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Abstract—The selection of nonredundant and relevant features of real-valued data sets is a highly challenging problem. A novel
feature selection method is presented here based on fuzzy-rough sets by maximizing the relevance and minimizing the redundancy of
the selected features. By introducing the fuzzy equivalence partition matrix, a novel representation of Shannon’s entropy for fuzzy
approximation spaces is proposed to measure the relevance and redundancy of features suitable for real-valued data sets. The fuzzy
equivalence partition matrix also offers an efficient way to calculate many more information measures, termed as f-information
measures. Several f-information measures are shown to be effective for selecting nonredundant and relevant features of real-valued
data sets. This paper compares the performance of different f-information measures for feature selection in fuzzy approximation
spaces. Some quantitative indexes are introduced based on fuzzy-rough sets for evaluating the performance of proposed method. The
effectiveness of the proposed method, along with a comparison with other methods, is demonstrated on a set of real-life data sets.

Index Terms—Pattern recognition, data mining, feature selection, fuzzy-rough sets, f-information measures.

1 INTRODUCTION

FEATURE selection or dimensionality reduction of a data set
is an essential preprocessing step used for pattern
recognition, data mining, machine learning, etc., [1], [2]. It
is an important problem related to mining large data sets,
both in dimension and size. Prior to analysis of the data set,
preprocessing the data to obtain a smaller set of representa-
tive features and retaining the optimal salient characteristics
of the data not only decrease the processing time, but also
lead to more compactness of the models learned and better
generalization. Hence, the general criterion for reducing the
dimension is to preserve most relevant information of the
original data according to some optimality criteria [1], [2].
Conventional methods of feature selection involve
evaluating different feature subsets using some index and
selecting the best among them. An optimal feature subset is
always relative to a certain criterion. In general, different
criteria may lead to different optimal feature subset.
However, every criterion tries to measure the discriminat-
ing ability of a feature or a subset of features to distinguish
the different class labels. While the distance measure is a
very traditional discrimination or divergence measure, the
dependence or correlation measure is mainly utilized to
find the correlation between two features or a feature and a
class [3]. As these two measures depend on the actual
values of the training data, they are very much sensitive to
the noise or outlier of the data set. On the other hand, the
information measures, such as the entropy and mutual
information [4], compute the amount of information or the
uncertainty of a feature for classification. As the information
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measure depends only on the probability distribution of a
random variable rather than on its actual values, it has been
widely used in feature selection [4], [5].

Information measures are defined as the measures of the
distance between a joint probability distribution and the
product of the marginal distributions [6]. They constitute a
subclass of the divergence measures, which are measures of
the distance between two arbitrary distributions. A specific
class of information (divergence) measures, of which mutual
information is a member, is formed by the f-information
(f-divergence) measures [6], [7]. Several f-information
measures have been successfully used in medical image
registration [7] and gene selection [8] problems, and shown to
yield significantly more accurate results than mutual
information.

Rough set theory [9] is a new paradigm to deal with
uncertainty, vagueness, and incompleteness. It has been
applied to fuzzy rule extraction, reasoning with uncertainty,
fuzzy modeling, classification, feature selection, etc., [9],
[10]. However, there are usually real-valued data and fuzzy
information in real-world applications. Combining fuzzy
and rough sets provides an important direction in reason-
ing with uncertainty for real-valued data sets [10], [11], [12].
Both fuzzy and rough sets provide a mathematical frame-
work to capture uncertainties associated with the data [12].
They are complementary in some aspects. The generalized
theories of rough-fuzzy and fuzzy-rough sets have been
applied successfully to feature selection of real-valued data
[10], fuzzy decision rule extraction, rough-fuzzy clustering
[11], [13], etc.

In [10], Jensen and Shen introduced the fuzzy-rough
quick reduct algorithm for feature selection of real-valued
data sets. In [14], Hu et al. have used the concept of fuzzy
equivalence relation matrix to compute entropy and
mutual information in fuzzy approximation spaces, which
can be used for feature selection of real-valued data sets.
However, many useful information measures such as
several f-information measures cannot be computed from
the fuzzy equivalence relation matrix introduced in [14] as
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it does not provide a way to compute marginal and joint
distributions directly. Also, the fuzzy-rough-set-based
feature selection methods proposed in [10], [14] select the
relevant features of a data set without considering the
redundancy among them.

In this paper, a novel feature selection method is
proposed, which employs fuzzy-rough sets to provide a
means by which discrete- or real-valued noisy data (or a
mixture of both) can be effectively reduced without the need
for user-specified information. Moreover, the proposed
method can be applied to data with continuous or nominal
decision attributes, and can be applied to regression as well
as classification data sets. The proposed method selects a
subset of features from the whole feature set by maximizing
the relevance and minimizing the redundancy of the selected
features. The relevance and redundancy of the features are
calculated using the f-information measures in fuzzy
approximation spaces. Using the concept of fuzzy equiva-
lence partition matrix, the f-information measures are
calculated for both condition and decision attributes. Hence,
the only information required in the proposed feature
selection method is in the form of fuzzy partitions for each
attribute, which can be automatically derived from the given
data set. Several quantitative measures are introduced based
on fuzzy-rough sets to evaluate the performance of the
proposed feature selection method. The effectiveness of the
proposed method, along with a comparison with other
methods, is demonstrated on a set of real-life data.

The structure of the rest of this paper is as follows:
Section 2 briefly introduces the necessary notions of rough
sets and fuzzy-rough sets. In Section 3, the formulas of
Shannon’s entropy are introduced for fuzzy approximation
spaces with a fuzzy equivalence partition matrix. The
f-information measures for fuzzy approximation spaces
are presented next in Section 4. The proposed feature
selection method based on f-information measures for fuzzy
approximation spaces is described in Section 5. Several
quantitative measures are presented in Section 6 to evaluate
the performance of the proposed method. A few case studies
and a comparison with other methods are presented in
Section 7. Concluding remarks are given in Section 8.

2 RouGH SETs AND Fuzzy-ROUGH SETS

In this section, the basic notions in the theories of rough sets
and fuzzy-rough sets are reported.

2.1 Rough Sets

The theory of rough sets begins with the notion of an
approximation space, which is a pair <U, A>, where U be a
nonempty set (the universe of discourse), U = {z,...,
Ti,...,xn}, and A is a family of attributes, also called
knowledge in the universe. V is the value domain of A and f
is an information function f: U x A — V. An approxima-
tion space is also called an information system [9].

Any subset IP of knowledge A defines an equivalence
(also called indiscernibility) relation /ND(IP) on U:

IND(P) = {(zi,2;) € U x UlVa € P, f(x;,a) = f(zj,a)}.

If (z;,z;) € IND(P), then z; and z; are indiscernible by
attributes from . The partition of U generated by I N D(IP)
is denoted as

U/[ND(P) = {[xl]ﬂ,, T € U}7 (1)

where [z;]p is the equivalence class containing ;. The
elements in [z;]p are indiscernible or equivalent with
respect to knowledge P. Equivalence classes, also termed
as information granules, are used to characterize arbitrary
subsets of W. The equivalence classes of IND(IP) and the
empty set () are the elementary sets in the approximation
space <U, A>.

Given an arbitrary set X C U, in general, it may not be
possible to describe X precisely in <U,A>. One may
characterize X by a pair of lower and upper approximations
defined as follows [9]:

P(X) = J{leJpllalp € X} and
P(X) = J{ledpliedp 0 X # 0},

That is, the lower approximation IP(X) is the union of all
elementary sets which are subsets of X, and the upper
approximation P(X) is the union of all elementary sets
which have a nonempty intersection with X. The tuple
<P(X),P(X)> is the representation of an ordinary set X in
the approximation space <U, A> or simply called the rough
set of X. The lower (respectively, upper) approximation
P(X) (respectively, IP(X)) is interpreted as the collection of
those elements of U that definitely (respectively, possibly)
belong to X. The lower approximation is also called positive
region sometimes, denoted as POSp (X). A set X is said to be
definable in <U,A> iff P(X)=P(X). Otherwise, X is
indefinable and termed as a rough set. BNp(X) = P(X) \
P(X) is called a boundary set.

An information system <WU, A> is called a decision table
if the attribute set A = CUID, where C is the condition
attribute set and ID is the decision attribute set. The
dependency between C and ID can be defined as

(2)

[POSe(D)|
Ye(D) = ; 3
) =" (3)
where POS¢(ID) = UCX;, X; is the ith equivalence class
induced by ), and | - | denotes the cardinality of a set.

2.2 Fuzzy-Rough Sets
A crisp equivalence relation induces a crisp partition of the
universe and generates a family of crisp equivalence classes.
Correspondingly, a fuzzy equivalence relation generates a
fuzzy partition of the universe and a series of fuzzy
equivalence classes, which are also called fuzzy knowledge
granules. This means that the decision and condition
attributes may all be fuzzy [10], [12].

Let <U, A> represents a fuzzy approximation space and
X is a fuzzy subset of U. The fuzzy P-lower and P-upper
approximations are then defined as follows [12]:

ppx (Fy) = infp {max{(1 — pr,(2)), px(x)}} Vi,  (4)

px (Fi) = sup, {min{urp, (z), px(x)}} Vi, (®)

where F; represents a fuzzy equivalence class belonging to
U/P (the partition of U generated by P) and pux(z)
represents the membership of z in X. Note that although
the universe of discourse in feature selection is finite, this is
not the case, in general, hence the use of sup and inf. These
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definitions diverge a little from the crisp upper and lower
approximations, as the memberships of individual objects to
the approximations are not explicitly available. As a result
of this, the fuzzy lower and upper approximations can be
defined as [10]

ppx () = supg ey pmin{ur, (), ppx(Fi)}, (6)

ppx () = suppcwpmin{pr, (), ppy (F)}- (7)

The tuple <PX,PX> is called a fuzzy-rough set. This
definition degenerates to traditional rough sets when all
equivalence classes are crisp. The membership of an object
x € U, belonging to the fuzzy positive region is

PPOSem) (T) = SuPxew/m pex(T), (8)

where A = CUD. Using the definition of fuzzy positive
region, the dependency function can be defined as
follows [10]:

|1tPOSH(D

[PO5c() /1 L 9

e (D) =

3 INFORMATION MEASURE ON Fuzzy
APPROXIMATION SPACES

In this section, the Shannon’s information measure [15] is
introduced to compute the knowledge quantity of a fuzzy
attribute set or a fuzzy partition of U. Shannon’s informa-
tion entropy [15] just works in the case where a crisp
equivalence relation or a crisp partition is defined. That is, it
is suitable for Pawlak’s approximation space [9]. In this
section, a novel formula to compute Shannon’s entropy
with a fuzzy equivalence partition matrix is presented,
which will be used to measure the information on fuzzy
approximation spaces.

Given a finite set U, A is a fuzzy attribute set in U,
which generates a fuzzy equivalence partition on U. If ¢
denotes the number of fuzzy equivalence classes generated
by the fuzzy equivalence relation and n is the number of
objects in U, then c-partitions of U are the sets of (cn) values
{m} that can be conveniently arrayed as a (¢ x n) matrix
My = [m ]. The matrix My is termed as fuzzy equivalence
partition matrlx and is denoted by

A A A
my mlﬁ o My,
m m‘ P m
My =720 72 (10)
A A A
Moy My o0 My,

subject to 7| m2 = 1,Vj, and for any value of 4, if

k = arg max {mij }, then max {mfjﬁ} = max {mf,‘?} >0,
J j !

where mf}* € [0, 1] represents the membership of object z; in
the ith fuzzy equivalence partition or class F;. The above
axioms should hold for every fuzzy equivalence partition,
which correspond to the requirement that an equivalence
class is nonempty. Obviously, this definition degenerates to
the normal definition of equivalence classes when the
equivalence relation is nonfuzzy.

Using the concept of fuzzy equivalence partition matrix,
the dependency between condition attribute set € and
decision attribute set ID can be redefined as follows:

1
:75 ; 11
nj:1 Kjs ( )

where CUD = A and

Kj = supk{supi{min{mg,infl{max{l -

zl7mkl}}}}}

(12)

A ¢ xn fuzzy equivalence partition matrix My repre-
sents the c-fuzzy equivalence partitions of the universe
generated by a fuzzy equivalence relation. Each row of the
matrix My is a fuzzy equivalence partition or class. The
ith fuzzy equivalence partition is, therefore, given by
(13)

Fy={m} /o +mi [ws + -+ miy /@, ).

As to a fuzzy partition induced by a fuzzy equivalence
relation, the equivalence class is a fuzzy set. The sign “+
means the operator of union in this case. The cardinality of
the fuzzy set F; can be calculated with

n
B =D mi,
J=1

which appears to be a natural generalization of the crisp set.
The information quantity of a fuzzy attribute set A or fuzzy
equivalence partition is then defined as

c
— Z )‘E IOg )\1.;,
i=1

(14)

(15)

F .
where A\, = ‘n‘l, and c is

the number of fuzzy equivalence partitions or classes. The
measure H(A) has the same form as the Shannon’s entropy
[15]. The information quantity or the entropy value
increases monotonously with the discernibility power of
the fuzzy attributes.

Given <U,A>, P and Q are two subsets of fuzzy
attribute set A. The information quantity corresponding to
IP and Q is given by

(16)

P
= AplogAp,
=1

q
HQ) =—) Mg log)g,, (17)

J=1

where p and ¢ are the number of fuzzy equivalence partitions
or classes generated by the fuzzy attribute sets I’ and Q,
respectively, and P; and @); represent the corresponding ith
and jth fuzzy equivalence partitions. The joint entropy of I’
and @ can be defined as follows:

(PQ Z )\RL lOg )\RL ) (18)

k=1

where r is the number of resultant fuzzy equivalence
partitions, R, is the corresponding kth equivalence partition,
and Ap, is the joint frequency of P, and Q;, which is given by
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|25 N Q]

AR, = Apg, = T’ where k= (i — 1)g+35.  (19)

That is, the joint frequency Ap, can be calculated from the

r x n fuzzy equivalence partition matrix Mpg, where
PQ _ @
Mpg = Mp NMg and m;* =mP nmy (20)

Similarly, the conditional entropy of I conditioned to Q
is defined as
0g! 20 Gl
Qi

L |PmQ
DHR

i=1 j=1

- IFNQil, IHHQ-I IPNQ;l, Q)
_;;{ J nJ_ nJIOgTJ}
|PmQj| Q1 1Qy

S
That is, the conditional entropy of IP conditioned to Q is

H(P|Q) = (21)

i=1 j=1

H(P|Q) = (22)

Z Ar, log A, + Z A, log Ag,,
k=1 j=1

where
i=1 j=1
Thus,
HP|Q) = HPQ) - H(Q).

Hence, the mutual information between two fuzzy
attribute sets I’ and Q is given by

I(PQ) = H(P) - H(P|Q) = H(P) + H(Q) —

(23)

H(PQ).
(24)

The mutual information I(IPQ) between two fuzzy
attribute sets I and Q quantifies the information shared
by both of them. If P and @ do not share much information,
the value of I(IPQ) between them is small. While two highly
nonlinearly correlated attribute sets will demonstrate a high
mutual information value. The attribute sets can be both the
condition attributes and the decision attributes in this study.
The necessity for a fuzzy condition attribute to be an
independent and informative feature can, therefore, be
determined by the shared information between this attri-
bute and the rest as well as the shared information between
this attribute and the decision attribute.

4 f-INFORMATION MEASURES AND Fuzzy
APPROXIMATION SPACES

The extent to which two probability distributions differ can
be expressed by a so-called measure of divergence. Such a
measure will reach a minimum value when two probability
distributions are identical and the value increases with
increasing disparity between two distributions. A specific
class of divergence measures is the set of f-divergence[6]. For

two discrete probability distributions P = {p;|i =1,...,n}
and @ = {¢|i = 1,...,n}, the f-divergence is defined as

PIQ) = Y (p%)

l

(25)

A special case of f-divergence measures is the
f-information measures. These are defined similarly to
f-divergence measures, but apply only to specific prob-
ability distributions, namely, the joint probability of two
variables and their marginal probabilities” product. Thus,
f-information is a measure of dependence: it measures the
distance between a given joint probability and joint
probability when variables are independent [6], [7].

In this section, several frequently used f-information
is reported for fuzzy approximation spaces based on the
concept of fuzzy relative frequency. The f-information
measures in fuzzy approximation spaces calculate the
distance between a given joint frequency Mg (= Apg,)
and the joint frequency when the variables are inde-
pendent (ApAg;). In the following analysis, it is assumed
that all frequency distributions are complete, that is,

YR =220, =2 Apg, = 1.
4.1 V-Information

On fuzzy approximation spaces, one of the simplest
measures of dependence can be obtained using the function
V = |z — 1|, which results in the V-information

VRIP x Q) =3 Pr, = Arg; (26)
ik
where P = {\pli=1,2,...,p},Q = {Aq,li = 1,2,...,¢},and

R={\p,|k=1,2,...,r} represent two marginal frequency
distributions and their joint frequency distribution, respec-
tively. That is, the V-information calculates the absolute
distance between joint frequency of two fuzzy variables and
their marginal frequencies’ product.

4.2 [.,-Information
The I,-information can be defined as follows:
(AR; )a

L(R|Px Q) = a(al_ 1) (; (AP,AQ',)“’1 B 1>7 o

for a« #0,a# 1. The class of I,-information includes
mutual information, which equals I, for the limit o — 1,
that is,

B(RLP % Q) = 3 n tox (% e ) e
7,k
4.3 M, -Information
The M,-information is defined [6], [7] as follows:
M (z) = |a° — 1,

0<a<l. (29)

When applying this function in the definition of an
f-information measure on fuzzy approximation spaces,
the resulting M,-information measures are

L(RIIP x Q) = |(Ag,)"

7,k

— (Arre) I (30)
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for 0 < a < 1. These constitute a generalized version of
V-information. That is, the M,-information is identical to
V-information for a = 1.

4.4 “-Information

The class of x“-information measures, proposed by Liese

[6], [7], is as follows:
afy |1fm”|% for0<a<1
T) = s ’ 31
X' (@) {|17x\a, for a > 1. (31)
For 0 < a < 1, this function equals to the M, function. The
x* and M,-information measures are, therefore, also

identical for 0 < o < 1. For a > 1, x%*-information can be
written as

|)\R/.» - >\P, )\Q; ‘U‘

CRIP X @) = 3R

igk

(32)

4.5 Renyi Distance
The Renyi distance, a measure of information of order « [6],
[7], can be defined as

log Z ()\RA-)Q

Ra(R||P x Q) —
i,k ()\P,)‘Qj) !

(33)

:a—l

for o # 0, @ # 1. It reaches its minimum value when g, and
(ApAg,) areidentical, in which case the summation reduces to
>~ Ar,. As we assume complete frequency distributions, the
sum is 1 and the minimum value of the measure is, therefore,
equal to zero. The limit of Renyi’s measure for o approaching
1 equals I; (R||P x Q), which is the mutual information.

5 PROPOSED FEATURE SELECTION METHOD

In real-data analysis, the data set may contain a number of
redundant features with low relevance to the classes. The
presence of such redundant and nonrelevant features leads
to a reduction in the useful information. Ideally, the selected
features should have high relevance with the classes, while
the redundancy among them would be as low as possible.
The features with high relevance are expected to be able to
predict the classes of the samples. However, the prediction
capability is reduced if many redundant features are
selected. In contrast, a data set that contains features not
only with high relevance with respect to the classes, but with
low mutual redundancy is more effective in its prediction
capability. Hence, to assess the effectiveness of the features,
both relevance and redundancy need to be measured
quantitatively. An information-measure-based criterion is
chosen here to address this problem.

5.1 Feature Selection Using f-Information

Let C={C,...,C;,...,C;,...,Cp} denotes the set of
condition attributes or features of a given data set and § be
the set of selected features. Define f(C;, D) as the relevance
of the fuzzy condition attribute C; with respect to the fuzzy
decision attribute ID, while f (C;,C;) as the redundancy
between two fuzzy condition attributes C; and C);. The total
relevance of all selected features is, therefore, given by

Trelev = Z f(©l7 ]D)a (34)
C;eS
while total redundancy among the selected features is
jrcdun = Z f(Cu ©J) (35)

T, CeS

Therefore, the problem of selecting a set $ of nonredun-
dant and relevant features from the whole set of condition
features € is equivalent to maximize J,.., and minimize
Jredun, that is, to maximize the objective function 7, where

T = Trelev — ﬂjredun = Z.f(@za]])) - BZ.];(CH Cj)v
i 1]

(36)

where [ is a weight parameter. To solve the above problem,
the greedy algorithm of Battiti [4] is used that follows next.

1. Initialize C «— {@1,. . .,@1‘,. . '7©j>' ..,@D},S — (Z)

2. Generate fuzzy equivalence partition matrix for each
condition and decision attribute.

3. Calculate the relevance value f(C;, D) of each
feature C; € C.

4. Select feature C; as the first feature that has the
highest relevance f(C;, D). In effect, C; € § and
C=C\C..

5. Generate resultant equivalence partition matrix
between selected features and each of remaining
features of C.

6. Calculate the redundancy between selected features
of $ and each of remaining features of C.

7. From the remaining features of C, select feature C;
that maximizes

j@;m) - e S fe @),
18]
As a result of that, C; € $ and C=C \ C;.

8. Repeat the above three steps until the desired
number of features is selected.

The relevance of a fuzzy condition attribute with respect to
the fuzzy decision attribute and the redundancy between two
fuzzy condition attributes can be calculated using any one of
f-information measures on fuzzy approximation spaces.

5.2 Computational Complexity

The f-information-measure-based proposed feature selec-
tion method has low computational complexity with respect
to both number of features and number of samples or objects
of the original data set. Prior to computing the relevance or
redundancy of a fuzzy condition attribute, the fuzzy
equivalence partition matrix for each condition and decision
attribute is to be generated first. The computational complex-
ity to generate a (¢ x n) fuzzy equivalence partition matrix is
O(cn), where c represents the number of fuzzy equivalence
partitions and n is the total number of objects in the data set.
However, two fuzzy equivalence partition matrices with size
(p xn) and (r x n) have to be generated to compute the
relevance of a fuzzy condition attribute with respect to the
fuzzy decision attribute, where p and r represent the number
of fuzzy equivalence partitions of fuzzy condition attribute
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and fuzzy decision attribute, respectively. Hence, the total
time complexity to calculate the relevance of a fuzzy
condition attribute using any one of the f-information
measures is (O(pn) + O(rn) + O(prn)) = O(prn). Similarly,
the complexity to calculate the redundancy between two
fuzzy condition attributes with p and ¢ number of fuzzy
equivalence partitions using any one of the f-information
measures is O(pgn). Hence, the overall time complexity to
calculate both relevance and redundancy of a fuzzy condi-
tion attribute is (O(prn) + O(pgn)) = O(n) as p,q,r << n.In
effect, the selection of a set of d nonredundant and relevant
features from the whole set of D features using the proposed
first order incremental search method has an overall
computational complexity of O(ndD).

5.3 Fuzzy Equivalence Classes

The family of normal fuzzy sets produced by a fuzzy
partitioning of the universe of discourse can play the role
of fuzzy equivalence classes [12]. In the proposed feature
selection method, the 7 function in the one-dimensional
form is used to assign membership values to different
fuzzy equivalence classes for the input features. A fuzzy
set with membership function 7(z; ¢, o) [16] represents a set
of points clustered around ¢, where

N
2(1—@) , for g<|z—¢| <o,

La ) K2
7I'(IZ, C, O') 1_ 2(\1—6\\) for 0 < Hl, _ EH < %7 (37)

o I

0, otherwise,

where o > 0 is the radius of the 7 function with ¢ as the
central point and || - || denotes the euclidean norm. When
the pattern x lies at the central point ¢ of a class, then ||z —
¢l =0 and its membership value is maximum, that is,
7(¢; ¢, 0) = 1. The membership value of a point decreases as
its distance from the central point ¢ that is, |z — ¢
increases. When |z — ¢|| = (§), the membership value of
is 0.5 and this is called a crossover point [16].

Each real-valued feature in quantitative form can be
assigned to different fuzzy equivalence classes in terms of
membership values using the 7 fuzzy set with appropriate ¢
and o. The centers and radii of the 7 functions along each
feature axis can be determined automatically from the
distribution of training patterns or objects.

5.3.1 Choice of Parameters of = Function

The parameters ¢ and o of each 7 fuzzy set are computed
according to the procedure reported in [16]. Let m; be the
mean of the objects z={zi,...,z;,...,2,} along the
ith feature C;. Then, m; and m;, are defined as the means
(along the ith feature) of the objects having coordinate
values in the range [C;, , ,m;) and (m;, C;,, ], respectively,
where €, and C; , denote the upper and lower bounds
of the dynamic range of feature C; for the training set. For
three fuzzy sets low, medium, and high, the centers and
corresponding radii are as follows [16]:

E10w((CJi) = m’iz; ancdiulxl(@i) = my; Ehigh((ci) = mim (38)

Ulow((ci) = 2(Ernedium((zi) - Elow(©i))>
Uhigll(ci) = 2(Ehigh(©7]) - Emedium(©7ﬁ))7

A
Umedium((ci) n X E )

(39)

where

A= {O—IOW(Ci)(Ci“,“x - Cmedium((cqj)) +
Jlligh(Ci)(Clnediunl(Ci) - Cimﬁn)}? B= {Ginm - Cimm}v

where 7 is a multiplicative parameter controlling the extent
of the overlapping. The distribution of the patterns or
objects along each feature axis is taken into account, while
computing the corresponding centers and radii of the three
fuzzy sets. Also, the amount of overlap between three fuzzy
sets can be different along the different axis, depending on
the distribution of the objects or patterns.

5.3.2 Fuzzy Equivalence Partition Matrix

The c¢xn fuzzy equivalence partition matrix Mg,
corresponding to the ith feature C;, can be calculated
from the c-fuzzy equivalence classes of the objects z =
{z1,...,2j,..., z,}, where

mg‘ _ 7(xy; e 0n)

Yz a,o)

Corresponding to three fuzzy sets low, medium, and
high (c = 3), the following relations hold:

(40)

c = E]ow((cz‘)§ Cy = Emedium(©i)§ C3 = 5high(©i)7
o1 = Ulow((ci); 09 = O'medium(ci); 03 = 0’high(©7’,)~

In effect, each position mgf' of the fuzzy equivalence
partition matrix Ml¢, must satisfy the following conditions:

mg" € [0,1]; Zm,% = 1,Vj and for any value of k,if
k=1

§ = arg max {mg’.‘ },then max {mgf} = maxl{ml@:’} > 0.
J : J :

6 QUANTITATIVE MEASURES

In this section, two new quantitative indexes are presented,
along with some existing indexes, to evaluate the perfor-
mance of proposed method. The proposed two indexes are
based on the concept of fuzzy-rough sets.

6.1 Fuzzy-Rough-Set-Based Quantitative Indexes

Using the definition of fuzzy positive region, two new
indexes are introduced next.

6.1.1 REILIEWV Index
The REILLEWV index is defined as
RELEV = = 3 7¢,(D), (41)
|S| C;eS

where v¢,(ID) represents the degree of dependency of
decision attribute ID on the condition attribute C;, which
can be calculated using (11). That is, RIEILIEV index is the
average relevance of all selected features. A good feature
selection algorithm should make all selected features as
relevant as possible. The RIELLIEV index increases with the
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increase in relevance of each selected feature. Therefore, for a
given data set and number of selected features, the higher the
relevance of each selected feature, the higher would be the
RELEV index.

6.1.2 REDUN /ndex
It can be defined as

EDUN =
REDY ZISHS

Z {1e.(C
where 7, (C;) represents the degree of dependency of the
condition attrlbute C; on another condition attribute C;.
The REDUN index calculates the amount of redundancy
among the selected features. A good feature selection
algorithm should make the redundancy among all selected
features as low as possible. The REDUN index minimizes
the redundancy between selected features.

i) +e(C)} (42)

6.2 Existing Feature Evaluation Indexes

Some existing indexes are described next that are used for
evaluating the effectiveness of the selected features.

6.2.1 Class Separability

Class separability S of a data set is defined as [2]
S = trace(S, ' Sy), (43)

where S, and S, represent the within class and between
class scatter matrix, respectively, and defined as follows:

C
Z {(X = ) (X = ) |w,}72p, 7>

j=1 =1

(44)

'MQ

S}, = ( i — ]\fo)( MO) y where MU

C
= Z Pjtss (45)
=1

where C is the number of classes, p; is a priori probability
that a pattern belongs to class w;, X is a feature vector, M,
is the sample mean vector for the entire data points, u; is
the sample mean vector of class wj, 3; is the sample
covariance matrix of class w;, and E{-} is the expectation
operator. A lower value of S ensures that the classes are
well separated by their scatter means.

Jj=1

6.2.2 (4.5 Classification Error

The C4.5 [5] is a popular decision-tree-based classification
algorithm. It is used for evaluating the effectiveness of
reduced feature set for classification. The selected feature set
is fed to the C4.5 for building classification models. The C4.5is
used here because it performs feature selection in the process
of training and the classification models it builds are
represented in the form of decision trees, which can be
further examined.

6.2.3 K-NN Classification Error

The K-nearest neighbor (K-NN) rule [1] is used for
evaluating the effectiveness of the reduced feature set for
classification. It classifies samples based on the closest
training samples in the feature space. A sample is classified
by a majority vote of its K-neighbors, with the sample being
assigned to the class most common among its K-nearest
neighbors. The value of K, chosen for the K-NN, is the
square root of number of samples in training set.

6.2.4 Entropy
Let the distance between two data points z; and «; be

1

d 2712
Z Lik — Tjk

maxy, — ming ’

k=1

D..

ij = (46)

where z;, denotes feature value for z; along kth direction,
and max), and min; are the maximum and minimum values
computed over all the samples along kth axis, and d is the
number of selected features. Similarity, between x; and z;
are given by sim(i,j) = e “Py, where « is a positive
constant. A possible value of o is “202. D is the average
distance between data points computed over the entire data
set. Entropy is then defined as [17]:

ZZ sim(z, 7) x log(sim(4, 5))

i=1 j=
+ (1 —sim(4,5)) x log(1 — sim(z, 5)).

(47)

If the data are uniformly distributed in the feature space,
entropy is maximum. When the data have well-formed
clusters, uncertainty is low and so is entropy.

6.2.5 Representation Entropy
Let the eigenvalues of the d x d covariance matrix of a

feature set of size dbe A\;,j=1,...,d. Let
- i
/\] = d g ) (48)
Zj:l )‘]

where ):]- has the similar properties like probability, namely,
0< A <1land ijl A;j = 1. Hence, an entropy function can
be defined as [2]

(49)
J=1

The function Hp, attains a minimum value (zero) when all
the eigenvalues except one are zero or, in other words, when
all the information is present along a single coordinate
direction. If all the eigenvalues are equal, that is, information
is equally distributed among all the features, Hp is maximum
and so is the uncertainty involved in feature reduction. The
above measure is known as representation entropy. Since the
proposed method takes into account the redundancy among
the selected features, it is expected that the reduced feature
set attains a high value of representation entropy.

7 EXPERIMENTAL RESULTS

The performance of the proposed method based on
f-information measures is extensively studied. Based on
the argumentation given in Section 4, following information
measures are chosen to include in the study.

MI: mutual information; VI: V-information;
I,: fora#0,a#1; My: forO0<a<l;
x*: fora>1; Ra: fora#0, a#1;
C fuzzy; D: crisp.
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TABLE 1
Classification Error of C4.5 for Mutual-Information-Based Feature Selection on Different Data Sets

Data Set Selected | Measure n=07/p n=11/p =15/p n=19/p
Features 00 | 05 | 1.0 0.0 | 05 | 1.0 0.0 | 05 | 1.0 00 | 05 | 1.0
2 MI-C 237 | 171 | 17.1 232 | 15.8 | 15.8 232 | 15.8 | 20.2 232 | 15.8 | 15.8
MI-D 237 | 184 | 189 237 | 184 | 184 237 | 1Z1 | 183 23.7 | 17.6 | 189
E-Coli 4 MI-C 10.1 8.5 9.5 9.5 8.5 9.3 0.5 8.1 9.5 9.5 9.1 9.7
D=7 MI-D 11.7 | 11.7 | 11.7 10.1 | 10.1 | 10.1 10.1 | 10.1 | 10.1 10.1 | 10.1 | 10.1
n = 336) 6 MI-C 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
MI-D 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
a MI-C 275 | 26.1 | 26.1 29.7 | 24.6 | 24.6 246 | 24.6 | 24.6 275 | 26.1 | 26.1
MI-D 345 | 31.6 | 33.9 || 339 | 30.1 | 30.1 || 29.9 | 29.9 | 25.0 || 345 | 31.6 | 32.5
Letter 10 MI-C 147 | 139 | 14.1 139 | 13.6 | 13.7 137 | 129 | 131 139 | 134 | 134
(D =16, MI-D 152 | 141 | 141 139 | 139 | 139 13.9 | 13.2 | 13.6 139 | 136 | 13.6
n = 15000) 15 MI-C 124 | 124 [ 124 || 124 | 124 | 124 ([ 124 | 121 | 124 || 124 | 124 | 124
MI-D 124 | 124 | 124 || 124 | 124 | 124 || 124 | 124 | 124 || 124 | 124 | 124
5 MI-C 199 [ 191 | 191 || 186 | 179 | 186 || 191 | 189 | 189 || 172 | 172 | 172
MI-D 238 | 229 | 229 223 | 214 | 21.6 21.8 | 20.2 | 21.1 21.8 | 20.6 | 21.0
10 MI-C 20.6 | 18.8 | 18.8 20.6 | 18.8 | 18.1 198 | 173 | 173 18.7 | 18.1 | 18.6
MI-D 229 | 22.7 | 229 || 21.9 | 19.8 | 20.7 || 20.5 | 18.1 | 19.9 || 22.9 | 20.1 | 20.7
15 MI-C 181 | 179 | 18.0 18.0 | 17.6 | 179 221 | 174 | 21.6 193 | 169 | 169
MI-D 219 | 21.6 | 21.6 21.6 | 19.1 | 20.2 26 | 215 | 218 27 | 215 | 21.8
Satimage 20 MI-C 181 | 179 | 179 176 | 17.6 | 179 19.8 | 18.1 | 189 19.1 | 16.6 | 18.1
(D = 36, MI-D 20.3 | 203 | 20.3 || 20.3 | 20.2 | 20.0 || 20.1 | 19.6 | 19.7 || 204 | 19.8 | 20.2
n = 4435) pisi MI-C 179 | 179 | 179 17.6 | 16.6 | 16.6 16.2 | 159 | 16.1 162 | 16.0 | 16.1
MI-D 18.8 | 18.8 | 18.0 181 | 174 | 17.8 179 | 172 | 17.3 18.0 | 172 | 176
30 MI-C 19.6 | 189 | 19.2 || 187 | 18.6 | 18.6 || 18.6 | 18.6 | 18.6 || 18.8 | 18.8 | 188
MI-D 19.6 | 19.6 | 19.6 189 | 189 | 189 189 | 189 | 189 189 | 189 | 189
35 MI-C 176 | 176 | 176 || 176 | 176 | 17.6 || 176 | 176 | 17.6 || 172 | 17.2 | 17.2
MI-D 17.6 | 17.6 | 17.6 17.6 | 17.6 | 17.6 17.6 | 17.6 | 17.6 172 | 172 | 17.2
15 MI-C 16.3 | 119 | 12.1 16.3 | 115 | 121 15.7 | 11.3 | 12.0 15.1 | 114 | 12.1
MI-D 237 | 237 | 223 || 23.7 | 19.1 | 223 || 21.4 | 185 | 189 || 22.0 | 18.8 | 18.8
20 MI-C 18.7 | 14.0 | 14.7 189 | 13.1 | 15.7 183 | 12.7 | 133 184 | 12.8 | 139
MI-D 243 | 22.8 | 22.8 243 | 19.6 | 21.0 223 | 19.1 | 19.6 225 | 19.3 | 205
Isolet 29 MI-C 15.7 | 145 | 145 12.9 9.6 117 | 8.8 11.6 125 9.1 11.9
(D =617, MI-D 21.1 | 192 | 21.1 || 21.1 | 17.1 | 183 || 20.0 | 12.3 | 195 || 19.6 | 14.1 | 19.1
n = 7797) 30 MI-C 11.7 8.2 11.2 11.7 8.2 10.6 10.9 8.0 104 114 8.3 10.5
MI-D 17.3 | 145 | 145 17.3 | 145 | 169 14.3 | 11.7 | 12.8 15.0 | 11.8 | 129
35 MI-C 112 | 76 | 115 || 115 | 69 | 106 || 109 | 68 | 103 |[ 11.2 | 6.8 | 10.7
MI-D 14.7 9.2 11.2 14.7 9.2 11.3 132 8.3 10.7 13.3 9.0 10.9

These measures are applied to calculate both relevance
and redundancy of the features. The values of « investi-
gated are 0.2, 0.5, 0.8, 1.5, 2.0, 3.0, 4.0, and 5.0. The values
close to 1.0 are excluded, either because the measures
resemble mutual information for such values (I,, R,) or
because they resemble another measure (M; and x' equal
VI). The performance of the proposed method is also
compared with that of quick reduct algorithm, both in fuzzy
(fuzzy-rough quick reduct) [10] and crisp (rough quick
reduct) [18] approximation spaces.

To analyze the performance of proposed method, the
experimentation is done on Iris, E-Coli, Wine, Letter, Iono-
sphere, Satimage, and Isolet data sets that are downloaded
from http://www.ics.uci.edu/~mlearn. The major metrics
for evaluating the performance of different algorithms are
the proposed indexes, as well as some existing measures
reported in Section 6. To compute the classification error of
both K-NN rule and C4.5, the leave-one-out cross validation
is performed on E-Coli, Wine, and Ionosphere data, while the
training-testing is done on Letter and Satimage data.

7.1 Result on Iris Data

The parameters generated in the proposed feature selection
method and the relevance of each feature are reported next for

Iris data, as an example. The values of input parameters used
are also presented here. The mutual information is chosen to

calculate the relevance and redundancy of the features.

Number of samples (objects), n = 150
Number of dimensions (features), D = 4
Value of weight parameter 3 = 0.5

Value of multiplicative parameter n = 1.5
Feature 1:

Clow = 0.2496; Cmedium = 0.4287; Chigh = 0.6333
Olow = 0.3581; Omedium = 0.5701; onign = 0.4093
Feature 2:

Clow = 0.3138; Cmedium = 0.4392; Chigh = 0.5945
Olow = 0.2508; 0medium = 0.4157; opign = 0.3107
Feature 3:

Clow = 0.1192; ¢edium = 0.4676; Cpign = 0.6811
Olow = 0.6967; Omedium = 0.8559; ohigh = 0.4269
Feature 4:

Clow = 0.1146; Cmedium = 0.4578; Chigh = 0.6866
Olow = 0.6864; 0medium = 0.8725; onign = 0.4576
Relevance of each feature:

Feature 1: 0.2669; Feature 2: 0.1488
Feature 3: 0.3793; Feature 4: 0.3739
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TABLE 2
Performance on Satimage and Isolet Databases for Different Values of Weight Parameter 5 Considering n = 1.5

Data Set Evaluation Measure Value of Weight Parameter /3
Criteria 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MI-C 19.8 19.8 19.8 19.1 18.5 17.3 17.3 17.3 17.3 17.3 17.3
Classification MI-D 20.5 20.5 20.5 20.5 19.7 18.1 18.1 18.8 19.9 19.9 19.9
Error (C4.5) VI-C 26.6 26.6 26.6 229 17.4 17.4 17.4 17.4 16.8 16.8 16.8
VI-D 29.6 29.6 29.6 25.1 18.1 18.1 18.1 18.1 23.7 23.7 25.1
MI-C 0.393 | 0.393 | 0.393 | 0.393 | 0.384 | 0.366 | 0.366 | 0.366 | 0.366 | 0.366 | 0.366
Class MI-D 0.597 | 0.597 | 0.597 | 0.597 | 0.593 | 0.467 | 0.467 | 0.467 | 0.467 | 0.464 | 0.464
Separability VI-C 0.417 | 0.417 | 0.397 | 0.397 | 0.366 | 0.366 | 0.366 | 0.366 | 0.366 | 0.366 | 0.366
VI-D 0.643 | 0.643 | 0.643 | 0.617 | 0.495 | 0.467 | 0.495 | 0.495 | 0.560 | 0.560 | 0.560
MI-C 0.828 | 0.828 | 0.828 | 0.828 | 0.828 | 0.824 | 0.824 | 0.824 | 0.824 | 0.827 | 0.827
Satimage Entropy MI-D 0.833 | 0.833 | 0.833 | 0.833 | 0.830 | 0.832 | 0.832 | 0.830 | 0.830 | 0.830 | 0.830
(d =10) (E) VI-C 0.817 | 0.817 | 0.811 | 0.802 | 0.802 | 0.802 | 0.802 | 0.809 | 0.809 | 0.809 | 0.809
VI-D 0.832 | 0.832 | 0.832 | 0.832 | 0.830 | 0.830 | 0.829 | 0.829 | 0.830 | 0.827 | 0.830
MI-C 3.366 | 3.366 | 3.366 | 3.366 | 3.366 | 3.366 | 3.399 | 3.399 [ 3.399 | 3.399 | 3.399
Representation MI-D 3.260 | 3.260 | 3.263 | 3.263 | 3.263 | 3.263 | 3.263 | 3.298 | 3.298 | 3.298 | 3.298
Entropy (HR) VI-C 3.344 | 3.344 | 3.344 | 3.420 | 3.420 | 3.420 | 3.420 | 3.406 | 3.366 | 3.366 | 3.366
VI-D 3.198 | 3.198 | 3.198 | 3.217 | 3.217 | 3.217 | 3.226 | 3.226 | 3.226 | 3.226 | 3.226
MI-C 0.427 | 0.427 | 0.427 | 0.427 | 0.427 | 0.427 | 0.425 | 0.425 | 0.425 | 0.425 | 0.425
RELEV MI-D 0.338 | 0.338 | 0.336 | 0.334 | 0.334 | 0.334 | 0.334 | 0.330 | 0.330 | 0.330 | 0.330
Index VI-C 0.439 | 0.439 | 0.439 | 0438 | 0.434 | 0.434 | 0.434 | 0.434 | 0431 | 0.431 | 0.430
VI-D 0.343 | 0.343 | 0.343 | 0.343 | 0.340 | 0.340 | 0.340 | 0.339 | 0.339 | 0.339 | 0.339
MI-C 0.350 | 0.350 | 0.350 | 0.350 | 0.350 | 0.345 | 0.345 | 0.345 | 0.345 | 0.345 | 0.345
REDUN MI-D 0.419 | 0.419 | 0.419 | 0.419 | 0.402 | 0.350 | 0.350 | 0.350 | 0.350 | 0.350 | 0.348
Index VI-C 0.423 | 0.423 | 0.423 | 0.419 | 0.419 | 0.419 | 0.406 | 0.406 | 0.399 | 0.399 | 0.399
VI-D 0.428 | 0.428 | 0.428 | 0.428 | 0.428 | 0.411 | 0.411 | 0.418 | 0.408 | 0.408 | 0.408
MI-C 12.1 12.1 10.4 9.7 8.8 8.8 8.7 8.7 10.1 10.3 11.6
Classification MI-D 20.0 20.0 18.6 12.3 12.3 12.3 11.9 13.7 16.2 19.5 19.5
Error (C4.5) VI-C 11.5 10.2 9.7 9.7 9.7 8.4 8.3 8.5 8.4 8.4 8.4
VI-D 18.6 18.6 14.9 13.1 11.4 11.4 11.4 15.0 16.4 17.3 17.3
MI-C 0.158 | 0.158 | 0.147 | 0.140 | 0.126 | 0.113 | 0.113 | 0.113 | 0.113 | 0.113 | 0.113
Class MI-D 0.371 | 0371 | 0.371 | 0.371 | 0.344 | 0.344 | 0.344 | 0.344 | 0.344 | 0.344 | 0.344
Separability VI-C 0.138 | 0.138 | 0.138 | 0.127 | 0.127 | 0.097 | 0.097 | 0.097 | 0.114 | 0.114 | 0.123
VI-D 0.362 | 0.362 | 0.358 | 0.358 | 0.358 | 0.358 | 0.359 | 0.357 | 0.357 | 0.357 | 0.357
MI-C 0.276 | 0.276 | 0.276 | 0.276 | 0.276 | 0.276 | 0.275 | 0.275 | 0.275 | 0.275 | 0.275
Isolet Entropy MI-D 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | 0.313 | 0.311 | 0.309 | 0.309
(d = 25) (E) VI-C 0.276 | 0.276 | 0.276 | 0.276 | 0.276 | 0.276 | 0.273 | 0.273 | 0.273 | 0.273 | 0.273
VI-D 0.304 | 0.304 | 0.304 | 0.304 | 0.303 | 0.303 | 0.301 | 0.301 | 0.301 | 0.301 | 0.301
MI-C 4.619 | 4.619 | 4619 | 4.619 | 4.629 | 4.629 | 4.629 | 4.629 | 4.629 | 4.629 | 4.629
Representation MI-D 4.402 | 4402 | 4.402 | 4407 | 4.407 | 4407 | 4410 | 4410 | 4.410 | 4.410 | 4.410
Entropy (HRr) VI-C 4.637 | 4.641 | 4.641 | 4.644 | 4.647 | 4.647 | 4.647 | 4.630 | 4.630 | 4.630 | 4.612
VI-D 4441 | 4441 | 4441 | 4441 | 4.445 | 4445 | 4445 | 4.445 | 4.439 | 4.439 | 4.439
MI-C 0.417 | 0417 | 0.417 | 0417 | 0.417 | 0.417 | 0.419 | 0.419 | 0.419 | 0.419 | 0.419
RELEV MI-D 0.311 | 0.311 | 0.311 | 0.311 | 0.314 | 0.314 | 0.314 | 0.314 | 0.314 | 0.314 | 0.314
Index VI-C 0.416 | 0.416 | 0.417 | 0.417 | 0.417 | 0.418 | 0.418 | 0.415 | 0.415 | 0.411 | 0.409
VI-D 0.313 | 0.313 | 0.313 | 0.313 | 0.316 | 0.316 | 0.316 | 0.316 | 0.316 | 0.316 | 0.316
MI-C 0.427 | 0.427 | 0.427 | 0.427 | 0.425 | 0.425 | 0.425 | 0.425 | 0.425 | 0.425 | 0.425
REDUN MI-D 0.496 | 0.496 | 0.496 | 0.490 | 0.490 | 0.490 | 0.490 | 0.490 | 0.490 | 0.490 | 0.490
Index VI-C 0.427 | 0.427 | 0.427 | 0424 | 0.424 | 0.424 | 0.424 | 0424 | 0424 | 0425 | 0.425
VI-D 0.462 | 0462 | 0.462 | 0462 | 0.461 | 0.461 | 0.461 | 0.458 | 0.458 | 0.458 | 0.458
In the prolposed .feature sele.ctlon method, Feature 3 will Measires; Featites Sundd T iod
be selected first as it has the highest relevance value. After Classification error, C4.5 2.0% 2.0%
selecting Feature 3, the redundancy and objective function Class separability, S 0.0909  0.2343
of each feature are calculated that follow next. Entropy, E 0.6904 0.7535
Redundancy of each feature: Representation Entropy, Hg | 0.9973  0.8785
Feature 1: 0.1295; Feature 2: 0.0572; Feature 4: 0.1522 e el
I P e REDUN Index 0.4149  0.4440

Value of objective function:
Feature 1: 0.2021; Feature 2: 0.1202; Feature 4: 0.2978

Based on the value of objective function, Feature 4 will
be selected next as the second feature. The values of
different quantitative indexes for these two features
(Features 3 and 4) are reported next, along with that for
whole feature sets.

The results reported above establish the fact that the
proposed method selects most significant features from the
whole feature sets by maximizing the relevance and
minimizing the redundancy of selected features.

7.2 Effectiveness of the Proposed Method

To better understand the effectiveness of the proposed
method, extensive experimental results are reported in
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TABLE 3
Performance on Satimage and Isolet Databases for Different Values of Multiplicative Parameter n Considering 5 = 0.5
Data Set Evaluation Measure Value of Multiplicative Parameter 7
Criteria 0.8 0.9 1.0 i) 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
MI-C 188 | 188 | 188 | 188 | 193 | 186 | 172 | 173 | 171 | 185 | 186 | 181
Classification MI-D 227 | 227 | 209 | 198 | 198 | 198 | 184 | 181 | 182 | 197 | 20.1 | 20.1
Error (C4.5) VI-C 178 | 178 | 178 | 178 | 178 | 176 | 174 | 174 | 186 | 172 | 172 | 174
VI-D 213 | 213 | 213 | 208 | 20.8 | 186 | 182 | 181 | 197 | 192 | 192 | 19.0
MI-C 0.449 | 0467 | 0458 | 0465 | 0.367 | 0.367 | 0.367 | 0.366 | 0.310 | 0.408 | 0.421 | 0.461
Class MI-D 0.617 | 0.611 | 0.611 | 0.608 | 0.563 | 0.563 | 0.467 | 0.467 | 0.460 | 0.499 | 0.586 | 0.586
Separability VI-C 0.447 | 0.463 | 0.417 | 0417 | 0.398 | 0.398 | 0.361 | 0.366 | 0.355 | 0.328 | 0.391 | 0.437
VI-D 0.614 | 0.610 | 0.632 | 0.617 | 0.559 | 0.510 | 0.483 | 0.467 | 0.491 | 0.491 | 0.512 | 0.580
MI-C 0.836 | 0.832 | 0.832 | 0.832 | 0.830 | 0.829 | 0.828 | 0.824 | 0.832 | 0.839 | 0.840 | 0.838
Satimg Entropy MI-D 0.861 | 0.863 | 0.844 | 0.844 | 0.844 | 0.834 | 0.830 | 0.832 | 0.837 | 0.841 | 0.841 | 0.846
(d = 10) (B) VI-C 0.835 | 0.835 | 0.834 | 0.829 | 0.829 | 0.816 | 0.816 | 0.802 | 0.802 | 0.811 | 0.834 | 0.833
VI-D 0.858 | 0.858 | 0.851 | 0.850 | 0.841 | 0.841 | 0.837 | 0.830 | 0.827 | 0.832 | 0.832 | 0.839
MI-C 3284 | 3284 | 3.284 | 3.284 | 3.284 | 3282 | 3313 | 3.366 | 3.295 | 3.295 | 3.299 | 3.299
Representation MI-D 3.217 | 3.217 | 3.246 | 3.248 | 3.248 | 3.263 | 3.263 | 3.263 | 3.263 | 3.254 | 3.259 | 3.259
Entropy (HRg) VI-C 3.321 | 3.321 | 3.299 | 3.325 | 3.327 | 3.327 | 3.420 | 3.420 | 3.420 | 3.421 | 3.417 | 3.417
VI-D 3.208 | 3.208 | 3.208 | 3.212 | 3.219 | 3.214 | 3.214 | 3217 | 3217 | 3217 | 3.211 | 3.211
MI-C 0.257 [ 0283 | 0.307 | 0.33T | 0.358 | 0.383 | 0.407 | 0.427 | 0.407 | 0.387 | 0.393 | 0.403
RELEV MI-D 0.254 | 0.254 | 0.278 | 0.305 | 0.314 | 0.327 | 0.334 | 0.334 | 0.334 | 0.303 | 0.318 | 0.318
Index VI-C 0.421 | 0419 | 0421 | 0.431 | 0431 | 0.434 | 0.434 | 0434 | 0.437 | 0.437 | 0.429 | 0.429
VI-D 0.261 | 0.260 | 0.285 | 0.308 | 0.313 | 0.330 | 0.337 | 0.340 | 0.344 | 0.326 | 0.319 | 0.318
MI-C 0369 | 0.393 | 0.419 | 0443 [ 0.369 | 0.392 | 0.412 | 0.345 | 0.408 | 0.409 | 0.424 | 0.437
REDUN MI-D 0.417 | 0.423 | 0.428 | 0441 | 0.397 | 0.378 | 0.365 | 0.350 | 0.389 | 0.414 | 0.451 | 0.455
Index VI-C 0.451 | 0.437 | 0434 | 0426 | 0425 | 0.422 | 0.417 | 0.419 | 0.424 | 0.437 | 0.440 | 0.448
VI-D 0.460 | 0.449 | 0.440 | 0429 | 0428 | 0422 | 0416 | 0411 | 0.408 | 0.426 | 0.443 | 0.459
MI-C 145 | 145 | 127 9.6 124 | 115 9.3 838 9.2 89 9.1 9.1
Classification MI-D 192 | 192 | 184 | 171 | 170 | 138 | 126 | 123 | 123 | 139 | 139 | 141
Error (C4.5) VI-C 124 | 123 | 109 9.4 9.4 8.8 8.7 8.4 8.3 85 9.1 9.0
VI-D 187 | 187 | 174 | 163 | 161 | 139 | 120 | 114 | 115 | 114 | 128 | 137
MI-C 0259 | 0241 | 0.268 | 0.255 | 0.218 | 0.189 | 0.147 | 0.I13 | 0.126 | 0.169 | 0.179 | 0.208
Class MI-D 0.411 | 0.403 | 0.395 | 0.374 | 0.368 | 0.351 | 0.350 | 0.344 | 0.341 | 0.363 | 0.398 | 0.418
Separability VI-C 0.153 | 0.158 | 0.131 | 0.118 | 0.113 | 0.105 | 0.099 | 0.097 | 0.097 | 0.102 | 0.134 | 0.162
VI-D 0.411 | 0.417 | 0.404 | 0.396 | 0.388 | 0.364 | 0.361 | 0.358 | 0.357 | 0.391 | 0.399 | 0.412
MI-C 0.286 | 0.286 | 0.287 | 0.284 | 0.284 | 0.28T | 0.279 | 0.276 | 0.276 | 0.278 | 0.283 | 0.289
Isolet Entropy MI-D 0.329 | 0.328 | 0.329 | 0.322 | 0.322 | 0.318 | 0.314 | 0.313 | 0.316 | 0.317 | 0.320 | 0.324
(d = 25) (B) VI-C 0.286 | 0.286 | 0.286 | 0.283 | 0.279 | 0.279 | 0.278 | 0.276 | 0.276 | 0.277 | 0.281 | 0.285
VI-D 0.317 | 0.316 | 0.316 | 0.314 | 0.315 | 0.308 | 0.308 | 0.303 | 0.304 | 0.311 | 0.312 | 0.317
MI-C 4403 | 4417 | 4329 | 4461 | 4466 | 4607 | 4.633 | 4629 | 4617 | 4502 | 4495 | 4327
Representation | MI-D 4.017 | 4.004 | 4.097 | 4176 | 4.205 | 4.289 | 4.331 | 4.407 | 4416 | 4228 | 4.109 | 4.082
Entropy (HRg) VI-C 4414 | 4427 | 4.326 | 4475 | 4483 | 4591 | 4.603 | 4.647 | 4.644 | 4.428 | 4.417 | 4.445
VI-D 4.016 | 4.017 | 4.073 | 4.128 | 4.362 | 4.360 | 4.447 | 4.445 | 4.446 | 4437 | 4.308 | 4.184
MI-C 0.403 [ 0399 | 0.397 | 0.39T | 0.404 | 0.403 | 0.415 | 0.417 | 0.417 | 0411 | 0.410 | 0.394
RELEV MI-D 0.296 | 0.288 | 0.292 | 0.306 | 0.311 | 0.308 | 0.315 | 0.314 | 0.312 | 0.299 | 0.278 | 0.263
Index VI-C 0.404 | 0.402 | 0.394 | 0.396 | 0.401 | 0.407 | 0.416 | 0.418 | 0.415 | 0.412 | 0.411 | 0.405
VI-D 0.296 | 0.289 | 0.295 | 0.299 | 0.307 | 0.311 | 0.312 | 0.316 | 0.315 | 0.311 | 0.298 | 0.291
MI-C 0.433 | 0429 | 0446 | 0452 | 0427 | 0422 | 0.425 | 0.425 | 0.426 | 0.433 | 0.461 | 0472
REDUN MI-D 0.514 | 0.506 | 0.507 | 0.502 | 0.495 | 0.499 | 0.491 | 0.490 | 0.486 | 0.497 | 0.512 | 0.521
Index VI-C 0.437 | 0.433 | 0.429 | 0461 | 0452 | 0.437 | 0.429 | 0.424 | 0.428 | 0.455 | 0.463 | 0.470
VI-D 0.497 | 0502 | 0.506 | 0.499 | 0.476 | 0.469 | 0.466 | 0.461 | 0.467 | 0.475 | 0.471 | 0.489

Table 1. Subsequent discussions analyze the results with
respect to the classification error of C4.5.

Table 1 reports the classification error of C4.5 for mutual-
information-based feature selection method both in fuzzy
and crisp approximation spaces. Results are presented for
different values of the number of selected features d, weight
parameter 3, and multiplicative parameter . All the results
reported here confirm that mutual-information-based fea-
ture selection method is more effective in fuzzy approxima-
tion spaces than in crisp approximation spaces with smaller
number of features. The proposed feature selection method
in fuzzy approximation spaces improves the classification
accuracy of C4.5 significantly over its crisp counterpart,
especially at smaller number of features. As the number of
selected features d increases, the difference between fuzzy
and crisp approximation spaces decreases. For a given data
set with n samples and D features, the classification error of

C4.5 remains unchanged for any combination of 8 and 7
when the number of selected features d approaches to D. In
case of E-Coli and Letter data sets, the error becomes almost
same for d = 6 and 15 as the values of corresponding D = 7
and 16, respectively. Similarly, for Satimage data set, the
classification error remains almost same at d = 35 as the
corresponding D = 36. However, for feature selection, small
feature setis of practical importance. Also, for a given data set
and fixed d and 7 values, the classification error would be
lower for nonzero 3 values. In other words, if the redundancy
between the selected feature sets is taken into consideration,
the performance of the proposed method would be better
both in fuzzy and crisp approximation spaces.

7.3 Optimum Value of Weight Parameter

The parameter 3 regulates the relative importance of the
redundancy between the candidate feature and the already
selected features with respect to the relevance with the
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TABLE 4
Comparative Performance Analysis of Different f-Information Measures on Letter Database for d = 6

Type | Value C4.5 Error K-NN Error Separability Entropy F Entropy Hr | RELEV Index | REDUN Index
of f | of a [ fuzzy [ crisp | fuzzy [ crisp | fuzzy [ crisp | fuzzy [ crisp | fuzzy [ crisp | fuzzy [ crisp | fuzzy [ crisp
0.2 21.8 25.2 11.6 162 | 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

0.5 16.3 19.1 7.8 15.2 1.087 | 1.108 | 0.881 | 0.898 | 3.316 | 3.264 | 0.231 | 0.219 | 0.207 | 0.283

0.8 21.8 25.2 11.6 16.2 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

In 1.0 23.2 26.7 16.9 228 | 1.345 | 1562 | 0.892 | 0914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316
15 21.8 25.2 11.6 16.2 | 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

2.0 23.2 26.7 16.9 228 | 1.345 | 1562 | 0.892 | 0914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316

3.0 23.2 26.7 16.9 228 | 1.345 | 1562 | 0.892 | 0.914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316

0.2 21.8 25.2 11.6 16.2 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

Ma 0.5 16.3 19.1 7.8 152 | 1.087 | 1.108 | 0.881 | 0.898 | 3.316 | 3.264 | 0.231 | 0.219 | 0.207 | 0.283
0.8 21.8 25.2 11.6 16.2 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

1.0 17.5 21.3 8.7 17.2 | 1.055 | 1.114 | 0.874 | 0.903 | 3.469 | 3.187 | 0.240 | 0.213 | 0.193 | 0.294

15 21.8 25.2 11.6 162 | 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

baa 2.0 23.2 26.7 16.9 228 | 1.345 | 1562 | 0.892 | 0.914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316
3.0 23.2 26.7 16.9 228 | 1.345 | 1562 | 0.892 | 0.914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316

0.2 21.8 25.2 11.6 162 | 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

0.5 21.8 25.2 11.6 16.2 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

0.8 21.8 25.2 11.6 16.2 | 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

Ra 1.0 23.2 26.7 16.9 228 | 1.345 | 1562 | 0.892 | 0914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316
15 21.8 25.2 11.6 16.2 | 1.159 | 1.608 | 0.889 | 0.911 | 3.208 | 3.082 | 0.170 | 0.164 | 0.237 | 0.301

2.0 23.2 26.7 16.9 22.8 1.345 | 1.562 | 0.892 | 0.914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316

3.0 23.2 26.7 16.9 22.8 1.345 | 1.562 | 0.892 | 0.914 | 3.172 | 3.005 | 0.137 | 0.118 | 0.299 | 0.316

TABLE 5
Comparative Performance Analysis of Different f-Information Measures on Satimage Database for d = 10

Type | Value C4.5 Error K-NN Error Separability Entropy Entropy Hr | RELEV Index | REDUN Index
of f | of a | fuzzy | crisp | fuzzy | crisp | fuzzy | crisp | fuzzy [ crisp | fuzzy [ crisp [ fuzzy | crisp | fuzzy [ crisp
0.2 18.0 17.9 17.2 18.0 | 0.435 | 0465 | 0.828 | 0.827 | 3.298 | 3.257 | 0.419 | 0.341 | 0.349 | 0.349

0.5 18.6 18.1 17.2 18.8 | 0.369 | 0467 | 0.829 | 0.832 | 3.282 | 3.248 | 0426 | 0.334 | 0.345 | 0.350

0.8 17.3 18.1 17.3 18.8 | 0367 | 0467 | 0.828 | 0.832 | 3.263 | 3.263 | 0427 | 0.334 | 0.346 | 0.350

1.0 17.3 18.1 17.3 18.8 | 0.366 | 0467 | 0.824 | 0.832 | 3.366 | 3.263 | 0427 | 0.334 | 0.345 | 0.350

Iy 1.5 17.2 18.6 14.8 16.1 | 0360 | 0478 | 0.829 | 0.829 | 3.364 | 3.254 | 0.427 | 0.329 | 0.347 | 0.357
2.0 17.2 18.6 14.8 16.1 | 0361 | 0.478 | 0.801 | 0.829 | 3.364 | 3.254 | 0.428 | 0.329 | 0.346 | 0.357

3.0 17.1 18.0 17.1 18.0 | 0361 | 0461 | 0.827 | 0.827 | 3.366 | 3.260 | 0.428 | 0.330 | 0.341 | 0.407

4.0 16.6 18.4 13.6 16.0 0.359 | 0473 | 0.801 | 0.827 | 3.458 | 3.248 | 0.437 | 0.324 | 0.336 | 0.372

5.0 26.1 18.4 19.5 16.1 0.447 | 0473 | 0.831 | 0.827 | 3.197 | 3.248 | 0.411 | 0.324 | 0.425 | 0.372

0.2 19.8 17.7 16.6 18.1 0.418 | 0462 | 0.824 | 0.828 | 3.117 | 3.351 | 0.422 | 0.339 | 0.379 | 0.413

Mq 0.5 18.6 18.1 17.2 18.8 | 0.369 | 0467 | 0.829 | 0.832 | 3.282 | 3.248 | 0426 | 0.334 | 0.345 | 0.350
0.8 17.4 18.1 16.6 18.1 | 0369 | 0467 | 0.807 | 0.830 | 3.289 | 3.217 | 0429 | 0.340 | 0.416 | 0.411

1.0 174 18.1 16.6 18.1 0.366 | 0.467 | 0.802 | 0.830 | 3.420 | 3.217 | 0.434 | 0.340 | 0419 | 0.411

15 17.4 18.1 15.1 18.8 | 0.364 | 0467 | 0.806 | 0.830 | 3.282 | 3.278 | 0.427 | 0.337 | 0.346 | 0.409

2.0 17.2 18.6 14.8 16.1 | 0361 | 0478 | 0.801 | 0.829 | 3.364 | 3.254 | 0.428 | 0.329 | 0.346 | 0.357

xX* 3.0 16.6 18.6 13.6 16.1 | 0360 | 0478 | 0.797 | 0.829 | 3.455 | 3.254 | 0.434 | 0.329 | 0.389 | 0.357
4.0 26.1 18.6 19.5 16.1 | 0.441 | 0478 | 0.816 | 0.829 | 3.197 | 3.254 | 0.408 | 0.329 | 0.312 | 0.357

5.0 30.9 18.6 | 237 | 161 | 0486 | 0.478 | 0.823 | 0.829 | 3.068 | 3.254 | 0401 | 0.329 | 0.317 | 0.357

0.2 18.0 17.9 17.2 18.0 | 0.435 | 0465 | 0.828 | 0.827 | 3.298 | 3.298 | 0427 | 0.341 | 0.349 | 0.349

0.5 18.6 18.1 17.2 18.8 | 0.369 | 0467 | 0.829 | 0.832 | 3.282 | 3.261 | 0426 | 0.334 | 0.345 | 0.350

0.8 17.3 18.1 17.3 18.8 0.367 | 0.467 | 0.828 | 0.832 | 3.263 | 3.263 | 0.427 | 0.334 | 0.346 | 0.350

1.0 17.3 18.1 17.3 18.8 | 0.366 | 0467 | 0.824 | 0.832 | 3.366 | 3.263 | 0.427 | 0.334 | 0.345 | 0.350

Ra 1.5 172 | 206 14.1 19.7 | 0360 | 0491 | 0.829 | 0.834 | 3.364 | 3.118 | 0.428 | 0.326 | 0.347 | 0.351
2.0 17.2 | 206 14.1 23.6 | 0361 | 0.491 | 0.826 | 0.834 | 3.364 | 3.118 | 0.428 | 0.326 | 0.347 | 0.351

3.0 16.6 18.6 13.9 16.1 0.359 | 0.478 | 0.801 | 0.829 | 3.457 | 3.254 | 0.435 | 0.329 | 0.339 | 0.357

4.0 16.4 18.6 13.6 16.1 0.355 | 0478 | 0.794 | 0.831 | 3.478 | 3.254 | 0.441 | 0.329 | 0.338 | 0.357

5.0 27.2 18.6 | 215 16.1 | 0497 | 0478 | 0.828 | 0.829 | 3.206 | 3.254 | 0.408 | 0.329 | 0.430 | 0.357

output class. If 3 is zero, only the relevance with the output
class is considered for each feature. If 3 increases, this
measure is discounted by a quantity proportional to the
total redundancy with respect to the already selected
features. The value of § larger than zero is crucial in order
to obtain good results. If the redundancy between features
is not taken into account, selecting the features with the
highest relevance with respect to the output class tends to
produce a set of redundant features that may leave out
useful complementary information.

Table 2 presents the performance of proposed method
using both V' and mutual information for different values
of 3. The results and subsequent discussions are presented
in this table with respect to various proposed and existing
quantitative indexes for both fuzzy and crisp approxima-
tion spaces. In Table 2, it is seen that as the value of 3
increases, the values of RIEILIEEV index and representative
entropy Hp increase, whereas the classification error of
C4.5, the values of REDUN index, class separability S,
and entropy E decrease. The V' and mutual information
achieve their best performance for 0.5 < § < 1 with respect
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TABLE 6
Comparative Performance Analysis of Different Methods Using Proposed and Existing Feature Evaluation Indexes
Data Method/ K-NN Error C4.5 Error Separability RELEV Index Entropy £ Entropy Hp REDUN Index
Sets Measure fuzzy [ crisp | fuzzy [ crisp | fuzzy | crisp | fuzzy [ crisp | fuzzy [ crisp | fuzzy [ crisp | fuzzy | crisp
MI 7.3 7.3 ] 7.9 0.181 | 0.181 | 0.443 | 0.443 | 0.743 | 0.743 | 0.997 | 0.997 | 0.413 0.443
I40 4.1 5.8 6.7 7.9 0.138 | 0.181 | 0.442 | 0.443 | 0.756 | 0.743 | 0.985 | 0.997 | 0.406 0.443
Wine Mop.8/VI 39 5.8 2.8 4.5 0.108 | 0.154 | 0.445 | 0434 | 0.741 | 0.745 | 0998 | 0.997 | 0.417 | 0.430
x18 24 5.8 2.8 4.5 0.108 | 0.154 | 0.445 | 0434 | 0.741 | 0.745 | 0998 | 0.997 | 0.417 | 0.430
Ra.0 4.1 5.8 6.7 79 0.138 | 0.181 | 0.442 | 0.443 | 0.756 | 0.743 | 0.985 | 0.997 | 0.406 | 0.443
QR 3.9 7.0 2.8 92 0.108 | 0.196 | 0.445 | 0.442 | 0.741 | 0.752 | 0.998 | 0.998 | 0.417 | 0.459
MI 16.9 22.8 23.2 26.7 1.345 | 1.562 | 0.137 | 0.118 | 0.892 | 0.914 | 3.172 | 3.005 | 0.299 | 0.316
Io.5/Mo.5 7.8 15.2 16.3 19.1 1.087 | 1.108 | 0.231 | 0.219 | 0.881 | 0.898 | 3.316 | 3.264 | 0.207 | 0.283
Letter VI 8.7 17.2 17.5 21.3 1.055 | 1.114 | 0.240 | 0.213 | 0.874 | 0.903 | 3.469 | 3.187 | 0.193 | 0.294
Ris 11.6 16.2 21.8 25.2 1.159 | 1.608 | 0.170 | 0.164 | 0.889 | 0.911 | 3.208 | 3.082 | 0.237 | 0.301
QR 21.8 29.5 38.3 39.7 | 8809 | 9.627 | 0.285 | 0.271 | 0.891 | 0.906 | 3.314 | 3.001 | 0.330 | 0.385
MI 2.6 4.9 2.6 4.8 1.655 | 3.283 | 0.393 | 0.387 | 0.765 | 0.765 | 3.298 | 3.293 | 0.374 | 0.375
I1.5/Mo.g 3.7 4.8 4.6 48 2297 | 3.283 | 0.404 | 0.387 | 0.765 | 0.765 | 3.298 | 3.293 | 0.391 | 0.375
Ionsph VI 2.6 4.8 4.0 4.8 2.681 | 3.283 | 0.406 | 0.387 | 0.762 | 0.765 | 3.295 | 3.293 | 0.387 | 0.375
X%/ Ris 3.7 4.8 4.6 4.8 2297 | 3.283 | 0.404 | 0.387 | 0.765 | 0.765 | 3.298 | 3.293 | 0.391 | 0.375
QR 6.7 9.2 8.5 11.7 | 5.877 | 9.361 | 0.262 | 0.257 | 0.754 | 0.755 | 3.299 | 3.291 | 0.513 | 0.558
MI 17.3 18.8 17.3 18.1 0.366 | 0.467 | 0.427 | 0.334 | 0.824 | 0.832 | 3.366 | 3.263 | 0.345 | 0.350
I4.0 13.6 16.0 16.6 18.4 0.359 | 0473 | 0.437 | 0.324 | 0.801 | 0.827 | 3.458 | 3.248 | 0.336 | 0.372
Mo.g 16.6 18.1 17.4 18.1 0.369 | 0.467 | 0.429 | 0.340 | 0.807 | 0.830 | 3.289 | 3.217 | 0.416 | 0.411
Satimg VI 16.6 18,1 17.4 18.1 0.366 | 0.467 | 0.434 | 0.340 | 0.802 | 0.830 | 3.420 | 3.217 | 0.419 0.411
x3:0 13.6 16.1 16.6 18.6 0.360 | 0478 | 0.434 | 0329 | 0.797 | 0.829 | 3.455 | 3.254 | 0.389 0.357
Ra.0 13.6 16.1 16.4 18.6 0.355 | 0.478 | 0.441 | 0.329 | 0.794 | 0.831 | 3.478 | 3.254 | 0.338 | 0.357
QR 19.2 24.8 21.6 24.8 0.892 | 0.996 | 0.458 | 0.357 | 0.795 | 0.834 | 3.118 | 3.006 | 0.513 | 0.529
MI 6.1 9.3 8.8 12.3 0.113 | 0.344 | 0417 | 0.314 | 0.276 | 0.313 | 4.629 | 4.407 | 0.425 0.490
I4.0 5.8 9.9 8.3 11.2 0.089 | 0.353 | 0.401 | 0.313 | 0.276 | 0.303 | 4.627 | 4.417 | 0.412 | 0.455
Mo.g 7.8 93 95 11.4 0.128 | 0.389 | 0.417 | 0316 | 0.276 | 0.303 | 4.641 | 4.445 | 0.426 0.463
Isolet VI 5.8 10.7 8.4 114 0.097 | 0.358 | 0.418 | 0.316 | 0.276 | 0.303 | 4.647 | 4.445 | 0.424 | 0.461
x3-0 6.1 9.5 8.6 11.9 0.088 | 0.351 | 0.404 | 0.315 | 0.279 | 0.308 | 4.646 | 4.449 | 0.413 0.459
Ra.0 5.8 99 8.2 13.1 0.083 | 0.419 | 0425 | 0311 | 0.276 | 0.329 | 4.642 | 4.327 | 0.413 0.492
QR 9.5 15.2 12.8 15:2 1.362 | 1.594 | 0.449 | 0.361 | 0.278 | 0.341 | 4517 | 4211 | 0.507 | 0.539
TABLE 7
Comparative Execution Time (in Millisecond) Analysis of Different Methods
Method / | Wine (d = 2) Letter (d = 6) | Ionosphere (d = 10) | Satimage (d = 10) Isolet (d = 25)
Measure | fuzzy | crisp | fuzzy | crisp | fuzzy crisp fuzzy crisp fuzzy crisp
MI 8 7 2758 2699 163 144 2384 2273 143467 141973
Io 7 7 2687 2685 165 147 2407 2239 143460 142157
Ma 8 8 2706 2776 168 153 2395 2192 143481 141996
VI 8 7 2694 2782 162 142 2383 2244 143459 142018
x® 8 8 2688 2695 167 146 2393 2248 143478 141980
Ra 7 8 2691 2795 167 150 2388 2267 143501 141769
QR 7 9 24568 | 19473 | 2483 2107 39179 37982 71412733 | 70488913

to all these quantitative indexes. In other words, the best
performance of V' and mutual information is achieved
when the relevance of each feature is discounted by at least
50 percent of total redundancy with respect to already
selected features.

7.4 Optimum Value of Multiplicative Parameter »
The 7 is a multiplicative parameter controlling the extent of
overlapping between the fuzzy sets low and medium or
medium and high. Keeping the values of oiow and onigh
fixed, the amount of overlapping among the three =
functions can be altered varying omedium- As 7 is decreased,
the radius opequum decreases around Gpegium Such that
ultimately, there is insignificant overlapping between the
m functions low and medium or medium and high. On the
other hand, as 7 is increased, the radius oyeqium increases
around Cpedium SO that the amount of overlapping between 7
functions increases.

Table 3 represents the performance of the proposed
method in terms of various quantitative indexes for
different values of 7. Results are presented for different
data sets considering the information measure as both

mutual information and V information. It is seen that in
case of both mutual information and V-information, the
proposed method achieves consistently better performance
for 1.1 < n < 1.7. In fact, very large or very small amounts
of overlapping among the three fuzzy sets of the input
feature are found to be undesirable.

7.5 Performance of Different f-Information
Furthermore, extensive experiments are done to evaluate
the performance of different f information measures, both
in fuzzy and crisp approximation spaces. Tables 4 and 5
report the results for different values of o considering 3 =
0.5 and n = 1.5. For each data set, the value of d (number
of selected features) is chosen through extensive experi-
mentation in such a way that the classification error of
both C4.5 and K-NN becomes almost equal to that of
original feature set.

From the results reported in Tables 4 and 5, it is seen that
most of the f-information measures achieve consistently
better performance than mutual information (= I;o- or
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R -information) for different values of «, both in fuzzy and
crisp approximation spaces. Some f-information measures
are shown to perform poorly on all aspects for certain values
of a. The majority of measures produces results similar to
those of mutual information. An important finding, how-
ever, is that several measures, although slightly more
difficult to optimize, can potentially yield significantly
better results than mutual information. For Satimage data,
V- or M-, I,- and R,-information for 0.8 < a < 4.0, and
x“-information for a =2.0 and 3.0 perform better than
mutual information in fuzzy approximation spaces, while
for Letter data, Iy 5-, My s-, and V-information yield the best
result with respect to most of the indexes and other
measures are comparable to mutual information. However,
the lowest value of REDUN index for Satimage data is
achieved using x*’- and x*’-information.

7.6 Performance of Different Algorithms

Table 6 compares the best performance of different
f-information that is used in the proposed feature selection
method. The results are presented based on the minimum
classification error of both C4.5 and K-NN. The values of 8
and 7 are considered as 0.5 and 1.5, respectively. The best
performance of quick reduct (QR) algorithm, both in fuzzy
[10] and crisp [18] approximation spaces, is also provided
for the sake of comparison. It is seen that the f-information
in fuzzy approximation spaces is more effective than that in
crisp approximation spaces. The f-information-measure-
based proposed feature selection method selects a set of
features having the lowest classification error of both C4.5
and K-NN, class separability, entropy, and RIEDUN index
values and the highest representation entropy and
RELEV index values for all the cases. Also, several
f-information measures, although slightly more difficult to
optimize, can potentially yield significantly better results
than mutual information, both in fuzzy and crisp approx-
imation spaces. Moreover, the f-information-based pro-
posed method outperforms quick reduct algorithm, both in
fuzzy and crisp approximation spaces. However, quick
reduct algorithm achieves the best RIELIEV index value
for all data sets as it selects only relevant features of a data
set without considering the redundancy among them. The
better performance of the proposed method using
f-information is achieved due to the fact that the fuzzy
equivalence partition matrix provides an efficient way to
calculate different f-information measures on fuzzy ap-
proximation spaces. In effect, a reduced set of features
having maximum relevance and minimum redundancy is
being obtained using the proposed method. Finally, Table 7
reports the execution time of different algorithms. The
significantly lesser time of the proposed algorithm is
achieved due to its low computational complexity.

8 CONCLUSION

The problem of feature selection is highly important,
particularly given the explosive growth of available
information. In this paper, a novel feature selection
method is presented based on fuzzy-rough sets. Using
the concept of f-information measures on fuzzy approx-
imation spaces, an efficient algorithm is introduced for

finding nonredundant and relevant features of real-valued
data sets. This formulation is geared toward maximizing
the utility of rough sets, fuzzy sets, and information
measures with respect to knowledge discovery tasks.
Several quantitative indexes are defined based on fuzzy-
rough sets to evaluate the performance of the proposed
feature selection method on fuzzy approximation spaces
for real-life data sets. Finally, the effectiveness of the
proposed method is presented, along with a comparison
with other related algorithms, on a set of real-life data.
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