


it does not provide a way to compute marginal and joint
distributions directly. Also, the fuzzy-rough-set-based
feature selection methods proposed in [10], [14] select the
relevant features of a data set without considering the
redundancy among them.

In this paper, a novel feature selection method is
proposed, which employs fuzzy-rough sets to provide a
means by which discrete- or real-valued noisy data (or a
mixture of both) can be effectively reduced without the need
for user-specified information. Moreover, the proposed
method can be applied to data with continuous or nominal
decision attributes, and can be applied to regression as well
as classification data sets. The proposed method selects a
subset of features from the whole feature set by maximizing
the relevance andminimizing the redundancy of the selected
features. The relevance and redundancy of the features are
calculated using the f-information measures in fuzzy
approximation spaces. Using the concept of fuzzy equiva-
lence partition matrix, the f-information measures are
calculated for both condition and decision attributes. Hence,
the only information required in the proposed feature
selection method is in the form of fuzzy partitions for each
attribute, which can be automatically derived from the given
data set. Several quantitative measures are introduced based
on fuzzy-rough sets to evaluate the performance of the
proposed feature selection method. The effectiveness of the
proposed method, along with a comparison with other
methods, is demonstrated on a set of real-life data.

The structure of the rest of this paper is as follows:
Section 2 briefly introduces the necessary notions of rough
sets and fuzzy-rough sets. In Section 3, the formulas of
Shannon’s entropy are introduced for fuzzy approximation
spaces with a fuzzy equivalence partition matrix. The
f-information measures for fuzzy approximation spaces
are presented next in Section 4. The proposed feature
selectionmethod based on f-informationmeasures for fuzzy
approximation spaces is described in Section 5. Several
quantitative measures are presented in Section 6 to evaluate
the performance of the proposedmethod. A few case studies
and a comparison with other methods are presented in
Section 7. Concluding remarks are given in Section 8.

2 ROUGH SETS AND FUZZY-ROUGH SETS

In this section, the basic notions in the theories of rough sets
and fuzzy-rough sets are reported.

2.1 Rough Sets

The theory of rough sets begins with the notion of an
approximation space, which is a pair<UU;AA>, where UU be a
nonempty set (the universe of discourse), UU ¼ fx1; . . . ;
xi; . . . ; xng, and AA is a family of attributes, also called
knowledge in the universe. V is the value domain ofAA and f̂
is an information function f̂ : UU�AA! V . An approxima-
tion space is also called an information system [9].

Any subset PP of knowledge AA defines an equivalence
(also called indiscernibility) relation INDðPPÞ on UU:

INDðPPÞ ¼ fðxi; xjÞ 2 UU�UUj8a 2 PP; f̂ðxi; aÞ ¼ f̂ðxj; aÞg:

If ðxi; xjÞ 2 INDðPPÞ, then xi and xj are indiscernible by
attributes from PP. The partition of UU generated by INDðPPÞ
is denoted as

UU=INDðPPÞ ¼ f½xi�PP : xi 2 UUg; ð1Þ

where ½xi�PP is the equivalence class containing xi. The
elements in ½xi�PP are indiscernible or equivalent with
respect to knowledge PP. Equivalence classes, also termed
as information granules, are used to characterize arbitrary
subsets of UU. The equivalence classes of INDðPPÞ and the
empty set ; are the elementary sets in the approximation
space <UU;AA>.

Given an arbitrary set X � UU, in general, it may not be
possible to describe X precisely in <UU;AA>. One may
characterizeX by a pair of lower and upper approximations
defined as follows [9]:

PPðXÞ ¼
[

f½xi�PPj½xi�PP � Xg and

PPðXÞ ¼
[

f½xi�PPj½xi�PP \X 6¼ ;g:
ð2Þ

That is, the lower approximation PPðXÞ is the union of all
elementary sets which are subsets of X, and the upper
approximation PPðXÞ is the union of all elementary sets
which have a nonempty intersection with X. The tuple
<PPðXÞ;PPðXÞ> is the representation of an ordinary set X in
the approximation space<UU;AA> or simply called the rough
set of X. The lower (respectively, upper) approximation
PPðXÞ (respectively, PPðXÞ) is interpreted as the collection of
those elements of UU that definitely (respectively, possibly)
belong toX. The lower approximation is also called positive
region sometimes, denoted as POSPPðXÞ. A setX is said to be
definable in <UU;AA> iff PPðXÞ ¼ PPðXÞ. Otherwise, X is
indefinable and termed as a rough set. BNPPðXÞ ¼ PPðXÞ n
PPðXÞ is called a boundary set.

An information system <UU;AA> is called a decision table
if the attribute set AA ¼ CC [DD, where CC is the condition
attribute set and DD is the decision attribute set. The
dependency between CC and DD can be defined as

�CCðDDÞ ¼
jPOSCCðDDÞj

jUUj
; ð3Þ

where POSCCðDDÞ ¼ [CCXi, Xi is the ith equivalence class
induced by DD, and j � j denotes the cardinality of a set.

2.2 Fuzzy-Rough Sets

A crisp equivalence relation induces a crisp partition of the
universe and generates a family of crisp equivalence classes.
Correspondingly, a fuzzy equivalence relation generates a
fuzzy partition of the universe and a series of fuzzy
equivalence classes, which are also called fuzzy knowledge
granules. This means that the decision and condition
attributes may all be fuzzy [10], [12].

Let <UU;AA> represents a fuzzy approximation space and
X is a fuzzy subset of UU. The fuzzy PP-lower and PP-upper
approximations are then defined as follows [12]:

�PPXðFiÞ ¼ infxfmaxfð1� �Fi
ðxÞÞ; �XðxÞgg 8i; ð4Þ

�PPXðFiÞ ¼ supxfminf�Fi
ðxÞ; �XðxÞgg 8i; ð5Þ

where Fi represents a fuzzy equivalence class belonging to
UU=PP (the partition of UU generated by PP) and �XðxÞ
represents the membership of x in X. Note that although
the universe of discourse in feature selection is finite, this is
not the case, in general, hence the use of sup and inf. These
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definitions diverge a little from the crisp upper and lower
approximations, as the memberships of individual objects to
the approximations are not explicitly available. As a result
of this, the fuzzy lower and upper approximations can be
defined as [10]

�PPXðxÞ ¼ supFi2UU=PPminf�Fi
ðxÞ; �PPXðFiÞg; ð6Þ

�
PPXðxÞ ¼ supFi2UU=PPminf�Fi

ðxÞ; �
PPXðFiÞg: ð7Þ

The tuple <PPX;PPX> is called a fuzzy-rough set. This
definition degenerates to traditional rough sets when all
equivalence classes are crisp. The membership of an object
x 2 UU, belonging to the fuzzy positive region is

�POSCCðDDÞðxÞ ¼ supX2UU=DD �CCXðxÞ; ð8Þ

where AA ¼ CC [DD. Using the definition of fuzzy positive
region, the dependency function can be defined as
follows [10]:

�CCðDDÞ ¼
j�POSCCðDDÞðxÞj

jUUj
¼

1

jUUj

X

x2UU

�POSCCðDDÞðxÞ: ð9Þ

3 INFORMATION MEASURE ON FUZZY
APPROXIMATION SPACES

In this section, the Shannon’s information measure [15] is
introduced to compute the knowledge quantity of a fuzzy
attribute set or a fuzzy partition of UU. Shannon’s informa-
tion entropy [15] just works in the case where a crisp
equivalence relation or a crisp partition is defined. That is, it
is suitable for Pawlak’s approximation space [9]. In this
section, a novel formula to compute Shannon’s entropy
with a fuzzy equivalence partition matrix is presented,
which will be used to measure the information on fuzzy
approximation spaces.

Given a finite set UU, AA is a fuzzy attribute set in UU,
which generates a fuzzy equivalence partition on UU. If c
denotes the number of fuzzy equivalence classes generated
by the fuzzy equivalence relation and n is the number of
objects in UU, then c-partitions of UU are the sets of (cn) values
fmAA

ij g that can be conveniently arrayed as a (c� n) matrix
MMAA ¼ ½m

AA
ij �. The matrixMMAA is termed as fuzzy equivalence

partition matrix and is denoted by

MMAA ¼

mAA
11 mAA

12 � � � mAA
1n

mAA
21 mAA

22 � � � mAA
2n

� � � � � � � � � � � �
mAA

c1 mAA
c2 � � � mAA

cn

0

B

B

@

1

C

C

A

; ð10Þ

subject to
Pc

i¼1 m
AA
ij ¼ 1; 8j, and for any value of i, if

k ¼ argmax
j

�

mAA
ij

�

; then max
j

�

mAA
ij

�

¼ max
l

�

mAA
lk

�

> 0;

where mAA
ij 2 ½0; 1� represents the membership of object xj in

the ith fuzzy equivalence partition or class Fi. The above
axioms should hold for every fuzzy equivalence partition,
which correspond to the requirement that an equivalence
class is nonempty. Obviously, this definition degenerates to
the normal definition of equivalence classes when the
equivalence relation is nonfuzzy.

Using the concept of fuzzy equivalence partition matrix,
the dependency between condition attribute set CC and
decision attribute set DD can be redefined as follows:

�CCðDDÞ ¼
1

n

X

n

j¼1

�j; ð11Þ

where CC [DD ¼ AA and

�j ¼ supk
�

supi
�

min
�

mCC
ij ; inf l

�

maxf1�mCC
il ;m

DD
kl

�����

:

ð12Þ

A c� n fuzzy equivalence partition matrix MMAA repre-
sents the c-fuzzy equivalence partitions of the universe
generated by a fuzzy equivalence relation. Each row of the
matrix MMAA is a fuzzy equivalence partition or class. The
ith fuzzy equivalence partition is, therefore, given by

Fi ¼
�

mAA
i1 =x1 þmAA

i2 =x2 þ � � � þmAA
in=xn

�

: ð13Þ

As to a fuzzy partition induced by a fuzzy equivalence
relation, the equivalence class is a fuzzy set. The sign “þ”
means the operator of union in this case. The cardinality of
the fuzzy set Fi can be calculated with

jFij ¼
X

n

j¼1

mAA
ij ; ð14Þ

which appears to be a natural generalization of the crisp set.
The information quantity of a fuzzy attribute set AA or fuzzy
equivalence partition is then defined as

HðAAÞ ¼ �
X

c

i¼1

�Fi
log�Fi

; ð15Þ

where �Fi
¼ jFij

n , called a fuzzy relative frequency, and c is
the number of fuzzy equivalence partitions or classes. The
measure HðAAÞ has the same form as the Shannon’s entropy
[15]. The information quantity or the entropy value
increases monotonously with the discernibility power of
the fuzzy attributes.

Given <UU;AA>, PP and QQ are two subsets of fuzzy
attribute set AA. The information quantity corresponding to
PP and QQ is given by

HðPPÞ ¼ �
X

p

i¼1

�Pi
log�Pi

; ð16Þ

HðQQÞ ¼ �
X

q

j¼1

�Qj
log�Qj

; ð17Þ

where p and q are the number of fuzzy equivalence partitions
or classes generated by the fuzzy attribute sets PP and QQ,
respectively, and Pi and Qj represent the corresponding ith
and jth fuzzy equivalence partitions. The joint entropy of PP
and QQ can be defined as follows:

HðPPQQÞ ¼ �
X

r

k¼1

�Rk
log�Rk

; ð18Þ

where r is the number of resultant fuzzy equivalence
partitions,Rk is the corresponding kth equivalence partition,
and �Rk

is the joint frequency of Pi andQj, which is given by
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�Rk
¼ �PiQj

¼
jPi \Qjj

n
; where k ¼ ði� 1Þq þ j: ð19Þ

That is, the joint frequency �Rk
can be calculated from the

r� n fuzzy equivalence partition matrix MMPPQQ, where

MMPPQQ ¼ MMPP \MMQQ and mPPQQ
kl ¼ mPP

il \mQQ
jl : ð20Þ

Similarly, the conditional entropy of PP conditioned to QQ

is defined as

HðPPjQQÞ ¼ �
X

p

i¼1

X

q

j¼1

jPi \Qjj

n
log
jPi \Qjj

jQjj
ð21Þ

¼ �
X

p

i¼1

X

q

j¼1

jPi \Qjj

n
log
jPi \Qjj

n
�
jPi \Qjj

n
log
jQjj

n

� �

¼ �
X

p

i¼1

X

q

j¼1

jPi \Qjj

n
log
jPi \Qjj

n
�
X

q

j¼1

jQjj

n
log
jQjj

n

( )

:

That is, the conditional entropy of PP conditioned to QQ is

HðPPjQQÞ ¼ �
X

r

k¼1

�Rk
log�Rk

þ
X

q

j¼1

�Qj
log�Qj

; ð22Þ

where

X

p

i¼1

X

q

j¼1

jPi \Qjj

n
¼
X

q

j¼1

jQjj

n
and �Qj

¼
jQjj

n
:

Thus,

HðPPjQQÞ ¼ HðPPQQÞ �HðQQÞ: ð23Þ

Hence, the mutual information between two fuzzy

attribute sets PP and QQ is given by

IðPPQQÞ ¼ HðPPÞ �HðPPjQQÞ ¼ HðPPÞ þHðQQÞ �HðPPQQÞ:

ð24Þ

The mutual information IðPPQQÞ between two fuzzy

attribute sets PP and QQ quantifies the information shared

by both of them. If PP and QQ do not share much information,

the value of IðPPQQÞ between them is small. While two highly

nonlinearly correlated attribute sets will demonstrate a high

mutual information value. The attribute sets can be both the

condition attributes and the decision attributes in this study.

The necessity for a fuzzy condition attribute to be an

independent and informative feature can, therefore, be

determined by the shared information between this attri-

bute and the rest as well as the shared information between

this attribute and the decision attribute.

4 f-INFORMATION MEASURES AND FUZZY

APPROXIMATION SPACES

The extent to which two probability distributions differ can

be expressed by a so-called measure of divergence. Such a

measure will reach a minimum value when two probability

distributions are identical and the value increases with

increasing disparity between two distributions. A specific

class of divergencemeasures is the set of f-divergence [6]. For

two discrete probability distributions P ¼ fpiji ¼ 1; . . . ; ng
and Q ¼ fqiji ¼ 1; . . . ; ng, the f-divergence is defined as

fðPkQÞ ¼
X

i

qif
pi
qi

� �

: ð25Þ

A special case of f-divergence measures is the
f-information measures. These are defined similarly to
f-divergence measures, but apply only to specific prob-
ability distributions, namely, the joint probability of two
variables and their marginal probabilities’ product. Thus,
f-information is a measure of dependence: it measures the
distance between a given joint probability and joint
probability when variables are independent [6], [7].

In this section, several frequently used f-information
is reported for fuzzy approximation spaces based on the
concept of fuzzy relative frequency. The f-information
measures in fuzzy approximation spaces calculate the
distance between a given joint frequency �Rk

ð¼ �PiQj
Þ

and the joint frequency when the variables are inde-
pendent ð�Pi

�Qj
Þ. In the following analysis, it is assumed

that all frequency distributions are complete, that is,
P

�Pi
¼
P

�Qj
¼
P

�PiQj
¼ 1.

4.1 V-Information

On fuzzy approximation spaces, one of the simplest
measures of dependence can be obtained using the function
V ¼ jx� 1j, which results in the V -information

V ðRkP �QÞ ¼
X

i;j;k

j�Rk
� �Pi

�Qj
j; ð26Þ

whereP ¼ f�Pi
ji ¼ 1; 2; . . . ; pg,Q ¼ f�Qj

jj ¼ 1; 2; . . . ; qg, and
R ¼ f�Rk

jk ¼ 1; 2; . . . ; rg represent two marginal frequency
distributions and their joint frequency distribution, respec-
tively. That is, the V -information calculates the absolute
distance between joint frequency of two fuzzy variables and
their marginal frequencies’ product.

4.2 I�-Information

The I�-information can be defined as follows:

I�ðRkP �QÞ ¼
1

�ð�� 1Þ

X

i;j;k

ð�Rk
Þ�

ð�Pi
�Qj
Þ��1
� 1

 !

; ð27Þ

for � 6¼ 0; � 6¼ 1. The class of I�-information includes
mutual information, which equals I� for the limit �! 1,
that is,

I1ðRkP �QÞ ¼
X

i;j;k

�Rk
log

�Rk

�Pi
�Qj

� �

: ð28Þ

4.3 M�-Information

The M�-information is defined [6], [7] as follows:

M�ðxÞ ¼ jx
� � 1j

1
�; 0 < � � 1: ð29Þ

When applying this function in the definition of an
f-information measure on fuzzy approximation spaces,
the resulting M�-information measures are

M�ðRkP �QÞ ¼
X

i;j;k

jð�Rk
Þ� � ð�Pi

�Qj
Þ�j

1
�; ð30Þ
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for 0 < � � 1. These constitute a generalized version of

V -information. That is, the M�-information is identical to

V -information for � ¼ 1.

4.4 ��-Information

The class of ��-information measures, proposed by Liese

[6], [7], is as follows:

��ðxÞ ¼ j1� x�j
1
�; for 0 < � � 1;

j1� xj�; for � > 1:

�

ð31Þ

For 0 < � � 1, this function equals to the M� function. The

�� and M�-information measures are, therefore, also

identical for 0 < � � 1. For � > 1, ��-information can be

written as

��ðRkP �QÞ ¼
X

i;j;k

j�Rk
� �Pi

�Qj
j�

ð�Pi
�Qj
Þ��1

: ð32Þ

4.5 Renyi Distance

The Renyi distance, a measure of information of order � [6],

[7], can be defined as

R�ðRkP �QÞ ¼
1

�� 1
log
X

i;j;k

ð�Rk
Þ�

ð�Pi
�Qj
Þ��1

; ð33Þ

for � 6¼ 0; � 6¼ 1. It reaches its minimum value when �Rk
and

ð�Pi
�Qj
Þ are identical, inwhich case the summation reduces to

P

�Rk
. As we assume complete frequency distributions, the

sum is 1 and theminimum value of themeasure is, therefore,

equal to zero. The limit of Renyi’smeasure for� approaching

1 equals I1ðRkP �QÞ, which is the mutual information.

5 PROPOSED FEATURE SELECTION METHOD

In real-data analysis, the data set may contain a number of

redundant features with low relevance to the classes. The
presence of such redundant and nonrelevant features leads
to a reduction in the useful information. Ideally, the selected
features should have high relevance with the classes, while

the redundancy among them would be as low as possible.
The features with high relevance are expected to be able to
predict the classes of the samples. However, the prediction

capability is reduced if many redundant features are
selected. In contrast, a data set that contains features not
only with high relevance with respect to the classes, but with

low mutual redundancy is more effective in its prediction
capability. Hence, to assess the effectiveness of the features,
both relevance and redundancy need to be measured

quantitatively. An information-measure-based criterion is
chosen here to address this problem.

5.1 Feature Selection Using f-Information

Let CC ¼ fCC1; . . . ;CCi; . . . ;CCj; . . . ;CCDg denotes the set of

condition attributes or features of a given data set and SS be

the set of selected features. Define ~fðCCi;DDÞ as the relevance

of the fuzzy condition attribute CCi with respect to the fuzzy

decision attribute DD, while ~fðCCi;CCjÞ as the redundancy

between two fuzzy condition attributes CCi and CCj. The total

relevance of all selected features is, therefore, given by

J relev ¼
X

CCi2SS

~fðCCi;DDÞ; ð34Þ

while total redundancy among the selected features is

J redun ¼
X

CCi;CCj2SS

~fðCCi;CCjÞ: ð35Þ

Therefore, the problem of selecting a set SS of nonredun-
dant and relevant features from the whole set of condition
features CC is equivalent to maximize J relev and minimize
J redun, that is, to maximize the objective function J , where

J ¼ J relev � �J redun ¼
X

i

~fðCCi;DDÞ � �
X

i;j

~fðCCi;CCjÞ;

ð36Þ

where � is a weight parameter. To solve the above problem,
the greedy algorithm of Battiti [4] is used that follows next.

1. Initialize CC fCC1; . . . ;CCi; . . . ;CCj; . . . ;CCDg; SS ;.
2. Generate fuzzy equivalence partition matrix for each

condition and decision attribute.
3. Calculate the relevance value ~fðCCi;DDÞ of each

feature CCi 2 CC.
4. Select feature CCi as the first feature that has the

highest relevance ~fðCCi;DDÞ. In effect, CCi 2 SS and
CC ¼ CC n CCi.

5. Generate resultant equivalence partition matrix
between selected features and each of remaining
features of CC.

6. Calculate the redundancy between selected features
of SS and each of remaining features of CC.

7. From the remaining features of CC, select feature CCj

that maximizes

~fðCCj;DDÞ � �
1

jSSj

X

i2SS

~fðCCi;CCjÞ:

As a result of that, CCj 2 SS and CC ¼ CC n CCj.
8. Repeat the above three steps until the desired

number of features is selected.

The relevance of a fuzzy condition attributewith respect to
the fuzzydecision attribute and the redundancy between two
fuzzy condition attributes can be calculated using any one of
f-information measures on fuzzy approximation spaces.

5.2 Computational Complexity

The f-information-measure-based proposed feature selec-
tion method has low computational complexity with respect
to both number of features and number of samples or objects
of the original data set. Prior to computing the relevance or
redundancy of a fuzzy condition attribute, the fuzzy
equivalence partition matrix for each condition and decision
attribute is to be generated first. The computational complex-
ity to generate a (c� n) fuzzy equivalence partition matrix is
OðcnÞ, where c represents the number of fuzzy equivalence
partitions and n is the total number of objects in the data set.
However, two fuzzy equivalence partitionmatrices with size
(p� n) and (r� n) have to be generated to compute the
relevance of a fuzzy condition attribute with respect to the
fuzzy decision attribute, where p and r represent the number
of fuzzy equivalence partitions of fuzzy condition attribute
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and fuzzy decision attribute, respectively. Hence, the total
time complexity to calculate the relevance of a fuzzy
condition attribute using any one of the f-information
measures is ðOðpnÞ þ OðrnÞ þ OðprnÞÞ ¼ OðprnÞ. Similarly,
the complexity to calculate the redundancy between two
fuzzy condition attributes with p and q number of fuzzy
equivalence partitions using any one of the f-information
measures is OðpqnÞ. Hence, the overall time complexity to
calculate both relevance and redundancy of a fuzzy condi-
tion attribute is ðOðprnÞ þ OðpqnÞÞ ¼ OðnÞ as p; q; r << n. In
effect, the selection of a set of d nonredundant and relevant
features from the whole set ofD features using the proposed
first order incremental search method has an overall
computational complexity of OðndDÞ.

5.3 Fuzzy Equivalence Classes

The family of normal fuzzy sets produced by a fuzzy
partitioning of the universe of discourse can play the role
of fuzzy equivalence classes [12]. In the proposed feature
selection method, the 	 function in the one-dimensional
form is used to assign membership values to different
fuzzy equivalence classes for the input features. A fuzzy
set with membership function 	ðx; �c; 
Þ [16] represents a set
of points clustered around �c, where

	ðx; �c; 
Þ ¼

2 1� kx��ck


� 	2

; for 

2
� kx� �ck � 
;

1� 2
kx��ck




� 	2

; for 0 � kx� �ck � 

2
;

0; otherwise;

8

>

>

<

>

>

:

ð37Þ

where 
 > 0 is the radius of the 	 function with �c as the
central point and k � k denotes the euclidean norm. When
the pattern x lies at the central point �c of a class, then kx�
�ck ¼ 0 and its membership value is maximum, that is,
	ð�c; �c; 
Þ ¼ 1. The membership value of a point decreases as
its distance from the central point �c, that is, kx� �ck
increases. When kx� �ck ¼ ð


2
Þ, the membership value of x

is 0.5 and this is called a crossover point [16].
Each real-valued feature in quantitative form can be

assigned to different fuzzy equivalence classes in terms of
membership values using the 	 fuzzy set with appropriate �c
and 
. The centers and radii of the 	 functions along each
feature axis can be determined automatically from the
distribution of training patterns or objects.

5.3.1 Choice of Parameters of 	 Function

The parameters �c and 
 of each 	 fuzzy set are computed
according to the procedure reported in [16]. Let �mi be the
mean of the objects x ¼ fx1; . . . ; xj; . . . ; xng along the
ith feature CCi. Then, �mil and �mih are defined as the means
(along the ith feature) of the objects having coordinate
values in the range ½CCimin

; �miÞ and ð �mi;CCimax
�, respectively,

where CCimax
and CCimin

denote the upper and lower bounds
of the dynamic range of feature CCi for the training set. For
three fuzzy sets low, medium, and high, the centers and
corresponding radii are as follows [16]:

�clowðCCiÞ ¼ �mil ; �cmediumðCCiÞ ¼ �mi; �chighðCCiÞ ¼ �mih ; ð38Þ


lowðCCiÞ ¼ 2ð�cmediumðCCiÞ � �clowðCCiÞÞ;


highðCCiÞ ¼ 2ð�chighðCCiÞ � �cmediumðCCiÞÞ;


mediumðCCiÞ ¼ � �
A

B
;

ð39Þ

where

A ¼ f
lowðCCiÞðCCimax
� cmediumðCCiÞÞ þ


highðCCiÞðcmediumðCCiÞ � CCimin
Þg; B ¼ fCCimax

� CCimin
g;

where � is a multiplicative parameter controlling the extent
of the overlapping. The distribution of the patterns or
objects along each feature axis is taken into account, while
computing the corresponding centers and radii of the three
fuzzy sets. Also, the amount of overlap between three fuzzy
sets can be different along the different axis, depending on
the distribution of the objects or patterns.

5.3.2 Fuzzy Equivalence Partition Matrix

The c� n fuzzy equivalence partition matrix MMCCi
,

corresponding to the ith feature CCi, can be calculated
from the c-fuzzy equivalence classes of the objects x ¼
fx1; . . . ; xj; . . . ; xng, where

mCCi

kj ¼
	ðxj; �ck; 
kÞ

Pc
l¼1 	ðxj; �cl; 
lÞ

: ð40Þ

Corresponding to three fuzzy sets low, medium, and
high (c ¼ 3), the following relations hold:

�c1 ¼ �clowðCCiÞ; �c2 ¼ �cmediumðCCiÞ; �c3 ¼ �chighðCCiÞ;


1 ¼ 
lowðCCiÞ;
2 ¼ 
mediumðCCiÞ;
3 ¼ 
highðCCiÞ:

In effect, each position mCCi

kj of the fuzzy equivalence
partition matrix MMCCi

must satisfy the following conditions:

mCCi

kj 2 ½0; 1�;
X

c

k¼1

mCCi

kj ¼ 1; 8j and for any value of k; if

s ¼ argmax
j

�

mCCi

kj

�

; then max
j

�

mCCi

kj

�

¼ maxl
�

mCCi

ls

�

> 0:

6 QUANTITATIVE MEASURES

In this section, two new quantitative indexes are presented,
along with some existing indexes, to evaluate the perfor-
mance of proposed method. The proposed two indexes are
based on the concept of fuzzy-rough sets.

6.1 Fuzzy-Rough-Set-Based Quantitative Indexes

Using the definition of fuzzy positive region, two new
indexes are introduced next.

6.1.1 IRIEILIEVV Index

The IRIEILIEVV index is defined as

IRIEILIEVV ¼
1

jSSj

X

CCi2SS

�CCi
ðDDÞ; ð41Þ

where �CCi
ðDDÞ represents the degree of dependency of

decision attribute DD on the condition attribute CCi, which
can be calculated using (11). That is, IRIEILIEVV index is the
average relevance of all selected features. A good feature
selection algorithm should make all selected features as
relevant as possible. The IRIEILIEVV index increases with the
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increase in relevance of each selected feature. Therefore, for a
given data set and number of selected features, the higher the
relevance of each selected feature, the higher would be the
IRIEILIEVV index.

6.1.2 IRIEDDUUNN Index

It can be defined as

IRIEDDUUNN ¼
1

2jSSkSS� 1j

X

CCi;CCj

f�CCi
ðCCjÞ þ �CCj

ðCCiÞg; ð42Þ

where �CCi
ðCCjÞ represents the degree of dependency of the

condition attribute CCj on another condition attribute CCi.
The IRIEDDUUNN index calculates the amount of redundancy
among the selected features. A good feature selection
algorithm should make the redundancy among all selected
features as low as possible. The IRIEDDUUNN index minimizes
the redundancy between selected features.

6.2 Existing Feature Evaluation Indexes

Some existing indexes are described next that are used for
evaluating the effectiveness of the selected features.

6.2.1 Class Separability

Class separability S of a data set is defined as [2]

S ¼ trace



S�1b Sw

�

; ð43Þ

where Sw and Sb represent the within class and between
class scatter matrix, respectively, and defined as follows:

Sw ¼
X

C

j¼1

pjEfðX � �jÞðX � �jÞ
T jwjg ¼

X

C

j¼1

pj�j; ð44Þ

Sb ¼
X

C

j¼1

ð�j �M0Þð�j �M0Þ
T
; where M0 ¼

X

C

j¼1

pj�j; ð45Þ

where C is the number of classes, pj is a priori probability
that a pattern belongs to class wj, X is a feature vector, M0

is the sample mean vector for the entire data points, �j is
the sample mean vector of class wj, �j is the sample
covariance matrix of class wj, and Ef�g is the expectation
operator. A lower value of S ensures that the classes are
well separated by their scatter means.

6.2.2 C4.5 Classification Error

The C4.5 [5] is a popular decision-tree-based classification
algorithm. It is used for evaluating the effectiveness of
reduced feature set for classification. The selected feature set
is fed to theC4.5 for building classificationmodels. TheC4.5 is
used here because it performs feature selection in the process
of training and the classification models it builds are
represented in the form of decision trees, which can be
further examined.

6.2.3 K-NN Classification Error

The K-nearest neighbor (K-NN) rule [1] is used for
evaluating the effectiveness of the reduced feature set for
classification. It classifies samples based on the closest
training samples in the feature space. A sample is classified
by a majority vote of its K-neighbors, with the sample being
assigned to the class most common among its K-nearest
neighbors. The value of K, chosen for the K-NN, is the
square root of number of samples in training set.

6.2.4 Entropy

Let the distance between two data points xi and xj be

Dij ¼
X

d

k¼1

xik � xjk

maxk �mink

� �2
" #1

2

; ð46Þ

where xik denotes feature value for xi along kth direction,

andmaxk andmink are the maximum and minimum values

computed over all the samples along kth axis, and d is the

number of selected features. Similarity, between xi and xj

are given by simði; jÞ ¼ e��Dij , where � is a positive

constant. A possible value of � is �ln0:5~D
. ~D is the average

distance between data points computed over the entire data

set. Entropy is then defined as [17]:

E ¼ �
X

n

i¼1

X

n

j¼1

ðsimði; jÞ � logðsimði; jÞÞ

þ ð1� simði; jÞÞ � logð1� simði; jÞÞ:

ð47Þ

If the data are uniformly distributed in the feature space,

entropy is maximum. When the data have well-formed

clusters, uncertainty is low and so is entropy.

6.2.5 Representation Entropy

Let the eigenvalues of the d� d covariance matrix of a

feature set of size d be �j; j ¼ 1; . . . ; d. Let

~�j ¼
�j

Pd
j¼1 �j

; ð48Þ

where ~�j has the similar properties like probability, namely,

0 � ~�j � 1 and
Pd

j¼1
~�j ¼ 1. Hence, an entropy function can

be defined as [2]

HR ¼ �
X

d

j¼1

~�j log ~�j: ð49Þ

The functionHR attains a minimum value (zero) when all

the eigenvalues except one are zero or, in other words, when

all the information is present along a single coordinate

direction. If all the eigenvalues are equal, that is, information

is equally distributed among all the features,HR ismaximum

and so is the uncertainty involved in feature reduction. The

abovemeasure is known as representation entropy. Since the

proposed method takes into account the redundancy among

the selected features, it is expected that the reduced feature

set attains a high value of representation entropy.

7 EXPERIMENTAL RESULTS

The performance of the proposed method based on

f-information measures is extensively studied. Based on

the argumentation given in Section 4, following information

measures are chosen to include in the study.
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These measures are applied to calculate both relevance

and redundancy of the features. The values of � investi-

gated are 0.2, 0.5, 0.8, 1.5, 2.0, 3.0, 4.0, and 5.0. The values

close to 1.0 are excluded, either because the measures

resemble mutual information for such values (I�, R�) or

because they resemble another measure (M1 and �1 equal

VI). The performance of the proposed method is also

compared with that of quick reduct algorithm, both in fuzzy

(fuzzy-rough quick reduct) [10] and crisp (rough quick

reduct) [18] approximation spaces.

To analyze the performance of proposed method, the

experimentation is done on Iris, E-Coli, Wine, Letter, Iono-

sphere, Satimage, and Isolet data sets that are downloaded

from http://www.ics.uci.edu/~mlearn. The major metrics

for evaluating the performance of different algorithms are

the proposed indexes, as well as some existing measures

reported in Section 6. To compute the classification error of

both K-NN rule and C4.5, the leave-one-out cross validation

is performed on E-Coli,Wine, and Ionosphere data, while the

training-testing is done on Letter and Satimage data.

7.1 Result on Iris Data

The parameters generated in the proposed feature selection

methodand the relevanceof each featureare reportednext for

Iris data, as an example. The values of input parameters used

are also presented here. The mutual information is chosen to

calculate the relevance and redundancy of the features.
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In the proposed feature selection method, Feature 3 will

be selected first as it has the highest relevance value. After

selecting Feature 3, the redundancy and objective function

of each feature are calculated that follow next.

Based on the value of objective function, Feature 4 will

be selected next as the second feature. The values of

different quantitative indexes for these two features

(Features 3 and 4) are reported next, along with that for

whole feature sets.

The results reported above establish the fact that the
proposed method selects most significant features from the
whole feature sets by maximizing the relevance and
minimizing the redundancy of selected features.

7.2 Effectiveness of the Proposed Method

To better understand the effectiveness of the proposed
method, extensive experimental results are reported in
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Table 1. Subsequent discussions analyze the results with

respect to the classification error of C4.5.
Table 1 reports the classification error of C4.5 for mutual-

information-based feature selection method both in fuzzy

and crisp approximation spaces. Results are presented for

different values of the number of selected features d, weight

parameter �, and multiplicative parameter �. All the results

reported here confirm that mutual-information-based fea-

ture selection method is more effective in fuzzy approxima-

tion spaces than in crisp approximation spaces with smaller

number of features. The proposed feature selection method

in fuzzy approximation spaces improves the classification

accuracy of C4.5 significantly over its crisp counterpart,

especially at smaller number of features. As the number of

selected features d increases, the difference between fuzzy

and crisp approximation spaces decreases. For a given data

set with n samples and D features, the classification error of

C4.5 remains unchanged for any combination of � and �
when the number of selected features d approaches to D. In
case of E-Coli and Letter data sets, the error becomes almost
same for d ¼ 6 and 15 as the values of corresponding D ¼ 7

and 16, respectively. Similarly, for Satimage data set, the
classification error remains almost same at d ¼ 35 as the
corresponding D ¼ 36. However, for feature selection, small
feature set is of practical importance.Also, for a givendata set
and fixed d and � values, the classification error would be
lower for nonzero � values. In otherwords, if the redundancy
between the selected feature sets is taken into consideration,
the performance of the proposed method would be better
both in fuzzy and crisp approximation spaces.

7.3 Optimum Value of Weight Parameter �

The parameter � regulates the relative importance of the
redundancy between the candidate feature and the already
selected features with respect to the relevance with the
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output class. If � is zero, only the relevance with the output

class is considered for each feature. If � increases, this

measure is discounted by a quantity proportional to the

total redundancy with respect to the already selected

features. The value of � larger than zero is crucial in order

to obtain good results. If the redundancy between features

is not taken into account, selecting the features with the

highest relevance with respect to the output class tends to

produce a set of redundant features that may leave out

useful complementary information.

Table 2 presents the performance of proposed method
using both V and mutual information for different values
of �. The results and subsequent discussions are presented
in this table with respect to various proposed and existing
quantitative indexes for both fuzzy and crisp approxima-
tion spaces. In Table 2, it is seen that as the value of �
increases, the values of IRIEILIEVV index and representative
entropy HR increase, whereas the classification error of
C4.5, the values of IRIEDDUUNN index, class separability S,
and entropy E decrease. The V and mutual information
achieve their best performance for 0:5 � � < 1 with respect
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to all these quantitative indexes. In other words, the best
performance of V and mutual information is achieved
when the relevance of each feature is discounted by at least
50 percent of total redundancy with respect to already
selected features.

7.4 Optimum Value of Multiplicative Parameter �

The � is a multiplicative parameter controlling the extent of
overlapping between the fuzzy sets low and medium or
medium and high. Keeping the values of 
low and 
high

fixed, the amount of overlapping among the three 	
functions can be altered varying 
medium. As � is decreased,
the radius 
medium decreases around �cmedium such that
ultimately, there is insignificant overlapping between the
	 functions low and medium or medium and high. On the
other hand, as � is increased, the radius 
medium increases
around �cmedium so that the amount of overlapping between 	
functions increases.

Table 3 represents the performance of the proposed
method in terms of various quantitative indexes for
different values of �. Results are presented for different
data sets considering the information measure as both

mutual information and V information. It is seen that in
case of both mutual information and V -information, the
proposed method achieves consistently better performance
for 1:1 < � < 1:7. In fact, very large or very small amounts
of overlapping among the three fuzzy sets of the input
feature are found to be undesirable.

7.5 Performance of Different f-Information

Furthermore, extensive experiments are done to evaluate

the performance of different f information measures, both

in fuzzy and crisp approximation spaces. Tables 4 and 5

report the results for different values of � considering � ¼
0:5 and � ¼ 1:5. For each data set, the value of d (number

of selected features) is chosen through extensive experi-

mentation in such a way that the classification error of

both C4.5 and K-NN becomes almost equal to that of

original feature set.
From the results reported in Tables 4 and 5, it is seen that

most of the f-information measures achieve consistently

better performance than mutual information (¼ I1:0- or
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R1:0-information) for different values of �, both in fuzzy and
crisp approximation spaces. Some f-information measures
are shown to perform poorly on all aspects for certain values
of �. The majority of measures produces results similar to
those of mutual information. An important finding, how-
ever, is that several measures, although slightly more
difficult to optimize, can potentially yield significantly
better results than mutual information. For Satimage data,
V - or M1:0-, I�- and R�-information for 0:8 � � � 4:0, and
��-information for � ¼ 2:0 and 3.0 perform better than
mutual information in fuzzy approximation spaces, while
for Letter data, I0:5-, M0:5-, and V -information yield the best
result with respect to most of the indexes and other
measures are comparable to mutual information. However,
the lowest value of IRIEDDUUNN index for Satimage data is
achieved using �4:0- and �5:0-information.

7.6 Performance of Different Algorithms

Table 6 compares the best performance of different
f-information that is used in the proposed feature selection
method. The results are presented based on the minimum
classification error of both C4.5 and K-NN. The values of �
and � are considered as 0.5 and 1.5, respectively. The best
performance of quick reduct (QR) algorithm, both in fuzzy
[10] and crisp [18] approximation spaces, is also provided
for the sake of comparison. It is seen that the f-information
in fuzzy approximation spaces is more effective than that in
crisp approximation spaces. The f-information-measure-
based proposed feature selection method selects a set of
features having the lowest classification error of both C4.5
and K-NN, class separability, entropy, and IRIEDDUUNN index
values and the highest representation entropy and
IRIEILIEVV index values for all the cases. Also, several
f-information measures, although slightly more difficult to
optimize, can potentially yield significantly better results
than mutual information, both in fuzzy and crisp approx-
imation spaces. Moreover, the f-information-based pro-
posed method outperforms quick reduct algorithm, both in
fuzzy and crisp approximation spaces. However, quick
reduct algorithm achieves the best IRIEILIEVV index value
for all data sets as it selects only relevant features of a data
set without considering the redundancy among them. The
better performance of the proposed method using
f-information is achieved due to the fact that the fuzzy
equivalence partition matrix provides an efficient way to
calculate different f-information measures on fuzzy ap-
proximation spaces. In effect, a reduced set of features
having maximum relevance and minimum redundancy is
being obtained using the proposed method. Finally, Table 7
reports the execution time of different algorithms. The
significantly lesser time of the proposed algorithm is
achieved due to its low computational complexity.

8 CONCLUSION

The problem of feature selection is highly important,
particularly given the explosive growth of available
information. In this paper, a novel feature selection
method is presented based on fuzzy-rough sets. Using
the concept of f-information measures on fuzzy approx-
imation spaces, an efficient algorithm is introduced for

finding nonredundant and relevant features of real-valued
data sets. This formulation is geared toward maximizing
the utility of rough sets, fuzzy sets, and information
measures with respect to knowledge discovery tasks.
Several quantitative indexes are defined based on fuzzy-
rough sets to evaluate the performance of the proposed
feature selection method on fuzzy approximation spaces
for real-life data sets. Finally, the effectiveness of the
proposed method is presented, along with a comparison
with other related algorithms, on a set of real-life data.
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