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for selecting one solution from the set. For comparing the per-

formance of different MOO techniques, two new quantitative

measures, viz., purity and minimal spacing, are defined. These

two measures, along with the number of hyperplanes required,

time required for training, percentage of correct classification,

user’s accuracy and kappa, are used for comparing the perfor-

mance of different classifiers.

II. MOO

Many real-world problems involve multiple measures of per-

formance, or objectives, which should be optimized simultane-

ously. Optimizing multiple objectives involves finding a solu-

tion, or possibly a set of solutions, which would provide the

values of all the objective functions acceptable to the designer

[4]. A general minimization problem of objectives can be

mathematically stated as

Minimize

subject to

(1)

where is the objective function, is the in-

equality constraint, and is the equality constraint. The

MOO problem then reduces to finding such that is opti-

mized [5].

In general, the objectives of the optimization problem are

often conflicting. Optimal performance according to one objec-

tive, if such an optimum exists, often implies unacceptably low

performance in one or more of the other objective dimensions,

creating the need for a compromise to be reached. A suitable so-

lution to such problems involving conflicting objectives should

offer acceptable, though possibly sub-optimal in the single ob-

jective sense, performance in all objective dimensions, where

acceptable is a problem dependent and ultimately subjective

concept. An important concept in MOO is that of domination,

where a solution is said to dominate another solution if

both the following conditions are true:

• the solution is not worse than in all objectives;

• the solution is strictly better than in at least one

objective.

This, in turn, leads to the definition of Pareto-optimality,

where a decision vector , where for the universe,

is said to be Pareto-optimal if and only if there exists no ,

, such that is dominated by . Solution is said to

be nondominated. The set of all such nondominated solutions

is called the Pareto-optimal set or the nondominated set. In

general, MOO problems tend to achieve a family of alternatives

which must be considered equivalent in the absence of infor-

mation concerning the relevance of each objective relative to

the others. Some of the important issues in MOO are designing

a suite of test problems with varying degrees of difficulty [6]

and defining a set of appropriate quantitative measures for

comparing the performance of different MOO strategies [7].

A study establishing the effectiveness of some MOO tech-

niques over their single objective counterparts for the multiob-

jective set-covering problem with varying degrees of difficulty

has been carried out in [13]. Theoretical analysis characterizing

MOO algorithms [14], and investigating the possibility of gen-

erating a unified framework for them, such that individual multi-

objective evolutionary algorithms could be obtained by varying

some parameter within this framework [15] have been taken up

in recent studies. The next section describes how the character-

istics of MOGAs may be exploited for developing a nonpara-

metric classifier which models the class boundaries of a data set

using a number of hyperplanes.

III. MOGA-BASED CLASSIFIER

In this section we describe different multiobjective classi-

fiers based on CEMOGA, NSGAII, and PAES. Note that we did

not choose the earlier versions of MOGA methods e.g., NSGA

and NPGA, since these are essentially non elitist in nature. We

chose NSGA-II for the purpose of comparison since the opera-

tions of the proposed CEMOGA-Classifier are based on it. PAES

has been chosen since it is a relatively new algorithm based on

evolutionary strategies, another widely used evolutionary algo-

rithm.

A. Why MOO?

As already mentioned, the VGA-Classifier [2] used a single

criterion, which gave primary importance to , and there-

after to , for optimization during training. The preference

given to over was user defined and adhoc. It could

result in overfitting of the data, when a large number of hy-

perplanes could be used for providing maximum accuracy

during training, resulting in reduced generalizability. Thus,

the need was felt for optimizing and separately and

simultaneously.

Although provided a measure of the overall classifi-

cation accuracy, it did not incorporate any class wise informa-

tion. Therefore, a new term called , defined

as the product of the class wise recognition scores, is taken

as the third objective for optimization. It may be noted that

minimizing does not automatically lead to maximizing

, and vice verse. For example, consider a data

set, having two classes, with 100 points in class 1 and 10 points

in class 2. Assume that in one situation, 50% of both the classes

are correctly recognized. Hence, is 0.25 and

. In another situation, let 60% and 40% of the classes

be recognized respectively. Here the becomes

0.24, while is 46. It is evident that although in the first

case is more, in the second is smaller.

The question as to which one is better is therefore seen to be

problem dependent, and cannot be resolved without any domain

knowledge.

Since any combination of the three objectives would, in gen-

eral, be adhoc, it is imperative to adopt an MOO strategy. An

important consequence of this is that the decision maker will

be provided with a set of possible alternative solutions, as well

as intermediate solutions, which the decision maker may subse-

quently refine. The next section describes how the principles of
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MOGA can be used for the placement of an appropriate number

of hyperplanes such that (the number of misclassified

points), (the product of the rates of correct

classification of each class), and (the number of hyperplanes

required to model the class boundaries) can be simultaneously

optimized.

B. Principle of Hyperplane Fitting

The multiobjective genetic classifier attempts to place

hyperplanes in the feature space appropriately such that all

the above mentioned objective functions are optimized. As

is known, a hyperplane in -dimensional space can be rep-

resented by angle variables , ,

and a perpendicular distance variable . Each angle variable

is allowed to vary in the range of 0 to , the length of the

intervals being determined by the number of bits, , used to

represent the angles. Once the angles are fixed, the orientation

of the hyperplane becomes fixed. Now only must be specified

in order to specify the hyperplane. For this purpose, the hyper

rectangle enclosing the training points is considered. Let

be the length of the diagonal of this hyper rectangle. A hyper-

plane is designated as the base hyperplane with respect to a

given orientation (i.e., for some ) if:

• it has the same orientation;

• it passes through one of the vertices of the enclosing rec-

tangle;

• its perpendicular distance from the origin is minimum

(among the hyperplanes passing through the other ver-

tices). Let this distance be .

If bits are used to represent , then a value of in these

bits represent a hyperplane with the given orientation and for

which is given by . Details of these

are available in [2].

C. Chromosome Representation

The chromosomes are represented by strings of 1, 0, and #

(“don’t care”), encoding the parameters of a variable number

of hyperplanes. If angle and distance bits are represented by

and bits, respectively, then the length, , of the chromo-

some encoding ( , where represents

the maximum number of hyperplanes, specified a priori) hyper-

planes is

(2)

Note that if the number of classes is represented by , then the

minimum number of hyperplanes required to generate

those many regions is

(3)

D. Fitness Computation

The fitness of a chromosome is assessed on the basis of ,

, and .

Computing : The number of misclassified points for a

string encoding hyperplanes is found as follows: Let the

hyperplanes provide distinct regions which contain at least

one training data point. (Note that although , in reality

it is bounded by the size of the training data set.) For each such

region and from the training data points that lie in this region,

the class of the majority is determined, and the region is con-

sidered to represent (or be labeled by) the said class. Points of

other classes that lie in this region are considered to be misclas-

sified. The sum of the misclassifications for all the regions

constitutes the total misclassification associated with the

string.

Computing : For a data set having

classes, the fraction of each class , correctly classified

, is defined as

(4)

where and represent the number of points and the number

of correctly classified points of class , respectively. Overall

class accuracy of a chromosome, considering all the classes is

calculated as .

Calculating : If the length of a chromosome is , then the

number of hyperplanes encoded in the chromosome is calcu-

lated as follows:

(5)

Any chromosome with is assigned

so that it will be automatically eliminated during selection.

E. Selection

In MOO, the selection procedure differs significantly

from the corresponding single objective version. This sec-

tion describes, in brief, the selection schemes used in the

CEMOGA-Classifier and NSGAII-Classifier [3], since the

operations of CEMOGA-Classifier are based on those in NS-

GAII-Classifier. Details of the selection scheme may be found

in [3] and [16]. The PAES-Classifier is described separately in

Section III-I.

The chromosomes in a population are first sorted based on

their domination status using the procedure nondominated sort

[3], [16]. Here the chromosomes that are not dominated by any

other member of the population form the first front, and are put

in rank 1. These chromosomes are then removed from consider-

ation, and the chromosomes which thereafter become nondom-

inated are assigned rank 2. The process is repeated until all the

chromosomes have been assigned a rank. The chromosomes are

then put in a sorted order according to their ranks. The overall

complexity of the nondominated sort algorithm described in de-

tail in [16] is shown to be , where is the number of

objectives and is the number of chromosomes in the popula-

tion. The first front represents a nondominated set with respect

to the current population, since none of the solutions in this front

is dominated by any other solution in the population.

After applying the nondominated sort algorithm the chromo-

somes are assigned a crowding distance and selection is per-

formed using the crowded tournament selection. The crowding
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distance is computed as the sum of the difference of the objec-

tives values of the solutions preceding and following the cur-

rent solution (corresponding to the chromosome under consid-

eration) for each objective [3], [16]. This provides a measure of

the density of the solutions surrounding a particular point in the

population.

In crowded tournament selection, a pair of chromosomes is

selected randomly, and the one with the lower rank is selected. If

the ranks of the chromosomes are equal, then the chromosome

with a larger crowding distance is chosen. The large crowding

distance ensures that the solutions are spread along the Pareto-

optimal front.

F. Crossover

The crossover operation is modified to be applicable to two

strings of (possibly) different lengths. The lengths of the two

are first made equal by padding the smaller chromosome with

#s. Conventional single point crossover is then performed on

them with a probability . The resultant chromosome may have

some valid and some invalid hyperplanes. (A hyperplane is valid

if all the bits representing this plane are either defined, i.e., 0’s

and 1’s, or #, i.e., undefined; it is invalid otherwise.)

If a hyperplane is invalid, let = number of defined bits in

that hyperplane. Then, all its # bits are set to defined bits with

a probability . In case this is not permitted, all the defined

bits are set to #s. After each hyperplane becomes valid, all the

#s are pushed to the end of the chromosome so that we have all

the hyperplanes in the beginning of the chromosome. Details are

available in [2].

G. Mutation

As in crossover, the mutation operation is also modified to

tackle variable length strings. The length of a chromosome is

first made equal to the maximum chromosome length by appro-

priately padding with #s. Then for each defined bit position, mu-

tation is carried out with mutation probability . is varied

with the number of iterations such that it goes though a com-

plete cycle of high values, then low values, then high followed

by low values once again. Note that when is high, greater ex-

ploration of the search space results, while exploitation is given

more importance for low values of . By alternating this cycle,

we intend to provide a better balance between exploration and

exploitation of the search space; a crucial factor in the good per-

formance of GAs. The variation of with the number of gen-

erations is depicted in Fig. 1 [17].

If mutation cannot be carried out on a defined bit, it is set

to # with a probability . Each undefined bit is set to a de-

fined bit (chosen randomly) with probability . The resultant

chromosome may again have some invalid hyperplanes which

are handled in the same way as in crossover. Note that mutation

operation on defined bit may result in a decrease in the chromo-

some length, while the operation on # positions may result in an

increase in the chromosome length. In this paper, we have fixed

the values and , and have kept them equal so that the

probability of increasing and decreasing the string length is the

same.

Fig. 1. Mutation probability graph.

H. Incorporating Elitism

In this section, we describe how elitism is incorporated in

the NSGAII-Classifier and CEMOGA-Classifier. As for selec-

tion, these are again mentioned together since they are some-

what similar, though the procedure in CEMOGA-Classifier is

so designed such that some domain specific constraints are in-

corporation.

1) Elitism in NSGAII-Classifier: Here the parent population

and the child population, obtained using selection, crossover and

mutation on the parent population, are first combined together to

form a combined generation of size . The combined popula-

tion is sorted and the best chromosomes are selected from this

combined generation to constitute the new parent generation.

Chromosomes from rank 1 get selected first, followed by rank 2

chromosomes and so on until the total number of chromosomes

exceeds . Thereafter the last front chromosomes are removed,

and they are selected one by one on the basis of their crowding

distance, so that the total number of chromosomes in the new

parent generation is . This new parent generation again un-

dergoes crowded tournament selection, crossover and mutation

to form the child generation. This process is repeated for a max-

imum number of generations, fixed a priori.

2) Elitism in CEMOGA-Classifier: As in the NSGAII-Clas-

sifier, an initial population of size is created. This is also

called the combined generation for the sake of convenience.

Note that, although in the initial stage, the size of the combined

generation is equal to , for subsequent generations this will be

equal to , where is the size of the constrained gener-

ation, described below. Now two sets of operations are invoked

on the same combined generation. Firstly, crowded tournament

selection is used to select chromosomes from the combined

generation, after which crossover and mutation operators are ap-

plied to form a generation of size , which is called the current

generation. Simultaneously, a constrained generation is formed

from the combined generation by selecting chromosomes which

satisfy the following constraints.

1) is greater than (3).

2) is less than , for the first generations and

less than for later generations, where is the size

of the data sets and , .
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Fig. 2. Flowchart of CEMOGA-Classifier.

3) is greater than zero for the first gen-

erations, and greater than for the later generations,

where .

Note that the size of constrained generation may vary, de-

pending upon the number of chromosomes that satisfy the con-

straints, but is restricted to , where . If the number of

chromosomes that satisfy the constraints exceeds , then in

a process analogous to the one described in Section III-H.1, the

chromosomes from the first front onwards, and which satisfy the

constraints, are added to the constrained generation one after

the other until the size of the constrained generation exceeds the

limit. Thereafter, the last front chromosomes are removed from

the constrained generation, and crowded tournament selection

is applied to select the appropriate number of chromosomes

from this front. We call this process Crowded ConstrainedGen

Formation. The current generation and the constrained genera-

tion are combined to form the combined generation, which will

now be of size . The entire process is continued for a

specified number of generations.

Note that in contrast to the elitism procedure for NS-

GAII-Classifier, where better ranked chromosomes are retained,

even though they may not satisfy the practical constraints of the

problem, this is not the case in CEMOGA-Classifier. Here, the

constrained generation is formed in such a way that even lower

ranked chromosomes have a chance of surviving, provided they

satisfy the constraints. This, in turn, leads to a better diversity,

and hence larger exploration of the search space, which is

likely to result in improved performance. Fig. 2 illustrates the

CEMOGA procedure.

I. The Classifier Based on Pareto Archived Evolution Strategy

(PAES-Classifier)

The PAES-Classifier utilizes the Pareto-archived evolution

strategy (PAES) [11] as the underlying MOO technique. PAES
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uses a (1 1) evolutionary strategy (ES) [18]. This algorithm

performs a local search by using a small change operator to

move from one solution to a nearby solution. At any generation

, a parent solution , offspring solution , and a number

of best solutions called Archive are maintained. The offspring

is obtained by applying the mutation operator on a copy of

. The parent and offspring are compared for dom-

ination, and based on different scenarios may be rejected

or accepted, and the Archive may or may not be updated.

To decide who qualifies as parent (as well as to decide a victim

for deletion when the archive overflows), the density of solu-

tions in the neighborhood is checked and the one residing in the

least crowded area qualifies as parent. (In the case of selecting a

victim for deletion, one residing in the most crowded area is se-

lected.) For determining density, each objective space is divided

into equal divisions where is a user defined depth param-

eter. Therefore, the entire search space is divided into

unique, equal sized M-dimensional hypercubes. The number of

solutions in each hypercube is counted. This is used as a mea-

sure of the density of the solutions in the archive.

J. Validation and Testing

In contrast to the single objective VGA-Classifier [2] which

provides only a single final solution, the multiobjective classi-

fiers described in this article provide a set of solutions. These

are the chromosomes in the first front (or, rank 1) of the final

population for the NSGAII-Classifier and CEMOGA-Classifier,

while for the PAES-Classifier these are found in the archive. A

validation function therefore needs to be defined to select a chro-

mosome which is best suited for the problem at hand, and which

can be subsequently used for designing the final classifier. Ac-

cordingly, the data set has to be divided into three parts: training,

validation and test sets.

In the present investigation, the validation function, applied

on the validation set, is defined as follows:

Validity

(6)

where and are the size of validation set and the number

of classes, respectively. From (4), it is found that for individual

classes, the value of can range from 0 to

1. The overall is a product of the such

values corresponding to classes. There-

fore, in order to combine the three objectives into a single

validity function, the terms corresponding to and are

so defined that these values also range from 0 to 1, and there-

after these are raised to the power of . The coefficients reflect

the relative importance of the three objectives. It may be noted

that these values may be changed depending on the problem

domain and other user-specific considerations. Moreover, the

validity function may be defined in some other form as well.

The classifiers designed by the chromosomes of the first front

of the last generation are subjected to the validation phase. The

validation function is then computed corresponding

to each classifier. The classifier providing the highest value of

is taken as the solution.

The final classifier thus obtained from the validation phase is

then used for testing. For each unknown pattern in the test set,

the region in which it lies is first determined. The pattern is then

labeled by the class associated with that region.

IV. INDICES FOR COMPARING MULTI-OBJECTIVE SOLUTIONS

In general, the solutions obtained using any MOO algorithm

should be as close as possible to the Pareto-optimal front. More-

over, the solutions should be distributed uniformly over the so-

lution space. In other words, a maximal set of solutions over

the Pareto-optimal front is desired which must cover the entire

gamut of the front, and also be uniformly distributed over it.

Some measures of comparing the nondominated solutions pro-

vided by different MOO strategies are discussed in this section.

We also define two new measures in this context.

A. Measures Based on Position of Nondominated Front

One of the ways of evaluating the performance of MOO al-

gorithms is based on the position of the nondominated front

(surface formed by the nondominated solutions). Some such

measures are the error ratio [19] and set coverage metric [20].

The first measure, error ratio, assumes that a knowledge of the

Pareto-optimal set is available, an information that may not be

readily available in real-life problems. The other measure, set

coverage, essentially computes the relative goodness of only

two MOO strategies. Another measure is now formulated that

can be used to compare the solutions obtained by not only two

but several MOO strategies (which is in contrast to the set cov-

erage measure), while not assuming any knowledge about the

Pareto-optimal front (which is in contrast to the error ratio).

Such a new measure, called purity, is described as follows.

Suppose there are , , MOO strategies applied to a

problem. Let , be the number of rank

one solutions obtained from each MOO strategy. Compute the

union of all these solutions as . Thereafter, a

ranking procedure is applied on and obtain the new rank one

solutions, called . Let be the number of rank one solutions

which are present in . That is

(7)

Then the purity measure for the th MOO strategy is defined

as

(8)

Note that the purity value may lie between [0,1], where a value

nearer to 1 indicates a better performance.

B. Measures Based on Diversity of the Solutions

Schott [21] suggested a measure called spacing which reflects

the uniformity of the distribution of the solutions over the non-

dominated front. Spacing between solutions is calculated as

(9)
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Fig. 3. Example of a set of nondominated solutions.

where and (or, )

is the th objective value of the th (or, th) solution in the

final nondominated solution set . is the mean value of all

the s. Note that a value of nearer to 0 is desirable since it

indicates that the solutions are uniformly distributed over the

Pareto-optimal front. This diversity measure can be calculated

for solution sets where there are more than two solutions in the

set. Fig. 3(a) and (b) demonstrates a common scenario when

this measure is expected to fail. In Fig. 3(a), since point has

as its closest neighbor and vice versa, the value of will be

low, indicating wrongly a uniform spread over the Pareto-op-

timal front. This measure is unable to indicate that a large gap

exists between and . Note that with this assumption the value

of will be low in Fig. 3(b) also. It is obvious that the situation

in Fig. 3(b) if preferable, since it shows a more uniform distri-

bution over the Pareto-optimal front. However, the measure

is unable to indicate this. We overcome the above limitation of

by defining here a modified measure called minimal spacing,

. The essence of this measure is to consider the distance from

a solution to its nearest neighbor which has not already been

considered. The way is calculated among the solutions in

the nondominated set is as follows.

Initially consider all solutions as unmarked. Take a solution

and call it the seed. Mark the seed. Start computing the nearest

distance from the last marked solution (initially the seed). Each

time while calculating the minimum distance between two so-

lutions, consider only those solutions which are still unmarked.

Once a solution is included in the distance computation process,

make it as marked. Continue this process until all solutions are

considered and keep track of the sum of the distances.

Repeat the above process by considering each solution as seed

and find out the overall minimum sum of distances. The se-

quence of solutions and the corresponding distance values are

used for the computation of the , where again (9) is used

with replaced by (since here we have dis-

tances). As for , a lower value of indicates better perfor-

mance of the corresponding MOO technique. Note that with this

definition, the value of in Fig. 3(b) will be lower than that

in Fig. 3(a), indicating that the former solution set is better. In

this regard, it may be mentioned that the range of values of the

different objectives often varies widely. Consequently, they are

generally normalized while computing the distances. In other

words, when computing the s, the term is divided

by in order to normalize it, where and

Fig. 4. Vowel data set.

are the maximum and minimum values respectively of the

th objective.

V. SIMULATION AND RESULTS

Several data sets, with the number of dimensions varying

from two to 18 and number of classes varying from two to six,

were used to demonstrate the effectiveness of the afore men-

tioned genetic classifiers. Each data was divided into three dif-

ferent groups of training, validation and test which comprised

20%, 30%, and 50% of the original set respectively.

In the following subsections, we first describe the different

data sets. The experimental parameters adopted for the imple-

mentation of the classifiers are provided in the next subsection,

followed by a detailed description of the comparative results.

A. Data Sets

Vowel: This consists of 871 Indian Telugu vowel sounds

and three features , and , corresponding to the first,

second, and third vowel formant frequencies, and six classes

[22]. Fig. 4 shows the data in plane

with six different symbols representing the six classes. As

can be seen from the figure, the boundaries of the classes are

ill-defined and overlapping.

Iris: This data represents three different categories of the

flower, iris namely, Setosa, Versicolor and Virginica, and is

characterized by four feature values [23]. It has 150 points with

50 samples per class. It is known that two classes, Versicolor

and Virginica, have a large amount of overlap while the class

Setosa is linearly separable from the other two.

Cancer: This breast cancer database, obtained from the Uni-

versity of Wisconsin Hospital, Madison, has 683 breast mass

samples belonging to two classes Benign and Malignant, in nine

dimensional feature space. The nine feature values correspond

to clump thickness, cell size uniformity, cell shape uniformity,

marginal adhesion, single epithelial cell size, bare nuclei, bland

chromatin, normal nucleoli, and mitoses. 1

Landsat: The Landsat data, obtained by the satellite

Landsat-V, represents satellite imagery data of five classes

1The data set is available at http://www.ics.uci.edu/~mlearn/MLReposi-
tory.html.
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Fig. 5. Landsat data set ( : Vegetation, +: Black Phillite, �: Romapahari
Granite, /: Alluvium, �: Manda Granite, respectively).

of rocks, vegetation and soil, namely, Manda Granite, Roma-

pahari Granite, Vegetation, Black Phillite, and Alluvium. The

data set with 795 samples and two features is shown in Fig. 5.

The details of extraction procedure are available elsewhere

[24], [25].

Mango: Mango data set [26] consists of eighteen measure-

ments taken of the leaves of three different kinds of mango trees.

It has 166 samples with 18 features each. It has three classes

representing three kinds of mango. The feature set consists of

measurements like Z-value, area, perimeter, maximum length,

maximum breadth, petiole, K-value, S-value, shape index, upper

midrib/lower midrib, and perimeter upper half/perimeter lower

half. The terms upper and lower are used with respect to the

maximum breadth position.

Crude Oil: This data set has 56 samples with three classes and

five features [27]. The three classes, consisting of 7, 11, and 38

patterns respectively, correspond to three types of oil. The five

features are vanadium (in percent ash), iron (in percent ash),

beryllium (in percent ash), saturated hydrocarbons (in percent

area), and aromatic hydrocarbons (in percent area).

B. Parameter Values

For CEMOGA-Classifier and NSGAII-Classifier, the popula-

tion size and crossover probability, were kept fixed at 20 and

0.85, respectively while the conventional mutation probability

was varied in the range [0.45,0.002]. and were fixed at

0.95. The values of and were chosen to be 8 and 16, respec-

tively. Maximum number of generations and maximum number

of hyperplanes were kept fixed at 3000 and 20, respectively. The

values of and , as described in Section III-H, were set to

50. The values of , and were chosen to be 0.50,

0.35 and 0.05, respectively. Since the PAES-Classifier operates

on only one string at a time, in order to keep the comparison fair,

it was executed for 60 000 generations (equal to the population

size (20) times the maximum number of generations (3000) for

the genetic classifiers. The maximum archive size was fixed at

30, and the depth parameter was kept equal to 3.

TABLE I
TRAINING RESULTS ON VARIOUS DATA SETS

C. Results

This section is divided into two parts. In the first part, a com-

parison of the performance of all the classifiers is provided for

the eight data sets using different classification measures. The

nondominated solutions obtained by the three multiobjective

classifiers are compared in the second part of this section, using

the measures, purity and minimal spacing, defined in Section IV.

1) Comparison of the Classification Performance: The

classification performance of the classifiers are compared using

several measures, namely, number of hyperplanes, percentage

recognition scores, class accuracy, user’s accuracy, and kappa

[28], [29]. User accuracy is a measure of confidence that

a classifier attributes to a region as belonging to a class. It is

defined as , where is defined earlier in (4) and

is the number of points classified into class .

The coefficient of agreement (kappa) measures the relation-

ship of beyond chance agreement to expected disagreement. The

estimate of kappa for class is defined as

(10)

The numerator and denominator of the overall kappa are ob-

tained by summing the respective numerators and denominators

of separately over all classes .

Tables I and II show the comparative results of the three

multiobjective classifiers on different data sets during training

and testing, respectively. As can be seen from Table I, the CE-

MOGA-Classifier uses a smaller number of hyperplanes than the

remaining classifiers for approximating the class boundaries for

all the data sets, except Mango. In general, using a large number

of hyerplanes for approximating the class boundaries is likely

to lead to overfitting of the data; thereby leading to better per-

formance during training (better abstraction), but poorer gen-

eralization capability. This is supported by the results provided

in Tables I and II, where it is seen that although the percentage

recognition scores during training of the CEMOGA-Classifier is

not the best for all the data sets, its performance during testing

is consistently better than those of the other classifiers for all the

data sets.

The only departure with regard to the number of hyperplanes

is observed for Mango, where the NSGAII-Classifier uses only

three hyperplanes, while the CEMOGA-Classifier uses six.
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TABLE II
TEST RESULTS ON VARIOUS DATA SETS (HERE CLACC STANDS FOR CLASS ACCURACY)

TABLE III
CLASSWISE PERCENTAGE RECOGNITION SCORES FOR MANGO USING THE

GENETIC CLASSIFIERS

However, it can be seen from Table II that the NSGAII-Classi-

fier (as also the PAES-Classifier) provides a

value of zero, indicating that at least one class has not been

recognized at all. In contrast, the CEMOGA-Classifier uses

six hyperplanes to recognize all the three classes to a rea-

sonable extent, thereby providing a value

of 0.28. Table III, which shows the classwise percentage

recognition scores for all the three classifiers during testing,

also demonstrates this observation. As can be seen, only CE-

MOGA-Classifier is able to recognize, to a large extent, all the

three classes. In contrast, the VGA-Classifier fails to recognize

class 2, while the NSGAII-Classifier and PAES-Classifier fail to

recognize class 3. In fact in both these cases it was found that

there were no patterns that were either correctly or incorrectly

classified to the respective classes. (It may be mentioned here

that the VGA-Classifier was found to be unable to recognize

class 2 while providing an overall recognition score of 55.43%.)

As is evident from the kappa values provided in Table II the

CEMOGA-Classifier consistently provides the best result for all

the data sets, once again highlighting its superior performance.

In order to study the classwise user’s accuracy, the Vowel data

set was chosen, as an example, since it has been used extensively

in other experiments with the GA-based classifiers [30]. It was

found that the user’s accuracy and kappa values were, in gen-

eral, relatively poorer for Class 1 for all the classifiers. The

reason for this is evident from Fig. 4, where it is found that this

class is largely overlapped with its neighboring classes. Again,

the user’s accuracy values for classes 3 was found to be the

highest for CEMOGA-Classifier and PAES-Classifier, while for

NSGAII-Classifier, this was highest for class 4 . It may be

noted in this context that both these classes have only a little

overlap with the neighboring classes, and hence obtaining high

user’s accuracy for them is expected.

TABLE IV
PURITY MEASURE ON VARIOUS DATA SETS

Regarding the time taken for training the classifiers, it was

found that as expected, the multiobjective classifiers took more

time than the single-objective VGA-Classifier. In general, the

NSGAII-Classifier and CEMOGA-Classifier took similar time

since their operations are similar, except that CEMOGA-Classi-

fier requires an additional step of checking for the constraints,

while PAES-Classifier took more time to train. As an illustra-

tion, for Vowel data, the time taken by the CEMOGA-Classifier,

NSGAII-Classifier and PAES-Classifier were 6.15, 5.604, and

19.816 min, respectively, when executed on SUN workstation.

2) Comparison With Respect to Obtained Nondominated So-

lutions: Table IV demonstrates the number of nondominated

solutions and the corresponding purity values obtained by the

three MOO strategies for the six data sets. Interestingly, in all the

cases, CEMOGA-Classifier attains a purity value of 1, indicating

that all the nondominated solutions obtained by it are indeed

nondominated even when the solutions of all the three algo-

rithms are combined. On the other hand, almost none of the so-

lutions obtained using PAES-Classifier was found to be actually

nondominated in the combined scenario, while NSGAII-Classi-

fier lies some where in between. In this regard it may be noted

that CEMOGA-Classifier, in general, finds a smaller number of

better nondominated solutions than the other two algorithms.

For the purpose of demonstration, the nondominated solutions

obtained using these three algorithms are shown in Fig. 6 for

the Vowel data set. Note that when the solutions of all the three

classifiers are combined and they are re-ranked, it is found that

all the CEMOGA-Classifier solutions actually belong to rank 1,

none of the PAES-Classifier solutions belong to rank 1, while
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Fig. 6. Nondominated solutions obtained by CEMOGA-Classifier (denoted
by “�”), PAES-Classifier (denoted by “o”) and NSGAII-Classifier (denoted by
“+”) for the Vowel data set. Actual rank 1 solutions for NSGAII-Classifier are
encircled.

TABLE V
MINIMAL SPACING (S ) MEASURE ON VARIOUS DATA SETS

five of the NSGAII-Classifier solutions (encircled in the figure

as for convenience) belong to rank 1.

Table V depicts the values of minimal spacing obtained

by the three methods. This is reported for both the cases; one

when all the respective solutions are considered, and second

when only actual rank 1 solutions (obtained after combination of

the solutions) are considered. The result in the second category

is denoted by (R1) in the table. Interestingly, the two values

are exactly the same for CEMOGA-Classifier, for all the data

sets, since all the solutions obtained by this classifier actually

belong to rank 1, as indicated by the purity values (Table IV).

As can be noted from Table V, in several cases (denoted by “ ”)

it was not possible (or meaningful) to calculate , since the

number of solutions was less than or equal to two. In cases where

it was possible to compute this value, CEMOGA-Classifier pro-

vided significantly better performance (i.e., smaller values), in

general. The only exception is observed for Crude Oil where

the value of , provided by NSGAII-Classifier, is seen to be

much better. However, when only those solutions that are ac-

tually nondominated (denoted by R1) are considered, the CE-

MOGA-Classifier once again outperforms NSGAII-Classifier.

Note that for PAES-Classifier, it was not possible to compute

minimal spacing (R1) values for any of the data sets, since in all

but one case (Landsat data set) the purity values are 0, and in

the case of Landsat, only one solution is found to finally belong

to rank 1.

VI. DISCUSSION AND CONCLUSIONS

In this paper, a pattern-classification methodology based on

a multiobjective variable-string-length GA has been developed.

The problem of generating class boundaries for distinguishing

the different classes is posed as one of optimizing multiple ob-

jectives. Since the class boundaries are approximated by a vari-

able number of hyperplanes, variable string length MOGA is

used as the underlying search tool. Three objectives, (total

number of misclassified samples), (number of hyperplanes),

and (product of the classwise correct recog-

nition rates), are used as the optimizing criteria. The first two

objectives need to be minimized, whereas the third one is to

be maximized simultaneously. Three techniques of MOO, viz.

NSGA-II, PAES, and CEMOGA, have been used for developing

the classifiers. Of these, CEMOGA is newly developed here.

Unlike NSGA-II, CEMOGA uses some domain specific con-

straints in the process that helps in making the search more effi-

cient. Since the multiobjective classifiers, in general, provide a

set of nondominated solutions, a validation phase is used after

training in order to select one of the chromosomes (which pro-

vided the largest value of the validation function) to be used for

testing.

The superiority of the CEMOGA-Classifier as compared to

NSGAII-Classifier and PAES-Classifier has been demonstrated

for several real life data sets. Comparison is made with respect to

both the number of required hyperplanes and classification per-

formance, as measured by the recognition score, user’s accuracy

and kappa value. It is found that, in general, the CEMOGA-Clas-

sifier is able to approximate the class boundaries using a smaller

number of hyperplanes; thereby providing superior generaliza-

tion capability. The only point of departure was for the Mango

data, where although the remaining classifiers required smaller

number of hyperplanes as compared to the CEMOGA-Classi-

fier, they were unable to recognize one of the three classes. In

contrast, only the CEMOGA-Classifier was able to recognize

all the three classes, and thus provided superior results during

testing.

The nondominated solutions obtained by the three MOO al-

gorithms, NSGA-II, PAES and CEMOGA, are also compared

with respect to the position of the corresponding fronts as well as

the diversity of the solutions. For the former, a measure, called

purity, has been defined that computes the fraction of solutions

that remain nondominated when the solutions resulting from

several MOO techniques are combined. In order to measure the

diversity, or spread, of the solutions on the Pareto-optimal front,

an index called minimal spacing has been defined. This is an im-

proved version of an existing measure called spacing. Interest-

ingly, it is found the CEMOGA consistently provides a purity

value of 1 for all the data sets, NSGA-II does so for only two of

the six data sets, while PAES is unable to do so even once. With

respect to minimal spacing, in general, CEMOGA again outper-

forms the other MOO strategies. Only for Crude Oil, NSGA-II
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outperforms CEMOGA. However, when only the truly nondom-

inated solutions of NSGA-II are considered for computing min-

imal spacing, CEMOGA is once again found to be superior.

The major focus of this article has been to lay the empirical

foundation for developing an efficient, nonparametric MOGA-

based supervised pattern classifier. In the future, a theoretical

analysis of the classifier needs to be performed. Further, sen-

sitivity analysis of the classifier with respect to different ge-

netic parameters should be carried out. Utility of other recent

MOO techniques like particle swarm optimization [31] needs

to be studied. Finally, the application of the classifier in other

domains, viz. image patterns and symbolic data, needs to be

studied.
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