (2.8), (2.7), (2.15), (2.19) and (2.20) ono gots

my(t) = ts3! EX?.,+o(n-‘ woxp (—i- rt')): .oo(2.21)
mi(t)+i(t) = EX} +o(n} woxp (-% m)). e (2:22)
Thus,
fia(t) = tnt a_+o(n‘* woxp (—:— rt‘) ); . (2.23)
ai(t) = n—? a,‘.+o(n‘| wexp (—5- rt‘)). .. (2.24)

Hence, from (2.10), (2.18) and (2.23),

4,0)= oxp(-;—l’) [I+o(w oxp(—i ) Joxe (—ri)[ 1+40(w exp(—:- m))]
= oxp [(——;-t’)-}-o(waxp (% n'))]. o (2.25)

whoro w exp (% rt’) = o(1) by choosing r( > 0) appropriatoly small.
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Also, from (2.11), (2 23) and (2.24) ono gotas,

B.t) = o(woxp (% ) . (2.20)

Finally, from (2.9) one gots

| P(sst 8o < )—O()| = | P(sa* S, > )—O(—1)|

A | oxpl—tss n'@,2) dH (2)—Ol—1)
Bptt)

< Lt L+1,, . (227)
whore
I, =|A.(l) Bf()oxp(—ls:‘ n G ,z) d(I1,(z)—O)) | ; . (2.28)
AN
L= A.(l)—exp(—%t’) [ oxp(—tsst nt, 2) dOG); . (229)
Bt

L= exp(—%l") Bf oxp(—ts? n"&,z)d@(z)—@(—l)’. . (2.30)

<)

Using (2.24)-(2.26), tho Berry-Essosn theorom, the c,—inequality with r = 3
and (2.14) one gots

5L C oxp [~ 4o (wexp (5 ret) )]

or0 [=(rso{osn (§ ) (o (mesn( ) w00

iEY—. s
<o [~ o fmonn (3 1)) | S

< b, exp(—-;- t’) [1+°("7°"P(_: ,p))]
worp(rt) [1-+o(woxp( 5 ) )|

< bwexp ( —%{’4—,»:’); .. (2.31)
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I, & IA (1) —exp (_Tl; [l)

< oxp (=4 #)o(wosp (3 ) oxp {(26) (10wt worp(£rr)) )}

(But)+ts5* W) oxp ( — 3 B+t w5, ))

U\p(— 2t no"‘) O(— B, (1)—ts3' niz,)

<bwoxp(-——;—l=+% ); . (2.32)
L= | oxp (=g By ot n5k) (= Ball)—tozt nt 5,)= ~o(-1)|

b el (30))] ofsons ) o0 (=)
(4 ) oo ()

& bwoxp (—% a3 ). - (2.33)

Tho thecoroms now follow from (2.9) and (2.27)—(2.33).

Proof of Theorem 2: Tho rosult is trivislly true for K =1 by using the
samo truncation as of Theorom 1. Tor K > 1, first note that for £ > 0

®(—1) < i(2m)oxp (— 5 2)

= 1~1(2m)~} oxp [—M——zl—; ] ,

2K
< 1(2n)-hoxp ( 21{ ) (n73 u(y/n)) (K—1)

& D(nf8 w(4/n))~HE-D) §-2K+D),
448
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Tho rest of tho proof of tho theorem for ¢ > 0 follows tho lines of Michel (1976)
Ly taking r = (2K(K+1))"! and
1 vy
b= t-tn-b [(1\'—1)(T ¢ log n+4log u(wz)) +2K(K+)og :].

TFor t < 0, tho proof i3 rimilar,

Remark 1: In the spocial cuso of Li.d.r.v’s when u(x) = 1forallz, ¢ > 0,
Michol’s Thoorem 1 follows as & apocial caso of our Thoorom 1 by taking
K = 2(14¢1). Howover, with the same choico of X, Thoorem 2 of Michel docs
not follow from (2.2), Howover, again in tho caso of i.i.d.r.v’s, under tho condi-
tions of Tlicorem 2, ono can for ¢ > 0, obtain instoad of (2.2) tho bound

Ipl“)_q)([” < b,,(-xa-z)[c(u(\/"))(-n—z)m [—ZKc+np(l‘\'l| > m‘]l])

taking
0 < r < minfe{Ke—2)"", (2+4c)(Kc)-2)

and

h= l-’n-'[(l\'c~‘.’)(%)log n 4¢ log u(y/n)+(Kec)? logt] for K > 21,

Thon taking K = 2(1+4¢7?) ono obtains a stronger form of Michel's (1976)
Thoorem 2,

From Theoroms 1 and 2 (by o proper choico of K > 0) it is casy to derivo
tho following nonuniform Borry-Esscon theorom which generalizes Thoorom 3
of Michel (1976) and Thoorem 3 of Nagaov (1965). Included also is o corros-
ponding uniform Berry-Esscon theorem of Katz (1963).

Thoorom 3 : There exists a conslant b(>0) depending only on ¢ and u,
such that for all ¢

| F()=D)] = b(14]¢| )" [nicu(s/n) Ani]-? o (2.34)
where w A v = min (u, v).

Remark 1: (a) Tho order of ¢ in (2.34) can bo improved in gonorsl..
From Theoroms 1 and 2 it is ensy to obtain

| Fn()— ()] < Y[nclu(y/m) AnVETE 4]~k ‘;‘:l Pl(Xne]> ranltl)

& B[uc2u(4/a) A R L] ko bme/3 1| =40 (u(ry/nt))
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for ahy &* > O and b( > 0) being a constant depending on k*, and honco

| Fally=0()] < b2+ [H{E )14 u(®)-? if ¢ > |

< b:[n"’ll(\/u]"(l—l-]tl““)"(l-{— 1:‘(("\}/,:')!) )—1

for 0 € ¢ <1 which is further inprovoment of (2.34).

Next Theorems 1 and 2 aro used for proving convergenco of momonts
of Y, = |8:'8,] to thoso of T = |N(0, 1)[. Rolated results of von Bahr
(1965) and Michel (1976) aro spocinl casen of the following theorom, whero
A3, As, Ag BT0 positivo constants,

Thoorom 4 : Suppose thal the assumplions of Theorems 1 and 2 are
satisfied with '(x) < /\1+/\2:r'l5, 0 <2< o0} then
o(n=¢)  if lim u(zx) =00,0< ¢ <|
I=p>

1E(Y3+ u-(Y)=E(T*u(T))] = {
O(n~¢*)  otherwise, .. (2.35)

where ¢* = % min(c, 1).

Wo omit tho proof of this theorem a3 it follows tho lines of Michel (1976).
The bound (2.35) might not appear very useful when ¢ = 0. But even in that
caso it lim  #(z) = co, tho Lh.s of (2.35) converges to zero.

[EIE=Y

Erickson (1973) has derived Lp-version of tho Berry-Esscon theorem,
Our next theorom also provides o Ly version of the Berry-Esscen theorom,
although the assumptions and final results aro difforent from Erickson's.
Wo writo ||+ |l for tho usual Lp-norm with respect to Lebesguo measure.

Thoorom 5: Suppose the assumptions of Theorema 1 and 2 are sntisfied.
Then, for p > 1,
(U L1 IB(F0—O(W) llp = o(nPuly/n) A wl)T ... (2.30)
Jor any g>1,
Proof :  Noto that
N+ L eemen(Eu= @) Iy = [F_ (14141120050 Fu(t)—0(t) | 222] .
(2.37)
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Now, from Theorom 3, sinco for g > 1

T Qe < oo, . (238)

“e
tho dosired conolusion follows,
The next two theoroms investigato whether tho tail probabilitios
1=F (1)~ ®(—1,) s t,—>00. .. (2.30)
(By a(n) ~ b(n) wo mean a(n)/b(n) — 1 a8 2 — 00).
Wao shall sco that as & consequence of Theorom 6, ono ean ensily ostablish

probabilities of modorato deviations (sco Rubin and Sethurainan, 19635;
Michel, 1074, 1976) in tho special enso ¢, = (¢ log »)b.

Thoorem 6: Suppose that the conditions of Theorem 1 are salisfied
and {(zn0)**¢ 3i(xn)} is uniformly integrable. Then for

tE < [clog nd-2(c+1) log| L, | +2 log w(rv/nt )]+ M, . (2.40)
where M is & posilive constant, (2.39) holds.
The next theorem states that such a strong conclusion may not bo possiblo
if
= [clog nt-2(c+1)log |ty] +2Tog u(ra/mt Y4, oo (241)
where M,— o 83 n—> 0.

Thoorem 7:  Suppose that the conditions of Theorems 1 and 2 are satisfied,
along with u, i assumption. Then if (2.41) kolds,

=P (t,) = o(ta%=¢ « n~*/2u=Y(ry/nt,)) a3 .= 0. . (242)

Oneo again wo omit the proefs of theso fwo theoroms as thoy follow the
linos of Michel (1976).

Remark 2: Supposo

u(K'z) - u(K'z)
u(zx) < lim u(z)

then (2.40) and (2.41) reduco to

O] 0 < lim <oo¥ K'>0;

g l\[% log n+-2(c+1) log | £,] +2 log u(‘/nl,)]+M
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and

L=k [% log 14-2(c41) log [2,] +2 log 14(\/nl,,)]+ﬂl.

respectivoly. Also the order of approximation in (2.42) roduces to

o(t=2~¢ n~e u~Y4/n t,)).

Tho condition (o) is aatisfied for u(z) = logm™ (14 |z]), m > 0, loglog (e+|z|)
and in goneral for slowly varying functiona.

As an examplo, considor tho easo whon u(x) = logm(1+|z]),m > 0,¢
and m net both zeros. Then, (2.40) reduces to

12 € clognt(c+2m41)loglog nt 3 il e > 0.

If ¢ = 0, thon (2.40) roducos to 15 < 2m log log n4-log ley log n+ M.

3. RATES OF CONVEROENCE FOR GENERAL NONLINEAR STATISTICS
In this section wo congider nonlinear statistics of the form

T, = 18, 4R,

whero

n »
S,, =3 Xm, -9: =Y EX?.;.
=1 =1

inf 712> 0, X,, X, ..., X,, being indopendont random varinblos.
a>1
Roprosentation of the abovo typo aroe fairly general and are obtainablle, for
oxamplo vin Hdjek's projection lomma (sco Hajek, 1068). Suppose further
that R, antisfies
E(R7) = O(n~m(log n)*) for somo h > 0. (k may be a function of m)

@.1)
m being a positive integor. Wo shall vorify (3.1) for L-statistics in Soction 4,
although other oxamples ean Lo given. In o forthcoming paper rates of

convergenco of U-statistica along with other properties will bo discussed.
Assumo (1.4) - (1.6) aro aatisfiod.
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Lot a,(t) = |#]4(n/2u(y/n))~", whero d > 1 and u satisfies (1.5); 9 > 0 will
Lo chosen Inter.  Then for 12 K[-:,Tc tog n4-log u(\/n)] , Theorem 1 violds
| Ps3' S < tka,(1)—B(tta,t))]

< boxp [-%(: a0 -—-3r)] (ne72u(\/n) A /0]
+3 P(1 Xl > ra,lt=,(0)). . (2

Noto a,(t) —» 0 ns n >0 for < K [%o log n-log ‘u(\/n)]; 50 |tta,(r)]2
= *(1+0(1)).

Without any loss of gencrality, assumo ¢ > 0, as ¢ < 0 can Tio handled
similarly. Then,

|0(t£a,()— 0] < a,0)(2m) oxp | — +{t—,(01]
< bld(nertu(y/n))" oxp [—% 2). - (33)

Again using Markov's inoquality and (3.1) ono hns
P(|R,| > a,) < az®™ (1) ER
= Ot=2m4 (ne/2 u{/n))*™ n-" (log n)P). e (39)

2m

If ¢ > 0 chooso 9 sauch that n—2 = pme? p-m o, g = e

For
¢ =0, (> 0) ean Lo choson arhitrarily, From (3.2) - (3.4) if ¢ > 0 one gots

for 2 K [l,, clog n4-log n(:\/n)] ,
1 -1
[P(T, < )—0(n] < b [exp (=5 E=3nme u(y/m An)
5 1
T4 n—m(-m+1)("(\/n))_(2m)/(2m+1)a oxp (_ glz)
4 em = OMEED) (. pyyhmhEm L og )h]

+ lﬁl P Xnal > ro,|t—a(n)]). e (35)
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Now for ¢ > 0, t—aL(t) = (1 —18-Y(n/2u(1/n))-"). This oquals zero if oither
§ =0 or ¢ = (n2u(y/n))"4-", Sinco tho lust valuo of ¢ lics outsido the region

1
<K [-2— ¢log n+4log u \/n)] and since

inf inf [1—ta ()| = A = XK, c,u,d)> 0,
o<t < K[i;, log n+log u(\/")]

wo havo,

IP(T, < =00 < [oxp ( -5 (01— (72 uly/n) A nd)t
18 pm AN = w2 Ne o (_ 1_2’ )
N -2md ,‘—('")/(2'"'}'1) (u(\/n))‘m’l(m"-l):(log nyb
"'E",P”X"‘l >r/\a,,|t|]. . (3.0)
For ¢ = 0 similarly wo havo
2
IP(T < =) < b [oxp (=5 (1=37)) (uy/m)?
4| t] 2 (u(4/n))" oxp (—-;— l’) + [ 1]2m8 (u(+4/n))2m® = (log n)?

+ li':lp( | il > ras, 1])] . (37)

for somo A > 0, whoro 7 > 0 is arbitrory. o aro now in a position to stato

Theorom 8 : Suppose {Xn¢} is a sequence of r.v.’s satisfying (1.4) - (1.6).
Let T =8;'S,+ R, where S, = ﬁ X, 82 = ‘f}‘ EX%, (n 2> 1) and R, salisfies
(=1 -1

(30). Then for 2< K [% log n+log u(\/n)], (3.6) holds if ¢> 0 and (3.7)
holds if ¢ = 0.
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Yot anothor form of the inequality is obtainable by s difforont
. 1
choico of 4> 0. Fuor ¢>0 let %> 0 bo such that mep—m <~2—c,i.o..

< (m—% c)/(mc); c< 2m < c+2. Thon from (3.2) - (3.4) it follows that
|B(T, < 0=00)] < b [oxp (= ) +nn]

3
+ T Pl Xai]| > ras,lt]) . (3.78)
t=1
for somo y > 0. Noto that undor tho additional assumption

l n
T‘aE‘IX,,,]HG (X ng) I[Ixul >ea— 0 88200 ... (3.8)

for ovory € > 0, putting |t] = (¢ log ») one obtains probabilitics of moderato
doviations. (3.73) will Lo usod further to have a thoorom snalogous to
Thoorem 6.

Next wo dorive an orror bound for 2> K [-%Iog n+log u(\/n)]. First
obtain from Thoorom 2 with ¢ > 0,

| Fult £ a (0)—®(t £ a )

& bnen u(Vn)]"‘x"’Il—a“(t) | —2(K+1)

+ ‘?_:l P(| Xni| > ra,lt—a,0)]). e (3.9)
Noto that
|0t £ a,()=0W)| < a,Iplt—aln)- e (3.10)

Honco for ¢ # a,(t),
| P(T, < 1)—0()] < b[ne/2 u(4/n)]-1E-1 |t —q (1)| —2K+D

+[n2u(+/n)]™ 18 oxp [-—% (t—a 1)
+ ’}'él P(| Xni} > re,|t—a 1)

+P(|R,|> a,0)) e (31)
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Note that the solution of t—a,(t) = 0 are ¢ = 0 and ¢ = [n¢/fu(y/n)]"4-1).

So [t—a ()| > A if [1—t-%, ()| > A where A(0 < A < 1) may depend on
K, and i8 at our choice.

Honco, for ¢ ¢ [(1£A) né/2u(4/n))"/9-1), ono has
IP(T- < ‘)-‘DU)I < b[n‘”’u(\/n)]"”‘-“lt[-“'““

+(n2u(4/n))-"| 1] oxp [—%/\’[']

+ ,i, P(I Xnt] > raa,[t])

by(no/t fp] =rKN), . (312)
To justify (3.12) note that

[P(IR| < a,) < = O (n=(log n)Mne/2u(y/n))2m7| 1| -2md)

(a (‘))"’I
= o(n—ell—l’ I { l —:(x+1))
for some € > 0 if

m{1—cq) > —;—+s’

ie.,
c+426"
1= > 2m
ie.,
< 2m—c—2¢’
K 2me

Since c<2m 42 this choico of 7(>0) is possible for some

€elo, % (2m—c)); d iz chosen in such a way that

2md > AR41), io., d> 1—1’L(K+l).

But for fe[(14A)n2u(y/n))" -1, chooso as(f) = [¢]4* (né/2u(+/n))~"
( <d® <d) and got & similar inequulity as (3.12) with d* roplacing d for
EE[(1L)ne/2u(4/n)]1d*-1, Since tho two intervals

{(UEA D (/)6 and (1 £ )nePuly/m))r01d0-D
¢an ba mado disjoint, ono gots (3.12) for all ronl ¢ with
2> K [% log n+log u(\/n)].
44-7
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oxp [—%A’L’] = 0xD [——%A’al’] oxp [—-;—A’(l—a)l’]

< [nm,,,(\/n)]-""““ oxp [ ——;-A'(l—a)t’].
(3.13)

Chooso a such that (7-+EAaf2) = L=t Lio., a = KK_/\:

27. For adoquat

choice of A end 7 ono hes 0 < 2 < 1. Hence the 2nd torm of tho rhs. of
(3.12) is loss then or oqual to

[rf2u(s/n)]R=172| |4 + oxp [—% 1—ap).

Wo now steto the following
Thoorem 90 : Let the conditions of Theorem 8 hold; then for
> K [% log n+log u(\/n)].
we have
| P(T, < )=0(0)] € blneuty/m]~F=DR g -2en
+ £ P(1 Xnt] > rs, |21

+by(nerz-t’ ¢ ~uE+N), .. (3.14)

Remark 8: It ia interosting to noto that wheroas in Theorem 2 the order
sharpons rs K incroasos it is not tho ceso with (3.12) bocauso of tho torm
P(|R,| > a,)).

In viow of Thooroms 8 and 9 with K sufficiently large wo have for
¢> 0, € (—~00 o)

|P(T, < )—0W)]

< b[{nﬂﬂu(‘/n))-l+n"(’")’(2’“+‘)(1,(‘/n))"""'“(z"‘ 'H”(log 2P} (1] +2[2%),
e (3.15)

whoro 2m is the largest oven intogar < (¢c42) and for ¢ = 0

1P(T. < )—0)] < bu(+/n)]}(1-+£2), ¢ roal. e (3.16)
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Remark 4: Noto that if X, admjts all moments, ono has from (3.15),
VP(T, < )—0(t)] < bnHo1(1 4111, o (3.302)

for ey positive 8 and 8. Also, the nonuniform bound (3.15) can be improved
whon from uniform Barry-Esseen bound one knows that

sup | P(T, € )—O()| = O((n¢2u(+/n) A nd)™?). .. (3.17)

Thon, without using (3.6) ono may diroctly use (3.14) along with (3.17) to
obtein

|P(T, € )=0)] < bn*u(+/n) An¥)~(log n)) (14 | ¢| 2)-tu(4/1)

(3.18)

for sBomo glc) > 0.

In tho light of (3.6), (3.7), (3.7»), (3.14) it js elso possiblo to obtain
thooroms analogous to 4 - 7. Without going into tho doteiled proof wo now
stato the results as follows,

Theorem 10: Suppose that the assumptions concerning u(z) of Theorem. 4
hold. Let Y, = |T,| and T = |N(0, 1)|. Then,

| EtY5*euly, ) — E(T*u(T))|
Otn—=12 n =™ @M+ Ny gt lEmNegog 1y if o> 0

o{above quantity) if ¢ > 0, and if

%‘):II.EUX,.(PWu(j::))—»O asnow

Lo ife =0 and if 5 £ B Xiiu(F2))o0

rAs,
as n— co. .. (3.19)
Noto that if & uniform Borry-Esscen bound (3.17) is known, by using (3.18)

instoad of (3.6) sometimes it is possiblo to obtain sharpor orders in (3.19) for
¢> 0. This comment holds for the noxt theorem also.

Thoorem 11: Let G,(¢) = P(T, < t). Then under the assumplions of
Theorems 10 and 11, for any g>1
Oln=r1y/nmim+i(log aY, if ¢> 0

O(u(+/n))™! if ¢=0.
(3.20)

1+ | e| 20 @, (1) — OO, = {
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Remark 5: If ¢> 0, wo taka u{zr) =1 in (1.4) to obtain (3.20). Using
(3.8) and (3.78) in the caso ¢ > 0 and (3.7) with 7 =1 in tho enso ¢ = 0, we
havo tho following thoorems.

Thoorom 12: Let the conditions of Theorem 10 and assumption (3.8)
hold. Then, for a scquence {1,}, t,— oo with

12 [elog n+2(c+1) log |¢,]| 2 log u{rAs t )]+ 2, . (3.21)
where M is a posilive conslant,
16, (t,) ~ O(—1,) as 1,- 0. . (3.22)

Thoorem 13 : Let the conditions of Theorems 10 and 11 and assumption
(3.8) hold. Then, for a sequence {t,},1,— oo with

13 =(clog n+2(c+1)log |t,| +2log u(rds )]+, ... (3.23)
where M, — 00 as n —» 00,
126, t,) = olt3® n-ertfu (ras,t,))). . (3.24)
Remark 6 : If assumption (s) of Remark 3 holds thon (3.21) and (3.23)
reduce to
1} < [elog n+2(c+1)log |1,] +2 log u(y/nt,)]+ 3 e 13.25)
and

12 =[clog n42(c+1) log |¢,] +2log u(y/nt 1+ 21 ,. ... (3.26)

Remark 7: For Theorems 6 and 12 tho restriction (1.6) may be relaxed.
From the proof of above two thoorems it follows that in the casoc > 0itis
cnongh for (2.1) to have w = n~* with somo € > 0. Tho ultimate condition
replacing (1.6) turns out to bo (as evidont from (2.15))

8n > nol/teonte .. (3.27)
for some €’ > 0 whero ¢* = min (¢, 1).

4. RATES OF CONVERGENCE FOR L-STATISTICS
Let X,, < X,, € ... X,, denoto the order statistics corresponding to
n iid rv's X, ..., X, having & common distribution function F. Considor
linear combinations of functions of order statistics of tho form

T, =‘z"l cinh(Xin), e (A1)
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whero tho c¢in’s are constant and A is somo monsurabla function. Let
1 = heF-%@ whoro G(z) = 1—exp (—z). Alw, lot Z,, € ... € Z,, donoto
the ordor statistica corrosponding to n i.i.d r.v's Z,, ..., Z, cach having the

distribution function @(x). Then T, is identionlly distributod ag £ cenll(Zyn).
Thie reprosontation is duo to Chornoff, Gastwirth and Jolws {ll-DG'l). Noto

¢
that Z¢s has the samo distribution as X Zy/(n—j+1) and, henco
i=1

1
o = BZ) = T (1=j+ 1) | << e (42)

Assuming that H is difforontinblo, by the first moan valuo theorom, ono
has

(To—po)8, = 3*L,+ R, v (4.3)

whero
Ha =‘>’-“l-l ctn H(wn); e (44)
Lo = cin'ta)( Zun o) . (45)

R,= a.*,ﬁl cinlZin—vin U H' (0, Zn 4+ 0 =0, i) = H'(vn)), .. (4.6)

for somo 0 < 0, < 1;s% = £ at,. a, = (n—i41)7? po g A () 1 6K 7.
im1 =t

N
Noto that Z'I‘ et I (v, )(Z¢,—v1,) has tho same distribution as U,= T ay,
=t i=1

(Z—1) and #% = var (U,). Tho above expansion was used by Bjorve (1977) in
obtaining u uniform Berry-Esscen theorem of O(n~t) for T,. The asymptotic
normality of 7', waa proved by Chernolff et al. (1967).

Our aim in this section is to dovolop nonuniform Borry-Esscon bounds
for T', and obtain Theoroms 10- 13, For this we need a verification of (1.4),
(1.6) aud (3.1).

Tho following nssumptions are mado.
(I) sup max || < oo
AP 1GHl&n
(II) M is differontinblo and sup | H'(x)| < oo;
0<s<m™

(III) H’ ia Lipschitz of order ono over (0, 0);
(IV) lLim n%E> 0.
e
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It is thon oasy to mon that (1.4) and (1.6) nro satisfiod. To vorify (3.1)
firat observe that in viow of I, and TII,

E|R,|*™ < O~ E| 3: (Zia—rea)t}im
= OnmE| '"zd {é (Zj—))[(n—j+1) ]a] m

= Cn-mE( i‘:l(z,— 12 f(n—j+1)
i

+2'% I (Z—1)Zp—Dftn—j+ 1"
J=14"=441

whero in the abovo and in what follows C is a gonoric constant which might
dopend on m, but not on n. Also,

E( lz:‘.‘ (2,—1)2/(n—j+1))m e (&T)

E[(Z, —1)...(Z, —1)
—x. s L ) (”?‘ 1 .. (48)
I fzm (R=J1+1) ... (n—Fom+1)

Using Haldor's inequality 2m times,

El(Z, 1) ...(Z,, —11 < "r:i: Evin(z, —1)m, . (49)

But E(Z,—1)' < (4m)! Honco from (4.8) and (4.9)

E( £ @-1fn—j+opm <mp (B —— )7 < 0 ognpm,
= =1 23+
(4.10)
Further,
n n i 2w
E[ I I (Z=W(Zp—1)(n—j+1)]
_F oy % % E(Zh—-l)(Z,;—l)... (Z),,—1)Z,; —1)
W=l it gomm) gy efomtl (—ii+1) ... (2—Fem+1)

(4.11)
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Noto that if any onn of the pairs (jy, 5;) of suffixes occurs only onco, then tho
oxpectation vanishes, and honco ovory suffix should occur at lonst twice to
mako A& nonzoro contribution.

Subjeet to the condition that each pair of suffixcs occurs at least tewico,

tho maximum number of pairs that can orcur ia m. Alse applying
Holders incquality 4m times

| Blag = 1)z = 1) .- (25, — Dz, —Df < :1'7_"1 EAm (7, 1ym

=E(z—-1)m & (4m) ! ... (4.12)

®
In view of the fact that L asp(>0) 1T foranya<bdbgn
(=a

1
(n—i41)p
and that maximum number of pairs is m, each occuring at least twice, we
have,

Lhe. of (4.11) < (4m) 1 ( 5

1 m
I ("—Tl)) < (4m)1 (logm)™ ... (4.13)

Thus, (3.1) is verified with A = m, and one gots Theorems 8-13 in this
situation. The only thing to note is that (3.16a) should replace (3.15).

Tho conditiona assumed on H aroe satisfied when for examplo F(z) = G(z)
= l—exp (—z) and % is tho identity map. In the case of trimmod L-statistics
1»8)
T.= } 2 enH(Z4n), 0 < a < B < 1, and woaker condition on H suffices.
nal+1
All wo neod assumo there is sup |H'(z)| < coand H’ is Lipschitz of order 1
asxgd

on (s, b) where a < — log (1—a), b > —log (1—24).
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