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Absiract

The problem of estimation of density-weighted average derjvative is of interest in econometric problems, especially in
1he context of estimation of goellicients in index models. Flere we propose a consistent estimatoer based on the orthogonal
seriss method, Buarlier work oo this problem dealt with kernel method of astimation,
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1. Imtroduction

In a series of papers, Stoker (1986, 1989), Powell et al. (1589) and Hardle and Stoker (1989) proposed the
prroblem of estimation of the density-weighted average derivative of 4 regression functico,

Let (X, ¥ 1 < i< » be iid. bivariate random wvectors distributed as (X, ¥ ). Suppose E(¥F|X )= g(X)
gxists and X is distobuwled with density §7 The density-weighted average derivative is defined as

. E[f’{X} g}]

assurming that g(-}) is differentiable.

Steker (1986) and Powell et al. {198%) explam the motivation behingd the estimation of density-weighted
average derivalive. For instance, weightcd average derivatives are of practical interest as they ae propor-
tional to coefficients in index models. If the model indicates that gi{x) = ¢ + fx, then

dy

L
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and d = BE[f1X )] In general. il gix} = Fix + fi<), then

dgy .

and & = E[#'(= + X) f{X)] 8

Kemmel method of estimation has been proposed and its properlies are investigated m Powell e al. (1989)
Hete we propose an alternate method lor estimation of ¢ by the method of orthogonal series. The method of
orthogonal senies for the estimation of density and the regression [unction has been extensively discussed in
Prakasa Ruo {1983). :

MNote that

5= E[fmdd—ﬂ -

= g1 <n —2|  fin

Ay 'IJ.
2w Py
e dx

-

df
dx gixidx

intepraling by parts,
We assume that the density f{x) and the regression functiom gix) satisfy the following conditions:

(&1 |iI_'1_1 glx) fizp=10

{A7} the dengity function f has un orthozonal series cxpansion
(i} fixd= ¥ aeufx),
fay
with respoct to an orthonormat basis {edx)}; the function f(x] and the clements of the husis {edx)]} arc
differentiable such that
gLl I
) E| ¥ @e{X)—f(X)| -0 asN—-

1=1

whenever (N — o and
i1iL} sn?p lexhi = 2o and Sl:rl]’.'!|t’if}f]| W,
Assumption (A1) implies that
! [r{xy ::—i,} = _2E [gm jﬂ
= _EL[Y;{E;{} 1)

since g(X} = E[ ¥|X]. Hereafter we write j"{x} for dffdy and in gencral prime deneotes differentiation,

4
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2. Cnonsistency of the estimator

Given a sample of independent and identically distributed chservations (X, ¥). 1 £ i< n a natural
estimalor of & is
oy —_ 2 '.'.'-._ dfi\']
dy= — ¥ .

o N .%‘1 dX | x-y 24}
from (1.1). Here fw is an estimator of { based on the sample (X}, ¥;), 1 = § = N. It is convenient to choose
furbased on (X, ¥ | << N, j # i and we will do the same in the scquel. An orthogonal series estimator
of fig

Ly
40N L

.ﬂl[\xl = Z drwex)
=1

where

i) -
e ;; e X;)

JEV

and g(Nt— o as N — oo to be chosen at a later stage. Then

i PN TR )
dy = "'T}" Y.[V Zfimrfiin]:|- i2.2)
™ os=y =1
Let X% denote the vector {X,..... Kz X e X ) Henoe,
o >Nl il
oy = W Z L YieWl X y)dpn
L A
2aiv N
- _EL > X Yol Xx ), {2.3)
1-1i=1
where
X, Y= ¥l 2.4
and
XN ) = din- (2.5)

MNaote that m{)&ﬁ-’] docs not depend on the observation X; by construction. Therefore,

qany ¥

ESd= — o & T EflX, 1) E(nod)}

N p—1 e=1
A

= —2% E[fdX, YIE[edX )]
I~

N
= — 242: g Bl Ye X011 (since EledX 0] = a)

t=1

i

)]
= - EEt ¥ arEE{XJ:| (2.6}
-1
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The sets Ay, Aqg, o0 Az are determined beforchand
once for all, and we store for each instant of time, the
address of the buffer from which a data packet is to be
sent and the link along which that packet is to be sent. Lat
[w. k] € Agp. Then [w =~ . x + w| € 4,,. Hence al time
r, the node {w + &) must send the packet originated from
the node », e, P{r) which s stored in location (r — w)
of its buffer. to the node {x¥ -~ u} To implement this. we

need to store the bufler address (n — w) and the link type
Alw + u, x — u) which is same as the link type A(w, x).
Thus the information regarding the link [w, x] in A, is
sufficient to effect transmission of data packets from all
the nodes in the network, 1T Ay = {[w, w], [x:, x].
[vi.v]. [21. 2]} we store the (th record consisting of four
Pﬁil'ﬁ (B 4, (hay B0 (hs, B (Be L) for any nonde
(v + nh as follows:

!
| in — wy) Afwy, wh 7 = k) Alx . x}

[ — %) Al yl Alzr, 1) |

) f L:F -

B ' b b f |

There will be | (n — 1)/4] such records. Fort =10,1, ...
T{n — 1347 . each node will fetch the ah record, and
trunsmit the packet in location b; along the link of type .

3. SINGLE NODE SCATTER

In scattering, a node has to send (n — 1) different packets
to each of the other nodes in the network. Since a node
can transmit at most four packets at a time, the minimum
time required for single node seatter is [{n — 1}/47 . Also,
no scattering algorithm can be completed in time less than
the diameter of the network. We have already shown
that the diameter of Gin: 1. 5) is less than or equal to
[(m = 1347 We will present now a time-optimal algo-
rithm for single node scatter which requires [{n — 114
units of time,

To describe our scattering algorithm, we assume that
the node {) s the sonrce node. The packets will be transmit-
ted from the nede 0, along a spanning tree ¥ rooted at
node (. T consists of four subtrees T, T . T, and T',
rooted at the nodes +1, — 1.+, and —s. respectively. Each
of the four subtrecs containg at most “{# — 1}/47 nodes.

With such a construction of the spanning tree, all the
nodes will receive their packets within time [{(n — 1}/4].
it the lollowing rule for transmission of packets is
obeyed [3].

Node 0 sends packets (o distinet nodes in the subtree
{using only the links in T'). giving priority to nodes farthest
away from node () {breaking ties arbitrarily).

We also ensure that each packel travels along the short-
st path to its destination by making T a shortest path tree.

3.1. Construction of the Spanning Tree

We find the sets 5,’s for the graph & {m: 1, 5) as before.
We maintain the property that if a node w of 2 generated
pair {x. n — u)isin ¥, ), theo the node (n — 1} will be in
Tyorifuisin T_,, then {n — u) will be in 7_,. We divide
the total set of {# — 1) nodes into two partitions of nearly
equal size: partition f, consisting of the pairs which will be

included in the trees T, and T . and partition 5, consisting

of the pairs which will be included in the trees T\, and 1 ,.
Before geing into the details of partitioning the nodes,

we make the following ohservations on the matrix M.

Cihservation 1. In row &, the pair i column 1 is of
the form (&, —&). So we put all the pairs in column | in
partition 1.

Ohservation 2. All the pairs of the form (4.5, —k.5} will
be put in the partition S,

Chservation 3. If a node w of a pair (i, n — &) in 5,
is adfacent to some node #' 0 8. then {m — ) is adjacent
to the pode (n — w')in 5, |

The method of grouping the nodes for partition ! and
partition S is almost identical for odd and even values of
. First, we describe the procedure for odd .

111 Foroddn

Since # is odd, there will be a total of {n — 132 pairs
in all the sets §p's. We collect the pairs for partition [ as
follows. We leave out the pairs of the form (k.s, —k.¢). We
take all the pairs in colomn 1. The maximum number of
such pairsis [{n — 1347, If the number of pairs in column
lis [frn — 1347 then we put all these palrs in partition
f and the rest in partition 5. Otherwise, from successive
columns we select pairs starting at the bottom of that col-
umn and move upwards until we get [(n — 1)/47] pairs
(sce Example 3). Later, we will show that it is indeed
possible to collect F{n — 1147 pairs in this way.

The pairs in partition { are connected in sech a way that
it one node of a pair is connected 1o 7., then the other
node of that pair is connected to .. Now we have the
following lemmas.

Lemma 1. Suppose (u, n — ) is a pair in partition ! in
sorie column c. Then the pair (v, n — u) can afways be
connected to the subtrees T,y and T 4.
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= (X enlX )+ end A NN — 2)a;
+ el XN — Na, +iIN — D E[eX J (X )]
+ [N — 2HN - Naa,
={f. (say}. {2.13)
Henee,
(N — 1P I, = E[W4X,, V) trelXs, D))
= EDAX . Vi)l Xy, Yohed X ) en(Xy) ]
+ ELiX, ¥l X o, Yo)en(X )]V — g
+ ETyi Xy, Vi)we( Xz Fae X )N — Ya,
+ B[N 1 1) ddX s, ¥a)]ON — 2} E [eidX e X ]
+ iV — DN — Bage, E[wX 1, Vil X, Y]
= E[¥,&(X ) Yaen(X e Xz en(X )]
+iN =20, E[ T, (X)) Fael(X ) eniX )]
+{N = 2Ja, E[YialX ) FrendXs)eiX )]

+i(N —ME[Y (X)) Y, e X 0] Efed X ) el X )]

(N = DIN - Nea, E[Y, a(X JE[ ¥ endd)] (2.14)
Lat
Bag = E[L Y1 e X1} el X )], 7o = ELYT (X Jen{X )], (2.15)
Cw = E{¥ e {X,)] (2.16)
and
e = E[eX 1 }enX11]. 1217)
Then

(¥ — 1P cov Nt YamdXPh yoiX,, ¥y ud X)) = buubin + (N — Dab e,
+ i — Nay by + 1Y — Doic.dn.

+ (N - ZHN — Jaaue tn — Rne ey [218)
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Case {iiy { =} Then
cov [y (X . Yind XQ v (X . Figa (X511
= E[n(Xy, Vi) dnd X1y ¥ X5 1w X5]
— EQiX 1, YA XYY E Dl X 1, ¥ihm( X0
= E[Y16)(X ) VyentX DXy i XY
— il U]y
= E[YiedX JenX D] E[nX T i XY — gineyc,,
= Vtm E [0 XN A4 1] — cticitio . (2.19)

Lat us now computs

(N — 1P E[p(E a5 9)] = L[{ v mm}{ 5 em{xkaﬂ

iz 2

N
= 3 2 ElaXjeniX,]]

i 2k-2

=N - DE[edX 1 )enlX )] + (N — UIN — 2 £ [eiX JenlX:)]

={N — Lld, — (¥ — 1N — 2jard.. (2200
Hence,
1] 113 d!m N2
cov [ X, ¥l X0 tralX 0, ¥l X571 = 31 ¥ -1 + N[ T ity (2.21}

Caleulations made above in the cases (i) and (i) lead to the formuola

- 4 AN i dm ‘i\. 2
var I-(SN] l\rl‘. Z Z [Tlm{ r Hon + Iaﬂﬂ }_ “.lf-‘rﬂmf-'m:l N

=1 m=1
(= bm;brm N-—2 !
(= T p o
N2
+ Wamhgmc;
g4 AN g e
n,'rz. Z L == [“ﬁ' ”2 If'Etuu"'f!;cn - h’{hr_ ]} {222}
! i=1 m=1 T
{J\\' = 2:{!’1‘ — 3]’
_LN L .I.jl TRy Oy
= g Cilm
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4 2 g{¥} AN - 2} ELEI L i

= o d e LH]
N D5 L el TR T g, L, T

4 wiwh 2 4N{N _ ” WY gl¥h
e E( I=Zl {];Cr) + —NE{N — ”2_ I=E,1 mgl bm!b!m

AN(N — 1j(N — 29 4 AN(NV — 1A — 2) 3 i
i Lo T ﬂmb i
NI[N 0 1}2 r=1 n!z=:1 o NI{N a2 :”2 =1 m=1 Tt

4NN — DN — 299
ETET ' Mdﬂ!
N3N — 107 :-Zj E, Cilmdy,

AR s (Vi RS

NN = 1) g 0 €1
— W :{ﬁ: :g: g € e (223)
MNotg that
s:up Wy = T, stup By < oo, sn:p a <, Slfp R ») (2,24
and
s}up I < 20 {2.25)

by assumption (A2)(iii}. Observe that the coefficient of (T 4,¢,)? in the expression for var{glq} is

4 4N-2)(N—3) 4iN—1)_ 4(6—4N)
NN T N TN o)

16 {1
o ol = .
N T (h)

Under the assumption (A3), it follows that

= 2N N
var(dy) =0 (q !:;2 Ly ;i }). (2.26)
Theorem. Under assumptions (Al} and (A2), if g(N)— co such that
2 (N}
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and E¥? < oo, then

G o B as N oo, {2.28)

Praof. The result follows Mrom the fact

var{jy}—rﬂ and E[E,,}—rc'i as y o+ oo,

3. Remarks

Let us now discuss Lhe limiting behaviour of
{8y — Etdw) } (3.1)
if any. Note that
: J.;:X =1 )]
i

T 1l YanOr) — G, YomdX)

e

|
—

2

2|

[:r s —E(}"f”

"ox

{'{v - E{S.n']}

X—-x;

i

iz

-a‘Ir-l
II

ZI [ -
I-F

||M.q

i
[ Z 'J!"J{X.'- }’JJTTJ{XR;'} -k [‘}I}F{Xh Yl:}m{l"h,”}]}}
Z

where
Za = W1l X, YIm (XD + - + (X Yoo X8
— E{[1 X5 Vo (X3) + o 4 gt X YRy (X))
MNote Lhat
1 Zpa 1 I N}

are fimitely mlerchanpeable for each &, Forthenmnore R 7,1 = {1
From the structure of { Zy, 1 <1< N, N = 1}, it should be possible to study the asymptotic behaviour of
the estimator &, Howcver, the Hmit theorems for exchangeable arrays presently available do not seem (o be

apphicable in this conteat. The problem remams oped.
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