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AN EFFICIENT APPROACH TO ESTIMATE FRACTAL
DIMENSION OF TEXTURAL IMAGES

NIRUPAM SARKAR and B. B. CHAUDHURIT
Electronics and Communication Sciences Unit, Indian Statistical Institute, Calcutta 700035, India

Abstract— Fractal dimension is an interesting parameter to characterize roughness in an image. It can be
used in texture segmentation, estimation of three-dimensional (3D) shape and other information. A new
method is proposed to estimate fractal dimension in a two-dimensional (2D) image which can readily be
extended to a 3D image as well. The method has been compared with other existing methods to show that

our method is both efficient and accurate.
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1. INTRODUCTION

Most of the objects surrounding us are very complex
and erratic in nature. A man-made environment can
be described by the ideal shape primitives, such as
cubes, cones or cylinders. There exist many objects in
nature that are so complex and erratic that they cannot
be described by classical geometry. We need a model to
describe the high degree of erratic behaviour of surface
complexity in some controlled way. The controlled
erraticism was first handled by Mandelbrot."”’ who
introduced the concept of fractals in this connection.

Many workers attempted to use fractals in different
ficlds of research. Pentland'?-® developed a three-
dimensional (3D) fractal model which has been used
in texture segmentation and classification, estimation
of 3D shape information and to distinguish between
perpetually smooth and perpetually textured surfaces
n the scene. Among other applications, Orford and
Whalley'*' used fractal dimension (FD) in sedimentology.
Kaye'™ applied this concept in particle morphology.
Also. Rigaut'® used FD for image segmentation.

In the area of texture analysis, Peleg et al.” derived
4 set of 48 features using the e-blanket method of
estimation of FD suggested by Mandelbrot.'”’ They
used these features as global characteristics to recognize
large patches of natural texture. Keller et al.®® used FD
as a seale insensitive ruggedness measure of picture.
They used a model based on fractional Brownian
motion (fBM) to recover two characteristics of sil-
houettes. Pickover and K horasani'® used box-counting
ﬂ?clhnd tofind FD to characterize speech wave graphs.
Gangepain and Roques-Carmes’® developed the
bov-counting method for measuring FD of image
Menaty surfaces. Keller e al.'''! made some modifi-
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cation to the method due to Voss''?’ and used FD as
one of the tools for image segmentation.

Clearly, there exists several approaches of determin-
ing FD. It is useful to compare the approaches and
suggest, if possible, a modified approach that is com-
putationally attractive and gives accurate results. This
paper is motivated to this end. The basics of FD are
described in Section 2, while different approaches of
determining FD are described in Section 3. In Section
4, the modified approach is proposed and it is compared
with the other approaches both computationally and
experimentally.

2. BASICS OF FRACTAL DIMENSION

A set is called a fractal set if its HausdorfI-Besicovitch
dimension is strictly greater than its topological di-
mension. Mandelbrot'" coined the term fractal from
the Latin word fractus, which means irregular segments.

Mandelbrot first described an approach to calculate
FD while estimating length of coastline. Consider
all points with distances to the coastline of no more
than ¢ These points form a strip of width 2z, and the
suggested length I(e) of the coastline is the area of the
strip divided by 2e. As & decreases I(¢) increases.
Mandelbrot studied that for many coastlines the
following formula holds good:

He)=Fe' P (1)

where F and D are constants for a specific coastline.
He called D the fractal dimension (FD) of the line. D
can be derived from least square linear fit of log-log
plot of I(z) and & 1f mis the slope of the fitted line then
the FD of curve (coastline) will be 1 — m. Note that m
is always negative.

The FD defined in this way supplics only global
information about the analysed images and is sufficient
only for an ideal, fully self-similar fractal object and
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such FD is called a rotal fractal dimension. The recent
results in the field of fractal model and the fractal
geometry point out that most of the natural objects
are not ideal but semi-fractal. Creutzberg and Ivanov!'¥
observed that often two linear regions appear in the
plot as two fractional elements. Quantitative measure
of first one is called textural fractal dimension and the
second one is called structural fractal dimension. Such
distinction is not necessary for our purpose since we
deal here with textural images, and their FD will be
predominently textural fracta) dimension. It is to be
noted that FD of fractals in 1D topological space, i..
curves and lines lie between 1.0 and 2.0. Similarly
image intensity surfaces or natural surfaces which are
in 2D topological space, have FD between 2.0 and 3.0.

3. SOME APPROACHES FOR ESTIMATING FD IN IMAGE

Peleg et al‘™ adopted Mandelbrot’s idea and ex-
tended it to surface area calculation. In this extension,
the image can be viewed as a hilly terrain surface whose
height from the normal ground is proportional to the
image gray value. Then all points at distance ¢ from
the surface on both sides create a blanket of thickness
2¢. The estimated surface area is the volume of the
blanket divided by 2¢. For different ¢, blanket area can
beiteratively estimated as follows. The covering blanket
is defined by its upper surface u, and the lower surface
b,. Initially, given the gray level function g(i, j ), uy(i, j ) =
boli,j)=gl,J). Fore=1,2,3,..., the blanket surfaces
are defined as follows:

ue(i*j)zmax {uﬂ‘l(isj)+]ﬁ us*l("’fn)}

max
d(i.jom.n)<1

h,'(i,j)zmin{b,:,l(l’,j)—l, bﬂ,‘("’[,)‘[)}

min
dii.jomm)<t
where d(i, j, m, n) is the distance between pixels (i, j } and
(m,n).

Volume of the blanket is given by

o= 3 (udi,f) = bij))
i

while the surface area is measured as

PTES 50

The area of fractal surface behaves according to the
expression

Ale) = Fe2 P )

Fractal dimension can be derived from least square
lincar fit of log log plot of A(s) and ¢. with the help of
equation (2).

Pentland'® suggested a method of estimating FD by
using Fourier power spectrum of image intensity surf;xoé.
1t can be shown that Fourier power spectrum P(f) of
fractal Brownian function{ f)is proportionaltof 2% 1,
where =2 —D.and D is the FD. From least square
fit of log log of P(f)and f. one can estimate FD of
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an image intensity surface, provided image intensity
surface can be modelled as a fractal Brownian function,

Mandelbrot stated that one criterion of a surface
being fractal is its self-similarity. Self-similarity can be
explained as follows. Consider a bounded set 4 iy
Euclidean n-space. The set is said to be self-similar
when A is the unton of N, distinct (non-overlapping)
copies of itself each of which is similar to A scaled down
by a ratio r. Fractal dimension D of 4 can be derived
from‘?

_ log(N,}
log(1/r)

However, natural scenes practically do not exhibit
deterministic self-similarity. Instead, they exhibit some
statistical self-similarity. Thus, if a scene is scaled
down by a ratio r in all n dimensions, then it becomes
statistically identical to the original one, so that
equation (3) is satisfied.

It is difficult to compute D using (3) directly. An
approximate method used by Gangepain and Roques-
Carmes,! called the reticular cell counting approach
is as follows. Consider the 3D space where two
coordinates {x, y) represent 2D position and the third
(z) coordinate represents the image intensity. For 4
given scale L, partition the 3D space into boxes of sides
L x L x L', where L can be multiple of sidelength of 1
pixel in (x, y) and L’ can be multiple of gray fevel unit
in the z-direction. If G is total gray levels and M x M
is the size of image then L' = { L x G/M]. Letfor L=1
the box be called space-intensity cell or spicel. Then for
L =3, the box contains 3 x 3 x 3 = 27 spicels. Suppose
we can cover the 3D space by a 3D box of size Ly,
Then L =r x L,,,. Changing parameter from r to L
we have, from equation (3)

t=NsP or D

3

NpocL™P. (4

Count the number N, of boxes in the space Ihﬂl
contain at least one sample of gray level intensit!
surface. Several values of L are chosen and least
square linear fit of log N, versus log L gives the valve
of —D. But when the actual FD of an image is ver?
high, points on image intensity surface become widely
spaced in the z-direction, effectively lowering the
estimated FD. From Fig. 3 itis scen that FD estimated
by this method saturates at about 2.5. However. thn
method is faster than Pentland’s’®’ method since 1€
Fourier transform computation is included.

Keller et al. ! proposed a modification of a method
due 10 Voss.'? Let P(m.L) be the probability thi!
there are m intensity points within a box of §17¢ I
centred about an arbitrary point of image intensi?
surface. For any value of L we have

N
Z Pim. L)=
it
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where N is the number of possible points in the box of
size L. In fact, N equals the number of spicels the box
contains. Suppose that the image is of size M x M. If
one overlays the image intensity surface with boxes of
side L, then the number of boxes needed to cover the

whole image is
N

Ny=M?Y (1/m)P(m,L).
i=1

Since M? is constant for an image, let it be dropped

from the expression, i.e.

N
Npo=Y (1/m)P(m,L). (5)

i=1
Using equations (4) and (5) we can estimate D. This
method has the same limitation as in the method of
Gangepain and Roques-Carmes. To avoid this Keller
et al.'" devised a new version of probability estimation.
In this refinement, the fractal surface between the
centre point of a box and its neighbours are approxi-
mated by linear interpolation. The newly interpolated
surface is intersected with the box and number of
points m in the box of side L is recorded. N is
calculated using equation (5). This method takes a little
more time but gives satisfactory results except for the
image intensity surfaces whose FD are very high.
Figure 3 shows that FD estimated by this method
saturates at 2.75.

4. PROPOSED METHOD, RESULTS AND
COMPUTER COMPLEXITY

We have a basic equation of FD given by
1
p_log®,)
log(1/r)
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In our proposed method, N, is counted in a different
manner than those in Gangepain and Roques-
Carmes"® and Keller er al.!? Consider that the
image of size M x M pixels has been scaled down to a
size s x s where M/2> s> 1 and s is an integer. Then
we have an estimate of r = s/M. Now, as in previous
techniques, consider the image as a 3D space with (x, y)
denoting 2D position and the third coordinate (z)
denoting gray level. The (x, y) space is partitioned into
grids of size 5 x 5. On each grid there is a column of
boxes ofsize s x s x 5'. If the total number of gray levels
is G then | G/s'] = [ M/s]. See for example Fig. 1, where
s=5=3. Assign numbers 1,2,... to the boxes as
shown. Let the minimum and maximum gray level of
the image in (i, j)th grid fall in box number k and I,
respectively. Then n,(i,j})=!—k + 1 is the contribu-
tion of N, in (i,j)th grid. For example, in Fig. 1,
n(i,j)=3—1+1 Taking contributions from all
grids, we have

£
4

N, =Y n,j) (6)
L

where N, is counted for different values of r (ie.

different values of s). Then using (3) we can estimate D,

the fractal dimension, from the least square linear fit

of log(N,) against log (1/r).

The reason for counting N, in this manner is that it
gives a better approximation to the boxes intersecting
the image intensity surface, which is quantized in space
and gray value. This is particularly so when there is
sharp gray level variation in neighbouring pixels in
the image. Box counting in the other methods!®:!V
does not cover the image surface so well and hence
cannot capture the fractal dimension for rough textured
surface.

W70 506 vara
// //Image Intensity Surfoce

/

Imoge Plane

Fig. 1. Determination of n, by proposed method.
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Fig. 2. Plot of log N, vs log(1/r) of texture image (D33 in
Brodatz!!4),

A typical plot of log (N,) vs log (1/r) of the image D33
(Brodatz!'*) is shown in Fig. 2. Let y = mx + ¢ be the
fitted straight line, where y denotes log(N,) and x
denotes log(1/r). Then error of fit E can be expressed
as the rm.s. distance of the points from the fitted line

. (”}Xi +c :)’i)2>
\/<le (1 fmz) 4

n

E= Yl
The error provides a measure of fit so that the lower
the value of E, the better is the fit.

For our experiment we took 12 images from
Brodatz!'* and 36 synthetic textured images. The
synthetic images are actually noise added to an absol-
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utely smooth image surface at gray level 128, Zer,.
mean Gaussian noise with different standard deviatjon
o has been added to this smooth image surface so (hy
the resulting gray levels lie in the range 0-255. For y))
of these synthetic images the size is equal to 128 x 2%,

We choose five algorithms including ours for com-
parative study. The other four algorithms are due 1o
Pentland,” Peleg et al.'” Gangepain and Roques-
Carmes"® and Keller et al."V At first, the algorithms
are tested on the synthetic images. It is expected that
the fractal dimension will increase if the ¢ of additive
noise increases and beginning at 2.0 it will asympto-
tically go towards a value of 3.0. The results are plotted
in Fig. 3. The methods due to Pentland, Peleg ¢f ol
and ours give a satisfactory result, i.e. (2) FD lics in the
full dynamic range of 2.0-3.0. FD of a very rough
image approximates 3.0. (b) Increment in noise level,
te. o and hence roughness of image monotonically
reflects on the calculated FD.

Figure 3 also shows that methods due to Gangepain
and Roques-Carmes and Keller et al. give a satisfactor,
result up to a certain level of roughness of the image
intensity surface. It is seen that after a certain value of
a, the slope of the curve nearly goes to zero so that the
results do not truly indicate the roughness. These
methods do not cover the full dynamic range of FD.
In the method due to Keller et al. the range is 2.0 2.75,
while in Gangepain and Roques-Carmes’ method the
range is 2.0-2.5.

Next we compare the computational complexity of
different methods. Our method is readily comparable
with methods due to Gangepain and Roques-Carmes""
as well as Keller et al "'V because in all these cases the
computations are done taking boxes of different sizes.
Relation between r in our method and L in the
methods due to Gangepain and Roques-Carmes as

3——=8 Our Method

2.30
0—9 Gang
2.29 *——¢ Pent
+——+ Pelg

2.12
——®.Kell
16 32 48

Noise (Sigma) Leuel

+

+ "
t d

128

t t + + + +

64 88 96 112

Fig. 3. Fractal dimensions of synthetic images by different methods.
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Table 1. Comparison of complexity of three methods

Ours Gang Kell
Comparison 2M? 1/r* M4
Addition 4/r? Mjr+4/r  2M?+ M2L2?
Subtraction 2/r? M2
Multiplication 3/r? 2/r?
Division 3 M? M3+ M2L2

well as Keller ez al. is given by L=s=r x M, where
M x M is the size of the image. The number of
computations required in terms of M and r for each
method is shown in Table 1. Computational superiority
of our method is readily observed from this table.
The idea of finding FD using Peleg et al’s'” method
is a little different. Here in each iteration, the upper and
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lower blanket are computed. To calculate each blanket,
one needs 10M? comparisons, 6M? additions, 6M 2
subtractions, one muitiplication and one division.
initially, one needs 4M* subtractions to calculate the
zeroth blanket, before the start of the iteration.

Computational complexity of Pentland’s® method
is very high. It needs Fourier transform to find Fourier
power spectra. To calculate FFT of an M x M image,
one needs 2M x log, M operations, where each of such
operations consists of M + M log, M additions, M +
Mlog, M subtractions, 4M multiplications, three
divisions, one sine and one cosine operation. As other
overheads one needs 4M ? comparisonsand M2 square
roots.

The computation required for regression is not
considered in any of the methods because regression

Table 2. Comparison of number of computations

Ours Gang Kell Pelg Pent

Comparison 464,142 417,040 2,687,181 2,457,600 45,056
Addition 37,524 445,183 418,935 1,474,560 933,376
Subtraction 18,762 0 144,060 1,540,096 636,928
Multiplication 28,143 18,762 0 15 825,856
Division 28,143 232,071 261,630 15 101,888
Square root 0 0 0 0 16,384

0 0 3584

Sine/cosine 0 0

Fig 4. Natural textures (Brodatz''*).
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Table 3. Fractal dimension of natural textures using different methods (image numbers correspond to Brodatz’s book)

Texture Ours Pent Pelg Gang Kell
images FD E FD E FD E FD E FD E
D03 2.60 0.032 2.54 0.004 2.69 0.011 2.40 0.074 2.63 0.036
D04 266 0026 255 0012 272 0008 245 0072 268 (o3
D035 245 0.032 238 0.003 2.52 0.012 2.38 0.057 2.57 0.025
D09 2.59 0.028 2.49 0.003 2.65 0.009 2.43 0.066 2.65 0.026
D24 245 0.022 236 0.002 2.39 0.007 2.39 0.048 2.57 0.014
D28 2.55 0.033 248 0.007 261 0.012 241 0.066 2.62 0.03]
D33 223 0.007 221 0.002 2.34 0.003 2.26 0.024 236 0.008
D54 2.39 0.023 231 0.011 2.53 0.008 2.35 0.044 2.51 0.015
D35 248 0.031 237 0.006 2.60 0.010 2.39 0.057 2.59 0.023
D68 252 0.024 2.44 0.008 2.63 0.007 2.40 0.054 2.60 0.019
Dg4 2.60 0.029 247 0.001 2.68 0.009 243 0.067 2,65 0.028
D92 2.50 0.023 238 0.007 2.59 0.007 241 0.052 2.59 0.018

Pentland;®’ Pelg, method due to Peleg et al.”!

is common to all. A comparative study on the actual
number of operations required for real texture image
(D03 of Brodatz'’®) is shown in Table 2, where 15
iterations are taken in methods other than Pentland’s.
Note that iterations are not necessary in Pentland’s
method. Again one can see that our method is com-
putationally cheaper than other methods.

Next, we have taken a set of 12 texture images from
Brodatz’s'"* album to compare the FD obtained by
different methods. The images are shown in Fig. 4,
while results are presented in Table 3. It can be seen
that the methods due to Pentland,? Peleg et al.'” and
ours give identical results. Also it may be noted that
the FD due to our method is intermediate between that
due to Pentland and Peleg et al. for all texture images.
In Fig. 3 also, FD due to our method is intermediate
between that due to Pentland and Peleg er al. in the
range 2.23 2.58 which is roughly the range of FD for
these texture images. Finally, the comparative study of
crror of fit shows that the error in our method is less
than that due to Gangepain and Roques-Carmes''® as
well as Keller et al."® but somewhat more than that
due to Pentland and Peleg er al. However. since the
results are consistent throughout, the error has negli-
gible effect on the computed FD. which has been
checked on 20 other texture images.

S. CONCLUSION

A simple method of finding FD of 2D image has
heen proposed. As compared to other known methods,
it 1s computationally attractive and yet consistently
gives satisfactory results on synthetic and practical
data. The method can be readily extended to compute
FD of 3D images.

6. SUMMARY

Fractal dimension is an important measure of
rovghness and self-similarity in pictures. Tt has been
used m several Hage processig and pattern recognt-

Gang, method due to Gangepain and Roques-Carmes; !

Kell, method due to Keller et al;"'" Pent, method due 1o

tion applications. Several authors have proposed dif-
ferent techniques of estimating fractal dimension, that
are summarized in this paper. Some of the methods,
e.g. those due to Pentland'® and Peleg et al'” are
accurate and cover the full dynamic range of fractal
dimensions, but are computationally expensive.
Others, e.g. those due to Gangepain and Roques-
Carmes'® as well as Keller et al.'? are computa-
tionally attractive but do not cover the full dynamic
range. More specifically, these methods are insensitive
and inaccurate for a rough texture. The purpose of this
paper is to propose a method that is computationally
more attractive than these methods as well as accurate
and covers the full dynamic range of fractal dimension.

The proposed method is based on the equation of
fractal dimension D given by

_ log(N,)
" log(1/r)

If an image of size M x M pixels is scaled down to a
size s x s where M/2 > s> 1and sis an integer then we
haver =s/M.Lets' =[G x r|. The image is considered
as a 3D space with (x, y) denoting the image plane and
(z) denoting the gray level. The (x, y) space is partitioned
into grids of size s x s on each of which there is a
column of boxes of size s x s x s'. If the minimum and
maximum gray level of the image in (i, j )th grid fall
box number k and |, respectively, then n,(i, j) = —k +1
is the contribution of N, in (i, j )th grid. Hence we have

N, = Yn i),
i

D

For different values of r the quantity N, is computed
and Dis obtained from the plot log (N,) versus log(1 7
It can be shown that the proposed method is mmP|UI
tationally cheaper than four other methods® ™'’
described here. Also. the accuracy of the prOPO»‘"d
method has been tested and compared with others on
36 synthetic and 12 real texture images. The syntheti€
images are noise added to a smooth imagc surface s
that with increased level of noise the roughness of
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mage ilso increases. The results show that the proposed
method gives consistent results and cover the ful
dyvnamic range of fractal dimension.

Acknowledgement

The authors wish 1o thank Prof. D,

Dutta Mujumder for his interest in the work and B M.
Mehtre for supplying texture images.

B

N

o

o

- A P. Pentland, Shading into texture, Art. [ntell. 29

REFERENCES

B. B. Mandelbrot, Fractal Geometry of Nature. Freeman,
San Francisco (1982).

- A.P. Pentland, Fractal based description of natural

scenes, [EEE Trans. Pattern Analysis Mach. Intell.
PAMI-6 (6). 661674 (1984).

147 170 (1986).

J.D. Orford and W.B. Whalley, The use of fractal
dimension to characterize irregular-shaped particle, Sedi-
mentology 30, 655- 668 (1983).

B.H. Kaye, Fractal dimension and signature wave form
characterization of fine particle shape, Am. Laboratory
SS 63 (1986),

1 P. Rigaut, Automated image segmentation by mathe-
matical morphology and fractal geometry, J, Microscopy
1S0(1). 21 30 (1988%).

About the Author
Institute of Technology., Kharagpur, in 1985

%

10.

[E3

al dimension of textural mages

1041

S. Peleg, J. Naor. R, Hartley and D. Avnir, Muluple
resolution texture analysis and classification, [EEE
Trans. Pattern Analysis Mach. Intell. PAMi-6 14). 51%
523,

-} Keller, R. Crownover and R. Chen, Characteristics of

natural scenes related to the fracta) dimension, IEEE
Trans. Pattern Analysis Mach Intell, PAMI-9 (5}, 621
627 {1987).

- C. Pickover and A. Khorasani, Fractal characterisation

of speech waveform graphs. Comput. Graphics 10 (1),
5161 (1986).

I 1. Gangepain and C. Rogues-Carmes, Fractal approach
to two dimensional and three dimensional surface rough-
ness, Wear 109, 119 126 (1986).

- J.Keller, R. Crownover and S, Chen, Texture description

and segmentation through fractal geometry, Compur.
Vision Graphics Image Process. 45, 150 160 (1989).

- R.Voss, Random fractals: characterization and meisure-

ment, Scaling Phenomena in Disordered Systems, R. Pynn
and A. Skjeltorp, eds. Plenum. New York (1986).

- R. Creutzberg and E. Ivanov, Computing fractal di-

mension of image segments, Proc. TH Int. Conf on
Computer Analysis and of Images and Patterns C 41 Pyy,
pp. 110 116 (1989).

P. Brodats, Texture: A Photographic Album for Artists
and Designers. Dover, New York (1966).

NIRUPAM SARKAR received the B Tech. (Hons) in mechanical engineering from Indian
and M.Tech. in computer science from Indian Statistical

Institute, Caleutta, in 1989, Presently he is a Ph.D. candidate in Indian Statistical Institute. His rescarch
mterests include pattern recognition, image processing and artificial intelligence.

About the Author

from Caleutta University, India, in 1969, 1972, and 1974, respectiv

Prorssor B. B. CuAupHur received the B.Sc. {Hons), B Tech.. and M.Tech. degrees

cly, and the Ph.D. degree from Indian

Institute of Technology, Kanpur, in 1980, He joined the Indian Statistical Institute in 1978 where he is
currently a Professor and Professor-in-charge of Physical and Earth Science Division. His initial research
work wias on dielectric and optical wave guides. Later on. he became more interested in pattern
recognition, image processing, computer graphics and natural language processing. He has published 80
rescarch papers in international journals and has written a book entiticd Two Tone Image Processing and
Recognition. He was awarded Sir J. C. Bose Memorial Award for best engineering science oriented paper
published in JIETE in 1986 and M. N. Saha Mcmorial Award for best application oriented paper published
in 1989, He acts as a referee to many international Journals. He was the winner of Leverhulme Overseas
Visiting Fellowship in 1981 82 to work in Queens University. He worked as a visiting faculty _mcmhcr at
GSF. Munich and a Guest Professor at the University of Hannover during 1986 88. He again visited several
German, ltalian and Swiss institutions during ¥990-91. In 19%6 he started a successful ongoing Indo-
German scientific collaboration in Bio-medical Image Processing and related topics. He is a senior member
of IEEE and fellow -member of many academic professional bodies.



	00000001.jpg
	00000002.jpg
	00000003.jpg
	00000004.jpg
	00000005.jpg
	00000006.jpg
	00000007.jpg

