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SUMMARY. For standardized sums of non-stationary ¢-mixing random variables,
uniform and non-uniform Berry-Esscon bounda are obtained. Theso bounds are applied to

prove ' of absol of euch sumna to the corresponding momenta of the
normal {0, 1) distribution, and also in proving L,-vorsions of tho DBerry-Esscen thoorem,
Furthor application of thess bounda conviats in proving probabilitics of moderate doviations for

non-atationary ¢-mixing proccasca.
1. INTRODUCTION

Consider a sequenco {X,} of random variables. Let A(f and (2 donoto
tho o-fields gonerated by {X,, ..., X,} and {X,, X,,,, ...} respectively. Supposo
thero exists a sequenco {@,} of reul numbers such that 12> ¢, > 6,> ...,
and

| P(4 N B)—P(4)P(B)| < $.P(4)
forall A € g}, Be A5n k> 1,2 > 1. Tho sequenco {X,} is called ¢-mixing
if lim ¢, =0,
L
Dofile S,= £ X of=V(S,) and F.()=P(S,<l0,). Asumo
(=1
that

E(X,)=0 forall > 1, e (L)
S 4l < oo, e (L2)
f=]
inf n-le, >0, e (1Y)
n31

and for somo ¢ > 0 and M > 1
E|X, << M, forall np 1, v (L)

Under tho abovo conditions, cortain uniform and non-uniform rates of
convergenco to normality aro proved in this paper, for o5t §,. A uniform
Berry-Esseen  theorom is dorivod in Soction 2. Wo have proved tho
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convergonco of tho absoluto momonts of o' §, to tho corresponding absolute
moments of [XN(0,1)] in Soction 3. Also, proved in this scction is a
non-uniform Berry-Essoon theorem. Theso oxtend Michol's (1976) rosults for
sums of iid. r.v’a. In tho samo section an L, version of tho Berry-Esacen
theorem is proved. This result generalizes and strengthens a corresponding
rosult of Erickson (1973). Tinally in Section 4, another error bound for
approximating F () by ®(t) = P(N(0, 1) < #) is derived. This is then utilized
in finding a zono whero 1—F(f,) ~ ®(—t,) (i.0., the ratio gocs to 1) as n— co.
A similar result for sums of i.i.d. r.v's. is avajlablo in Michel (19706).

We shall bo using the following generalization of Ibragimov’s (1962) result
soveral times.

Lemma 1: Let {X,} be a ¢-mizing process salisfying (1.1) and (1.2).
Suppose for aome 8 > 2, lhere exists a real number N > 1 such that foralln > 1,

E|X,|*< N. e (L5)
Lt d>1 and Y= Y= X¢ I(|X(| < d), where I(A) denoles the indicator

function of the set A. Then for any real number v > 2, there exisls
D(v) = D(v, 8, N) > 0, not depending on d, such that for all posilive integers
ugdiand h > 0,

5| £ Yoo < Do) @t uro,

where
R(v) = R(v, 8, d) = d°-.

Proof of this lomma is given in tho appendix. Ghosh and Babu (1977)
havo proved a woaker version of this lerama under s stronger moment condition.

Wo concludo this scction by stating another lomma which is used sevoral
times in this paper.

Lomma 2: Let {J} be a sequence of random variables salisfying o<Si<4
Jor all § and for some A > 0. Suppose Jee .//l‘,:‘(}?m);" for some inlegers
J >0 and m> 0. Then, for any posilive integer n, we have

E(ﬁ 7)< o, e (18)
=1 =1
and

|E (.':11 J,)—ll'il‘E(J‘)‘ < 2A¢,§l ('f,‘r:‘,"M‘)' . (D)
where

My = E(J)+249;.
A3-9
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Proof : Using & result of Ibragimov (1962) (soo, o0.g., Lemma 1, pago
170 of Billingsley, 1068) from now on roforred to as Lomma A), wo obtain

- n~1

that E (l’l J‘) S ME ( I J‘). Ropoatod application of this inequality
f=1 =1

gives us (1.6); (1.7) follows from (1.6) and Lomma A.

2. Uxirord BERrRY-ESSEEN DBOUNDS

For any random variable X, let F(X) donote the distribution function

of X. Lot ® donoto tho distribution N(0, 1). Let, for any bounded function f,

IfIl = sup |f(t)]. Wo uso Vinogradov's symbol <« instead of tho wusual
:

0-symbol whenover it is found conveniont.
Theorom 1: Let {X,} be a ¢-mizing process satisfying (1.1), (1.2), (1.3)
and (1.4). Then
IF(o3S)— || L n-" log n,
where  y(c) = 2¢*/(6-+5¢%) and ¢® = min (c, 1).

Proof : First we present the blocking procedure which is to be used
throughout the paper.

Lot p = pla, n) = [7), ¢ = g8, n) = [’), k = Ka, B, n) = [n](p+¢)]) ond
1 = n—k(p+4q), whero 0 < # < @ < 1 will bo chosen according to the noed.

Put

»
& =Enut =;§1 Xi-psres 1igk
M= Nnnt =,1_1-l Xipaid-nges 1<igk .oo@2n

and
1
Erir = Emkar =;21 XHP«HI or 0

according as I > 1 or not.

For tho prosent use, wo fix & = (2+45¢*)/(645¢*) and f = (24-¢*)/(6+5¢*).
Sinco for any two random variables X and ¥, and € > 0,

IF(X+Y)—0fl < IF(X)—dll+(2n)-te+P(| Y] > ¢), e (22)
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it is enough to prove that
k
P ‘ p) 1;.| > Ko n=1 log n) & n—11e log n — (23)
{=1
for somo K > 0 and
ka1
||F (a;* ) s.)—o" & nvo log n. - (24)
(=1
To establish (2.3), lot 75 = 7, I(| | < (% ¢)}). By Lomma 1, the differenco
between tho left-hand sido of (2.3) and a similar quentity with 7 roplaced by
7% i8 not more, in modulus, than

I B(nil > (£ 0)) <€ bl q) g = kg o,

Tho last inequality follows by the earlicr choico of @ and 8. Henco, it sulfices
to show that

X
P ( | z n}l > Knbt0 log n) < nrie, e (2.5)
te1
By Markov’s inoquality and by Lemma 2, we have

P (‘g 7% > Kni=7 log n) < nkKE (oxp (n"“" él q:)) < nK ‘l'fIl i,

e (2.0)
whero
1y = 2Cp+E (exp (n7@-iy%))
and
C = oxp (n""“(k g <.
Now using Lomma 1 and
r < 2035+ 1 +nn-1| B(5})| fatro-1 E(n), . (2.7)

it can be shown that I'l ri = 0(1). On choosing K largo in (2.5), (2.6} and
(2.7) plus similar moqu:thtms with 5§ roplaced by —7; lead to (2.5).

Wo now turn to tho proof of (2.4). Lot {£;, 1 £ ¢  k+1} boa soquence
of indopendent random variables with £; having tho samo distribution as that
of &. Lot 0f = :2+‘.: V(&;). Then, following Katz's (1063) proof of Berry-Esscon
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bounds for independent random variables, and using Lemma 4 of Tosifeseu
(1968), we conelude that the left-hand sido of (2.4) is not moro than

| 7ot 2 &) —of +as
=l

<|#(on % )0 +ies
+eup 10— 051
I

<L n 70 log n 4|0, —0x| 05, . (2.8)
A fow applications of Lommna A lead to
|o2—05| €070, 02 <€n ond n €02 <L 0. e (2.9)
For similar ealculations sco Ghosh and Babu (1977).
The theorem now follows from (2.8) and (2.9).

Remark 2.1 : If tho sequence {X,} in Theorom 1 is stationary, and

0<ot=V(X)+2 X z cov(Y,.X“‘) thon

IF(n~10-18,)— 0| € 7" log n, o (210
whore y,(c) =c¢/(c+4) if ¢< 2/3 and = y({c) if ¢ > 2/3. Notico that
7:(€) < y(e) if ¢ < 2/3. Tho bound gots crudo due to the approximation of
ot by not.

3. Nox-vNiForM BERRY-ESSEEN BOUNDS

Let. X > 0, Ky > 0 and y > 0 denoto generic constants.
Thoorom 2: Let {X,} be as in Theorem 1. Then for all 2 > (c41)iog n,
| P(S, < ta,)—)] < Kn-e/2|t]|=2-¢ (log |1])*+*. e (30)

Proof : \ithout loss of gonerality wo assumo that ¢t> 0. Sinco
12> (c+1)logn, we have O(—1) € #4242, So it i3 enough to show that
P(S, > to,)isnot moro than the right sido of (3.1).  Wo sliall omit the details
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as tho proof follows tho lines of Lomma 3 bolow. o only mention that
in tho proof of Lomma 3, we work with X;= X; I{| Xy| <=nit) and £ =
g I(| 5] < s¢nd]logt) for somo &> 0.

From Thoeorems 1 and 2 we immediately have tho following.
Theorom 3: Under the hypothesia of Theorem 1, we have for all real t,
|P(S, S 4a,)—0@)| < w714 [1] 1) (log (n(14 [¢] ).

Rocently Erickson (1973) strossed tho need of L, version of Berry-Essoen
bounds and presented somo results for indopendent and m-depondent eascs,
The corollary given bolow follows from Theorems 1 and 3.

Corollary 1: If{X,}is as in Theorem 1, then for all r > 1
| F(o3! S.)—0 |l € n=" (log n)¥*,
where y(c) is defined in Section 2 and ||+ ||, denofes the r-th norm with respect to

Lebesgue measure.

If {X,} is & g-mixing process satisfying (1.1), (1.3), (1.4) and ¢, <€ e for
somo A > 0, then by similar caleulations, wo havo

| Flomt $)=0 I, < 2~ "% (log mysi,

which sharpons Erickson’s Theorem 2.
A fow lemmas aro needed to provo the noxt thcorem. From now on in
this section we nssumo that {X 3 satisfios the hypothesis of Theorom 1.

Lemma 3: Let b> 12, > 0 and let Xop = XJ(| X¢| € nb). Then
we have for t > 0 and elogn § 12 < n*t?,

r (| E x..,‘ > 3tnt) aln,0), o (a2

where
a(n, t) = ne/2 61 (Jog )i+,
Proof :  Clearly tho left-hand sido of (3.2) is zero if ¢ > n!'*2,
Lot X;= X, I{| Xi] < min(a® ¢2)). In view of Lemma 1, it is enough
to prove (3.2) with Xi.p roplaced by X;. Now wo uso the blocking procedure
a3 doseribed in (2.1) with X; vopliced by X; and with ¢ =£=1/3. Let

x K
U,=3% ¥ Uy,= X gand T, =E,,.
3= J=1



284 GUTTI JOGESH BABU, MALAY OROSM AND KESAR SINOH

Cloarly
f*, X =U,+U+T,. - (3.3)
By Lemma 1, wo have with v = 2¢+4-2
P(|T.| > tnd)  4-°no1E | T |°
<& nels o (pyis g p (nhtjee-t)
<a(n,1).
To complote tho proof it is enough to show that
PV, > tnt) La(n,t), ... (34)
with 7, =U,, —-U,, U, and —U,. e shall only show that (3.4) holds

with ¥V, = U,. Proofs of tho other throo inoqualitics aro similar. For
elogn < 2 < 22, put

y = 2c+1)b41) 2 ndlog n,

By =EI(1&] < 1/2y) and Ug = "_:1‘ €.
Another application of Lomma 1 with v = 2¢4-2 gives

IP(O, > ta)~P(03 > )| < 2 R(IE] > 1/2) <ol 1)
By Markov’s inoquality and Lomma 2, it follows that
PO >ty e? ""E(e"’:) <a(nt) !fxl 8, ... (3.5)
whore
oy = 268, + () & 2egpt ) by | B} +2ey* EEN.

We now cstimnto s5. Ve have

1EE)] = |EEN—EE 1| 5] > 1/29)]
< EE)| +yERS) . e (3.6)
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Since

P+A
Eg= I X; for some A > 0, wo havo
t=A+1

A
|EE)| < .::;1 E(X|I(| Xi| > min(nb, £ nd))

< p max (amdletl), pe-1 p-le+liz

<Ly kY (ni=+0) (log n)i+1) < y2h-L. . (37)
Tho Inst stop above follows bocauso b > 1/2. Combining (3.6) and (3.7) and
obsorving k¢, € 1, we obtain that

k x
log 1 oy <<1+y* T EGH <1+kpy* <L
4=1 4=1

This complotes the proof of the lemma.

Put 7=1 or c—[c] according a3 ¢ is an intoger or not. Let a=—14(c+2)/7.
Clearly 0 < 7 € 1and @ > ¢+1. Let Xy = Xy I(] X¢| > n9). By Minkowski’s
inequality we get that, for any h > 0 and u < »,

[ +e-n
E| 2 Xin & Mucrtap-on M, .. (3.8)
(=1

Following the lines of proof of Lorama 1 with ¢+2—7 and 7 now playing
tho roles of m and e respectively, and obsorving that in viow of (3.8), tho last
torm of (9) is bounded, we havo

e
< Ku.

Lomma 4: For all u < n and h > 0, E| i‘xm‘
-1
Lot Xiq = X(J(| Xi| < 7°) ond lot W, = I X,q. ByThoorom 1, we
=1
get that
n
sup |P(IF, < tor,)—0(t)] <‘2‘ P(| X] > 7‘“)+3“‘P | P(8, < to,)—0(t)]

& nimaUHO L1 Jog 0 & 70 logn o (3.9)

88 1-g(c42) < —1.
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We now stato

Lomma 5 :
| E| oMW, | e —n—t 24e)3 T ((c 4 3)/2) | & 07O (log n)t+e ... (3.10)
Proof : Sinco for ¢ > 1, ®(—1t) < e, dofining v, = (log n)ie+?, wo

have by (3.9) and by Lomma 3, tho loft-hand sido of (3.10) is not moro than

f |P(| W, > [I/luﬂ,,-n)___2@(_‘11(:")”,”
°

<o (log e [ (e dut [ P TW,| > o, thesn)de
[ o,

w@+1) (o+1)
< n-ver (]og n)He I P(I Wnl > o, t/etd) dt
]

& 770 (log n)t+etn—e/? (log n)2+2 & 21 (log n)e. . (311
This completes the proof of Lemma 5.

From Lemmas 4 and 5 and from Minkowski’s inequality, we immediatoly
have

Theorom 4 :
|E|o7! S,|2t¢—m~t 20402 (3 4¢)[2) | & ne/diest

Remark 3.1 : Stoin (1972) has shown that if {X,} is a soquence of
stationary m-dopendent process with E(X{) < o, then

|F(oat S,)—®| € nb.

Combining this rosult with our Thoorem 2 wo obtain that for r > 1 for
stationary m-depondont case, that

IF(o3* Sa)—0flr & n-i(log n)},

which is slightly worse than tho bost possiblo order.
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4. MODERATE DEVIATIONS
Theorem 5: Under the hypothesis of Theorem 1, we have for all
2 (c+1)logn,

| P(S, < 1o)—0(1)] < Kn* e 4.0(b(n, 1)), e (A1)
where A > 0, K > 0 are some constanls and
b(n, 1) = n=o2(1 4| ¢] )2,

Remark 4.1 : I€ {X,} is & stationary sequenco then in (4.1), o can bo
ruplncc«lbyn(E(.\'f)+‘.’. g E(x,.\'m)) und O(b(n, #)) can bo replaced by
o(b(n,8). If {|X,[2*} aro uniformly integrable then also O(b(n, 1)) can Lo
replacod by o(b(n, 1)) in (4.1).

Proof of Theorem 5: Yor [t| ), tho result follows from Theorem 1.

From now on wo assumo that ¢> 1. Proof for ¢ < —1 i3 similar. Lot
n

X;=XJ(|X¢] <tnd)and S’ = ‘2 X;. Then
-]

|P(S, € to,)—P(S. < to,)] € ’ﬁl PIXi]| > tnd) € b(n. 0).

Neoxt wo use the blocking procedure described in (2.1) with X; replaced
by Xi; 0 < B < a <1 will be chosen later.

Let
k R 13
U= %t u./: o
=1 (=)

T, =,y and ¢, = ((14-2n72),

where A > 0 will bo chosen Iater. Clearly S, = U, 4+ U,+T,. Wo complots
tho pronf by showing

| O —0ir)| < n-b e o 14.2)

P(\T,| > tnto,)<bn,t) . (43)

and P(|U,| > tnta,)<bn, ) e (4.4)
|P(U, > t,0)—0(—1,)| <bn, )+n-2e1, v (4.5)

A3-10
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Proof of (4.2) is trivial. By Markov's inequality and by Lomma 1, the loft-
hand sido of (4.3), for any v » 2+4-c¢, is not more than

tn~tg,)0 B|T,|? & (p**4-p (t n)°=2¢) {70 n-vti=h
K (ko =04 k1B (n, 1)) mi0
(4.3) now follows if we chooso v = (¢-+2)/(1—a) and 0 < A < (1—a)¥/(c+2).
To prove (4.4) wo uso Markov’s inoquality snd Lomma 1 to got,
P(| Oa| > tnta,) < (¢ 72 0p)[(Rg)*/24-(kq)(nd £)o-2<] <L b(n, 1),
whoere wo choso v = (c+2)/(e—4) and 0 < A < (a—p)*/(c+2).

Finally, to prove (4.5), lot & = p=4¢; and &, = EI{|&| < #t, k), whoro
8(> 0) will bo chosen later. Another application of Lomma 1 gives

P(E5> o) (fmr)

< ,E, P(|E] > s kbe,) < b(n,2). . (4.6)
Next write
6n = (03PN, by = noit t, ko Y,
k
Jo=E(oxp (bx Bl g1 = E (oxp (b T Eo) ).
f=1
k
my = i E(E oxplbe &), 7 = L'"? my,
and

3
gt = k1 '21 [f7? B2 oxD (bx &ig))—mE].
Then after some routine steps ono gots

k ©
P( % tu> My, ) = 4e  oxp (=Diz) dHlz), ... (47)
=1 By
where

Ay = gr exp (—bik ), Br= (ben~'ot—m)kt Vo,

k
Dy = bukid, dGi(x) = 05" oxp (b22) dP ( Z &0 < z)
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Hy(z) = Qx{dkiz+-k m).
We have by Lomma 1,
EEL)K K, E|Ep|>€ K fore> 1

and
E|E|* < K4notu-oitg—<c g K

by choosing @ > (1—¢)/2 for 0 <c < 1. Also

| EEio)] € K k-1 for somo y > 0.

Further, following tho lines of proof of Lemma 6 of Ghosh and Babu (1977),
ono gets

x
k' T EE)—nlot| < Kn-' for somo y > 0. . (4.8)
=1

Using theso, one gets,

k
% log f; = § 24+0(n77), e (4.9)
=1
m =0, s k™1 p~i4OfkA-7), e (4.20)
and
o =n"to,40(n"7) forsomey > 0. e (4.11)

Then, By = O(n~*) and Dy =t,(140(n"")) for some y> 0. Also from
Lemma 2, we obtain

k k
|ar-,’3.ﬁ|<xk¢a I (et 2ggoxpanoit AR oo (412)

2
Asin (4.9), it follows, that tho product on the right sido sbove & & by choosing

2
1—a—28 < 0. Consoquently the left-hand sido of (4.12) < n-1e"™ for somo
Y>0. Honco A = (14+0(n"7)) oxp —} 5. Wo shall now show that

| H x—O®|} <€ n~7 for somo y > 0.
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Noto that for any real number w

x k .
50°E (oxp ((bu+ito) = &n))— I f7* E (oxp ((bart i) Eso))
g=1 g=1

k . L3 L3 .
<fge (|2 (ox0 (@uctior £ £0)) = 1 Eoxp (@t i1

+

k
g—T1 f,l ) <y e (413)
g=1

for some y > 0. Tho last step abovo follows from Lemmas 2 and A, as

E (exp ((b,+iw)’§ Elo)) < gx

Now arguing similarly as in Ghosh and Babu (1977), we obtain that
111 —®|| & =" for somo y > 0.

Finally, we write

A.B} oxp (— Dyx) dHi(x) = (=1,)| € Li+1,+1s,

whero

I =dx

Bf oxp (—Diz) d (Hyfz)—® ()) i <nexp —3 8,

Io=| Ax—exp —3 12| j."oxp (—Dgz) dd (x) & n~2oxp —} 12,
By
and

I=|exp =32 T oxp(—De) 0 (x)—0 (~1,)|
L3

(oxp (=3 45 Dt))o(—B.—D,)—w(—t,,),

& noxp(—34 %) for somo y > 0.

Tho proof of tho theorem is comploto.
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Proof of Remark 4.1 : Let {X,) bo a stationary sequenco. Let £ > 1
and Xy = X I(| X¢| € ta,nd), whero a,— 0, a, = nuix (n=1/12420, j M+a))
and A, = E(] X,| ¥ I(| X,] > n/2*2)). It is ensily seen that
aP(| X, > ta, at) = ofb(n, 1)
ond also
[ E(E1o)| = o(k=4e-1).
Tho rest of tho proof is similar to that of Theorem 5.
Theorem 6: Let {X,} be as in Theoren ). If z,— o0 asuch that
2—clogn—(c+1) log log n - —co0 as n— o, then
PS8, > o,z,)~0(—z,) e (4.14)
as n— .
Theorem 7: Let {X.} satisfly the hypothesis of Remark 4.1, Ifz,— o

such thot 2%—c log n—(c+1) log log n is bounded from above. Then (4.14)
kolds as n — co.

Theorem 6 follows from Theorem 5 and Theorem 7 follows from Remark
4.1, In particular Theorom 7 proves Theorem 1 of Ghosh and Babu (1977)
under weaker moment condition.

Appendix
Proof of Lemma 1: Tirst observe that
|E(Y)] = |E(X(— Y| € d'-E|Xy)* < Nd*-. e (1)
and
EQOH < EXD<ST+N 2N, (@
The lemma is proved by induction. Defino
c(u, v, k) = E, 2.! Yin pl\nd c(u, v) = sup c(u, v, h). e (8)
=1 A0
Then
u u-t u-§
o2 h= £ EYt42 T T EYunYig) . 14

Using a lemma of Ibragimov (sco Lemma 1, p. 170 of Billingsley, 1968)
withr = g = 2, from (1) and (2) wo obtain, for any i and j, that

1E(YiYeun)| € 2(&F (Y3 B (YT ) +4N2d*2
< 4NN d>2), . (8)
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So from (1.2), (2), (4) and (5), it follows that c(z, 2) € =, for all u < d%. To
prove tho lormma Ly induction, assumoe noxt that for 1  u < d? and for some
integer m > 2,

c{z, m) € D(m){um+-u R(m), )
and prove a similar inoquality for c(u,m+€), 0 <€ < 1. Fix an integer
B> 0. Dofino Zy— é‘: Yom Zus = Zowyt—Zuye ond S..,,=E‘l Yurnt.
Then,

B Zu+ Zuu|™* < EU(| Zul+ 1 Zust )™ Zul*+ | Zun|*))

<k (7)) BUZal™1 Zual! Zal*+ | Zuul ) -
3=V )

Using Lomma 1, p. 170 of Billingsloy, 1968, again we obtain that
|E(| Zu|™9**| Zu| I—E| Zu|™~*"E| Zuu|!|
< 2¢¢/ome) g(u, m+-€). . (8)
It follows now from (1.2), (7), (8) and Halder's inequality, that
E| Zut Zyy| ™+ < 214K 411m) ¢ (u, m+e)+ K cim+0/m (u, m).
Sinco u < d3, we have - O
(u R(m))m+9im = (u dm=042) (u d=8)"im & R(m+e)w’ - (10)

for some y = y(m+¢,8) €(0,1). Using Minkowski's inequality, (9) and (10)
wo obtain that

¢(2u, m+e€,h) = EI Zu+Zu,‘+Su,[—Sgu|f| m+s
1
< 2K 01m) ¢ (1, mop o)t K(um ot wrH(m €))7

+2¢ HUtm4o) (mp g)jmts, . {11
where
2N if vg¢
sup E|Y,|v< H(v) = .. (12)
A20 NR(v) if v>34.
Toking 2u = 2¢ < d? and ¢ = [27/*m] in (11) wo obtain that

e(20,mte) < 2 (14 Kb) ¢ (207, m4-£)+ E(24m+0 31087 H(mf-€)), ... (13)
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where [z] donotes tho largost integor & z and b= 2% Noto that

0<b < 1. Ropoating (13) 2 timos and observing that ﬁ (14+ Kb) < 0,
we obtain =t

o2, mte) < K (gc (1, me)4 2omenn ( s 2-(-mun)
4=0

+Him+e)2v (!.f-n 200-1)) < K(2* R(m-4€)4 20imsen),

The last stop follows from (12).

To completo the proof of Lomma 1, ono usos & binary docomposition of
u for any positivo integer z (1 € » < d?), and obtaina inoqualitios similar to
(2.22) ond (2.23) of Ghosh and Babu (1977). Tho dotails are omitted.
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