|EEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRy %
e

Efficient Implementation of Cryptographically
Useful “Large” Boolean Functions

Palash Sarkar and Subhamoy Maitra

Abstract—We present low cost hardware architecture for implementing state-of-the-art theoretical constructions of secure Boolean
functions suitable for stream ciphers. Using a pipelined architecture, we show that it is possible to |mp|fament systems which use
Boolean functions of a relatively large number of variables. Our architecture is reconfigurable and provide a universal circuit for a

certain class of secure Boolean functions.

Index Terms—Boolean function, cryptography, pipelined architecture, reconfigurable hardware, stream cipher.

1 INTRODUCTION

TREAM cipher cryptography is a classical method of
Ssecure information exchange. In this method, the
message is considered to be a bit stream. Encryption is
performed by bitwise XORing the message bit stream with a
pseudorandom bit stream. This gives the cipher bit stream.
Decryption is performed by bitwise XORing the original
pseudorandom bit stream to the cipher bit stream.

Let (AL),.q, (K))ing and (Ci),.,, respectively, be the
message, pseudorandom, and cipher bit streams. The
enciphering operation is the following;:

Ci=M & K, 12> 0.

The bit stream C; is transmitted. At the receiving end,
deciphering is done in the following manner:

Cib K =M OK oK, =M, i>0.

One of the popular models of hardware-based stream
ciphers is shown in Fig. 1. In this model, the outputs of
several independent Linear Feedback Shift Registers
(LFSRs) are combined using a Boolean function F to
produce the pseudorandom bit stream. At each clock cycle,
each of the n LFSRs produce a bit of output. These n-bits are
combined by the Boolean function F to produce a
pseudorandom bit. Thus, one pseudorandom bit is pro-
duced at each clock cycle and, hence, the rate of encryption
is also one bit per clock cycle. The secret key of the system
consists of the initial conditions of all the LFSRs.

The model in Fig. 1 has been studied extensively in the
literature (see, for example, [12], [13], [8], [1], [11], [5], [10],
(2], [3], [4], [14]). The combining Boolean functions must
possess certain cryptographic properties for the pseudoran-
dom bit stream to be secure. Attacks on the model [6], [4],
[13], [2], [3] have shown the necessity for these properties.
On the other hand, active research has been conducted in

designing secure Boolean functions (see, for example, [1]
[11], [5], [10], [14]). Currently, it is well accepted in th
cryptography community that using Boolean functions wit
suitable parameters will ensure security against all the
known attacks.

The hardware area used in implementing the model i
Fig. 1 has two components:

1. the area used to implement all the LFSRs,

2. the area used to implement the Boolean function.
The area used to implement all the LFSRs is linear in thﬁ

number of LFSRs, while the area required to implement f¢
Boolean function can be exponential in the number d
LFSRs. Let us compute some parameters to get a feel for i
problem. Suppose a 24-variable combining function is use
where the lengths of the LFSRs are 64 bits on average. Theﬁ,
the number of flip-flops required to implement the LFSRs#

|

48 AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL “LARGE® BOCLEAN FUNGTIONS

-
LESR, ———

-1 Siream cipher system.

et clock cvele. Thus, our algorithm cannot be directly
slated into a hardware circuit. Instead, we use a regular
wined architecture to map the algorithm to hardware. The
dine takes / cveles to be filled up and, after that, it can
aflean 7-bit input at cach clock cycle. For small ¢, there is
dective degradation in the throughput of the system.
There are ¢ similar stages to the pipeline providing a
dm design. The combinational circuit of each stage is
emented by a verv small, constant size circuit. The size of
apipeline is a small fraction of the size of the circuit
gired toimplement /1. For the 24-variable Boolean function
aple given in Section 4, /7 (a 10-variable Boolean function)
implemented using a look-up table of size 2,048 (see
ak 1in Section 3.2) and the rest of the pipeline requires
K48 flip flops, 99 gates, and 30 2 x 1 MUXes.

drr design produces a reconfigurable architecture. This
ans that the same circuit can be used to implement a
xdass of Boolean functions. In Section 5, we show that
architecture provides a universal circuit for a certain
55 of secure functions.

Te organization of the paper is the following: In
Tion 2, we present preliminaries on the cryptographic
mities of Boolean functions used in Fig. 1 and the
Fisive construction of Boolean functions from [5]. The
aithm and hardware design for the Boolean function are
abed in Section 3. A specific example of a 24-variable

only 1,536, while a direct implementation of the Bool#han function is presented in Section 4. Reconfigurability

function can require area proportional to 2*. Thus]
straightforward implementation of a 24-variable system ¥
prohibitively costly.

Many mathematical constructions of secure Book?
functions are known. For the mathematical theory fO‘.
useful, it is important to translate the theoretical const*
tions into actual hardware circuits. There is no geﬂem
purpose method for doing this. Here, we provide ale
efficient, low cost method for implementing the recurst
construction presented in [5]. Using our method, Boolf?,a‘
functions of a large number of variables can be ¢
implemented in hardware. .

The functions in [5] are built recursively. A functio i
n variables is built up from a function h of k(< n) varid’ i
We first describe an algorithm which uses a subroutlnef,‘,
the function h and computes the output of £ on an]} i
input. The time required to compute the output of e
linear in t(=n — &), assuming that the output of Ca} i
computed in constant time. The space required b
algorithm is O(1) plus the space required to implemen
subroutine for A. Sh

A direct hardware implementation of the a]gm] s
requires ¢ clock cycles to produce one pseudorandmiL i
This is clearly unacceptable. We require a pseudor

y

on £ 4

e

4

s of the circuit are described in Section 5. Finally,
fm 6 concludes the paper with discussion for possible
e work.

PROPERTIES AND CONSTRUCTION OF BOOLEAN
| FncTions

Pesent a brief overview of the various cryptographic
tties that a Boolean function must satisfy in order to
sed for stream cipher systems. Since our purpose in t.his
s implementation, we briefly mention the properties.

] oe details, see [1], [11], [5], [14].

iition 1.

' An n-variable function is said to be balapced if the
output of f is equal to 1 for exactly gpe=l .zr.lputs.‘

VA Boolean function is said to be m-resilient if the
probability of the output being one is half, even if at
most m of the inputs are fixed to constant value;. '

* The algebraic normal form of a Boolean fynctzo@ is
its canonical sum of products representation using
XOR and AND gates which is a multivariate
Polynomial over G'F(2). The degree of the polynomial
is called the algebraic degree or simply degree of the

411

function. Functions of degree at most one are called
affine functions.

e Given a Boolean function, its nonlinearity is its
Hamming distance to the set of affine function, i.e., its
Hamming distance to its best affine approximation.

There are several known methods [1], [11], [5], [10], [14]
for the design of Boolean functions possessing a secure
combination of the above mentioned properties, namely,
number of variables, order of resiliency, algebraic degree,
and. nonlinearity. Further, the results of [10] identify the
class of Boolean functions which achieve the best possible
tradeoff among these properties. Many of these best
functions can be constructed by the methods of [1], [11]
(51 191, [14].

There are two approaches to the construction—direct
and recursive. Here, we show how to implement functions
obtained by the recursive construction method presented in
[5]. The advantage of the method of [5] is that it is simpler
than the other methods [11], [9], [14]. We next provide a
description of the construction method of [5].

Suppose an n-variable function F(X,,...,X1) is to be
used in the stream cipher system. Following the method of
[5], this F is represented by a sequence (h, S, ..., S;), where
h is the initial function of k variables X;,..., X; and S;s are
the recursive operators used to build up the function F.
Each 8; € {Q, R} x {r,¢c,rc}, where the action of S, is
described as follows: Let Fy = h and F, be the function
produced after application of S;. Suppose S; = (U;,7;),
where V; € {@, R} and 7, € {r, ¢, rc}. ‘

’

[] If \P7 = Q, then

Fi(Xivie, Xivi-1, - -3 X1, Xy ., X1)

= (1@ Xon)Fict (X1, oo, Xpr, Xy - -
S Xiu(a® Fia(b® Xivg15--, 0@ Xpya,
b®d Xp...,b® X1)).

aXl)

e If U, = R, then,

Fi(Xk, Xivk1s- -5 Xpy1, Xpy oo, Xp) =

(1 X)) Fior (Xigp, Xivp2 oo, X1, Xy 1, X))
B Xith1(aBF (0D Xirh, 0D X ...,

b® Xy, 0D Xy, ..., bD X1)).

The value of 7; determines the values of ¢ and b in the
following manner:

e Ifri=rthena=0,b=1

e Ifr,=c thena=15b=0.

o Ifr,=rc thena=5b=1.

Tt is important to note that, at each step, either 7, € {r,c}
or 1; € {rc,c} (see [5]). The actual set of possible values for
1. is determined recursively as follows: If the order of
résiliency of h is even, then 7 € {r,c}, else 7 € {r¢,c}. In
general, if the order of resiliency of F,_; is even, then
7, € {r,c}, else 7 € {c,rc}.

Note that n=k+t and F=F,. If h has order of
resiliency 1, then F has order of resiliency m =m; +¢.

412

‘he algebraic degree of F and h are the same and the
ionlinearity of F is 2’ times the nonlinearity of h (see [5]).

The construction method produces a class of functions
nd not just a single one. There are two things to be noted.

e The choice of the function h is not unique. The
values of the parameters—number of variables,
resiliency, algebraic degree, and nonlinearity—are
specified. One can choose any h which satisfies these
values.

e Tor a fixed h, the construction produces 2% = 4*
possible functions F. At each stage, there are two
possible choices for each of ¥ and 7.

ixample 1. We provide an example to illustrate the
construction method described above. Suppose we want
to construct an 8-variable, 4-resilient, degree 3, and
nonlinearity 96 function F. Any function with these
values of the parameters achieves an optimal tradeoff
among the mentioned parameters [10].

We start the recursive construction using a 5-variable,
l-resilient, degree 3, and nonlinearity 12 function A.
These values also achieve an optimal tradeoff among the
concerned parameters [10].

We provide a choice of h from [9].

1) = (25 @ 1)(z4 D 1) (21 B 22) B (25 B 1)y
(LI?] @ 17;;) D 1'5(14 S5 1)(12 <3 1‘5) [S%) 11351134(%1 B xr D {E3)

h(zxs, ..

Given h, there are 43 = 64 possible functions ' which
can be constructed from h. Two examples are:

l. F represented by (h, (Q,rc), (R,7),(Q,c)).

2. F represented by (h, (R, ¢), (Q,7),(R,rc)).
Next, we provide a detailed description of the function I/
represented by (h, (Q,rc), (R,7), (Q,¢)).

E)(LE;;,...,:L‘l) = h(.’l?5,...,.1?1)
F](.Tr)....,m]) = (1@$6)E)([L‘57...7$1)

©re(1 D (L xs,..., 1D x)
FQ((I’7 fL‘]) = (1 EBZE())F] ($7,IL’5, asimsze ,131) ®

Iﬁ(l@Fl(l@%7,1@1‘5,...,1@1‘1)
F;;(Ig, N ,iL’l) = (1 @I‘g)FQ(I7, 2 ,.731)

@xS(l @FQ(JZW- e azl))

= .TS@FQ(I-/,...,:El).

The function Fj is the desired function F. Note that,
while obtaining F; from F3, an algebraic simplification is
possible. No such simplification is, in general, possible in
the first two steps. In general, the algebraic normal form
of the function will be quite complicated [5].

. In this paper, we will solely be concerned with the
implementation of the function F as represented by the

sequence (h.Sy, ..., Si). For cryptographic properties we
refer the reader to [5], [10].

3 BOOLEAN FUNCTION IMPLEMENTATION

The (?rucial problem is to design circuits for the Boolean
functions described in Section 2. The requirement on any
such circuit is two-fold.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2005

. There is no need to carry the variables X;_,,..., X;
through the algorithm. If ¥| = @, then let Y = X
else ¥ =X Set w=~(Y, X, 1,...,X;) and
n=h{12Y.10X;1.....1® X;). Then, we will
ultimately have to output one of

e The size of the circuit implementing F myg ot
be much larger than the size of the ciregit
implementing h.

e The circuit must be able to compute a bit of outpyt
per clock cycle. !

Thus, we have to compute the output of F representeq by
(h,S1,...,S:) on an n-bit input X,,, ..., X;. We first obtain;
recursive algorithm based on the recursive description iy
Section 2. Then, we eliminate the recursion to obtain y
iterative algorithm. This iterative algorithm requires ¢ steps |
to compute the output. Thus, the algorithm cannot }e
directly implemented. We bypass the problem by mapping
the algorithm into a pipelined architecture. The pipeline
takes ¢ clock cycles to fill itself up and, after that, produces;
bit of output at each clock cycle. The total delay fy
obtaining all the pseudorandom bits is ¢ clock cycles instea|
of a delay of ¢ clock cycles for each key bit. Thus, tre

pipeline ensures that there is no effective degradation inthe Ba?ed on these' ()bservatlpns, we next present Fhe
performance of the system. dorithm compute TD(.), which converts the recursive

;gorithm reeClompute() to an iterative algorithm.

vy ooty & 1oy @1,

depending on the variables X,,, ..., X,.

1. Ateach recursive call, depending on the value of 7;,
we either complement the input or the output or
both. Thus, at each stage, it is sufficient to record
whether the input/output of the next evaluation has
to be complemented. This is managed by two bit
variables, « and 0. The variable « records whether
the output needs to be complemented and the
variable & records whether the input needs to be
complemented.

3.1 Algorithm . .
Coputel DI, Y
Let F be represented by (h,Si,...,S, &), where & isa iU = Q) then ¥ = X,;
function of k variables and let t = n — k. We will refer totie «lpl —) then Y _ ‘\,k' .
recursive definition of F; provided in Section 2. As befor,]_L] _} v ; . .A"l’
Fy = h and F; is the function represented by (h.S;,....5. ' M, - e V;
Then Ft:F [‘1:]1(17).1'j'l\/l-,1 1 ')(1),
’ ' 1=0: b=

First, we present a recursive algorithm to comput et d L d
Fo=Fy = F(Xn,...,X1). or i =t downto o{

() if (¥, = Q) then X = X,_;
recCompute(Fi(X1k, -, X1)) (291 (¥, = R) then
1. if (¢ =0) return h(Xy,..., X1); (N =X X = X
2.0 (U =Q) {X = X } if (b= X =1) then {
3. else {X o= Xi—Hc—l; X7j+k,1 = XHk;} if (T, =) then « = a = 1;
4. if (X =0) ¢ if(r;=r)then b=b1;
return recCompute(F;,_1(Xiip-1,--.,X1)); if(m=rc)then {a=a P l:b=bd1;}
5. else }
6. if (1, = ¢) |
return 1 ® recCompute(Fi—1(Xitk-1,- - -, X1 ehurn o gy
7. if(rn=r)

8. retlilfrr(lT're:c(:co)mpute(E_l(l ® Xivit, -, 1@ K1) ,W,e provide an explanation for testing the condition
returm 7’1 ® recCompute(Fya(1® Xies, . -,1 810 (\X =1. At any stage of the algorithm, the VariabI.e X is
9. end if ’ e whEmly e -fone on which the function F; is projected. The variable b
end “rds whether the input needs to be complemented. If
=hb=), then the values of « and b do not need to be
Step 2 of the above algorithm interchanges the variah® wged g if ¥ —) — 1, then we will have to complement
Xivk and Xyyp 1 if U; = R. The rest of the algorithm Works' talue of the input X and, thus, again get 0. In this casealso,
according to the recursive definition of F;. In fact, it 5 [evay0q of and 1 are to be unchanged. In the other two
to verify that the call recCompute(Fy(Xn,. .- X)) W %, the values of « and b need to be updated based on the
correctly return the value of F(X,,...,X1). Note that e of 7,. The time taken by computeT D() to compute the
recursive approach is top down, i.e., it starts processit ¥ sy ;o O(t). Thus, algorithm computeTD(Xy,...,X1)
variable X, first and then descends to lower numbe® ety Compytes F(XJ, .., X)) in O(t) time.

variables.. The main rties of recCompute() € e .
follows: Prape fmple 2. We provide an example of the behavior of

dorithm computeT D(). We use the example of Section 2.
1. It takes ¢ steps to compute a bit of output. L“ F be an 8-variable function represented by
2. The stack depth is O(t). - 0(Q.r¢),(R,r),(Q.¢)). In this case, k=15, n=38, and
Having a large stack depth makes the algorithm inefflcff?; I=3,
to implement. Fortunately, the recursion in recCompCl ™| Suppose we want to compute the output of F on the
a case of tail recursion and can be removed. There areafe" put 101X; X, X3X>X;. Thus, here we have Xs=1,

key observations to do this. %20, and Xe=1

{AKAR AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL “LARGE” BOOLEAN FUNCTIONS

413

initialization step: Since Wy = Q, we obtain Y = X;.
This gives vy = h(Xs, X4, X3, Xo, X;) and

v =h(1®X518Xy,16X3,10Xz,16 X).

The variables ¢ and b are set to 0.
step © = 3: At this point, we have a =0, b = 0.

e U3 =0 and, so, we obtain X = X = 1.
e Since Xs®b=1and r = ¢, we update the value
of a to 1. The value of b remains 0.

step 1 = 2: At this point, we have ¢ =1, b = 0.

e U, =R and, so, we obtain X = X = 1. Also, the
value of Xj is set to that of X7, i.e., the value of X;
now becomes 0.

e Sinceb®dX=1and n =7, we update the value
of b to 1. The value of o remains 1.

step i = 3: At this point, we havea =1, b = 1.

e U, =@ and, so, we obtain X = Xz = 0. Note that
the value of Xy has been changed to 0 in the
previous step.

e Sinceb® X =1and 7y = re¢, we update the values
of both a and b. Both are changed to 0.

final step: The value a & vy is returned. At this point,

a =b=0 and, so, vy is returned.

3.2 Hardware Architecture for computeT D(.)

As mentioned before, a direct implementation of algorithm
computeT D() will mean that ¢ clock cycles are required to
produce one bit of output. This will lead to unacceptable
degradation in the performance of the system. Here, we
show how a low cost pipelined architecture can be
developed to implement the circuit for F. The pipeline
takes ¢ clock cycles to fill up. The output of I" on successive
tuples of n-bit input is available at each clock pulse after the
initial ¢ clocks pulses, i.e., starting from the (¢ + 1)-th clock
pulse.

In the hardware description, we will be manipulating
U, 7; as binary values. To do this, we need to describe how
they will be encoded as bits.

If ¥; = Q, then this is encoded by putting ¥; = 0.
If ¥; = R, then this is encoded by putting ¥; = 1.
If 7; = ¢, then this is always coded by putting ©; = 1.
On the other hand, 7, =0 codes 7, =r or 7; =rc
accordingly as ¢ # my mod 2 or i = m; mod 2, where
my is the order of resiliency of the initial function h
(see Section 2).

The pipeline has ¢ internal stages numbered 1 to ¢ (see
Fig. 2). Stage i stores the current values of X3, ..., Xi.;. The
two bits vp and v; are present at each stage along with the
two other work bits ¢ and b.

Remark 1. The initial circuit (Fig. 3a) of the algorithm
performs the computation required to get the values
vg, v1. For this, the function & needs to be evaluated twice.
This is tackled in the following manner: The function £ is
implemented by a look-up table. Corresponding to an
input Xg,..., X1, the look-up table stores the values
WXk, ..., X1) and h(1® Xy,...,1® X,). Thus, in one
clock cycle, the look-up table provides the values of

414

iR, 3

|EEE TRANSACTIONS ON COMPUTERS, VOL. 52,

[]

Stage i

NO.4, APRIL 203 AR AND MAITRA: EFFICIENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL “LARGE” BOOLEAN FUNCTIONS

415

Stage 7+ 1

KNitg-1

a =0 - a | —| a »
b=0r— - b L, — b B
Xn Xn = B - Xn B | —]){ k4l
Xy Xy —™ I X1 — Xy
X Xy o
b
T NECYa
Xt { e e
Lo
Xy > g Vo —
: AL v1 @] U1 W,
AXL 3
stage ¢ stage t — 1 stage 1
‘ 5. Intermediate circuit.
i
[\IE 45 v ‘ L ms - . .
i ! ‘ - -fops shown in Figs. 3 and 5. We provide an estimate of
iz,

Fig. 2. Pipelined architecture. A: Initial circuit. B: Intermediate circuit. C: Final circuit.

vy, v1. The size of the look-up table is 2¢T!. We provide
some precise parameters in Section 4.

The intermediate stages of the pipeline perform the task
of variable interchange and updation of the bits a and b (see
Figs. 4 and 5). The bits vy, v; are carried forward without
being changed. If ¥; = R, the values of X, and X;,;_; are
properly interchanged for the next stage, as in lines (1*) and
(2%) of algorithm computel’D(). The 2 x 1 multiplexer
ensures that the output X has the proper value. If X and
b are unequal, then the two & gates are activated; otherwise,
a and b are carried forward unchanged to the next stage. If
7 =0, then 7; represents 7 or ¢ and the input has to be
complemented. The & operation of (X @ b) and 7; ensures
this. If 7, = 1, then 7; is ¢ and the output certainly needs to
be complemented. If 7; =0 but represents rc, then the
output also needs to be complemented. But, 7; can represent
re only if ¢ 4+ my = 0 mod 2 (see Section 2). The value of the
function const(¢) is (i +my + 1) mod 2 and the combination
of the or and & gates ensures that a is updated as required.

The final circuit (Fig. 3b) is simple. The 2 x 1 MUX and
the XOR gate ensure that the output is a ® v,

The whole circuit operates as follows: At each clock,
stage, i forwards the values of the variables to the next stage

AVES

(b)

Fig. 3. Initial and final circuits. (a) Initial circuit, (b) Final circuit.

. Each of the initial and final circuits requires a 2 x 1
MUX. Additionally, the final circuit requires an XOR
gate and the initial circuit requires a flip-flop to store
the value of W,.
Eachof the / (1 </ <

and updates the values of work bits a, b for the next stage.
The values vy and v; are forwarded unchanged.

It is important to understand the need for generation of
vy, v1 at the first stage and carrying them through all the .
t stages. We need these two bits only at the end for the finl
circuit (Fig. 3b). However, the values of vy, v; are generated

1) intermediate circuits require

¢ two 2 x I MUX circuits;

] R) two & gates; one or gate; one not gate; three
from the variables X to X} ,. By carrying the two bits l‘U.IK YOR eates:
5 : . * to it

through the ¢ stages we can avoid carrying the k-1 bits) o i~ 1flip-flops to store the values of X....... X,

Xis.; X1 Only the bits X, Xiyy are carried. Thi and two flip-flops to store the values of ¥; and 7,.
reduces the number of flip flops required at any mterﬂhus the tot

mediate stage in the pipeline. 1,

Since there are ¢ stages, the whole pipeline takeStdOCkHS the number of stages grows, the cost will be
cycles to be completely filled up. Hence, the first outpit ingted by the arca wquned to store the values of the
appears at (¢ + 1)-th clock and, consequently, a bit of outpitfent Y s, However, as Table 1 shows, for a moderate
appears at each clock. tber of stages, the total size is quite small.

al count of the components is as given in

7

3.2.1 Size of the Pipeline 22 Key Synchronization

The size of the pipeline in Fig. 2 is the size of the look up thoolean function is part of the stream cipher system.
table (or circuit) to compute h plus the additional gates an vorking of the system requires a secret key to be shared
een the sender and the receiver. A particular key is
o generate a fixed number of blts, after which it is
theed by a new key. The sender and the receiver know
dy the points at which the new key is to be used.

[our case, the sccret key consists of the initial

Ti

output comes after a delay of ¢ clock cycles, ie., starting
from the (¢ + 1)-th clock. Now, consider the case when the
key of the system is changed. When the new key is loaded,
the pipeline will still contain some data generated from the
earlier key. The data coming from the new key will be
operational only after ¢ clock cycles from the time it is
loaded.

This is the same situation for both the sender and the
receiver. Both the sender and the receiver load the new keys
at the same time. During the time the pipeline gets filled up
with data from the new key, the bits from the old key
continue to be used. Hence, there is no additional
requirement for synchronization in this setup. The opera-
tion proceeds without any break in the generation of the
pseudorandom bits.

4 AN EXAMPLE

We describe a 24-variable function F which is built from a

10-variable function k. The 10-variable function # is chosen

to have order of resiliency 4, algebraic degree 5, and

nonlinearity 480. Such a function h can be constructed using

the method described in [7]. Our target 24-variable

function F has order of resiliency 18, algebraic degree 5,

and nonlinearity 2 x 480. Both & and F achieve optimal

tradeoff among the mentioned parameters [10]. The func-

tion F will be built from A using the method described ing
Section 2. One possible representation for F' is

: Intermediaty : tions of all the .LFSRs. The use of a pipeline seem to (h, (Q.7),(R,7c), (R, ¢), (Q,r¢), (R.7),(Q,¢), (R, r).

X Stage " #stthat, when a new key is used, the pipeline has to be (R, 7¢), (Q,7). (Q,¢), (R,7), (Q,rc). (R.7), (R, rc)).

B _— Circuit :ﬂl fed. We explain that this is not the case.) o
A,Hk*l Ktk e same system will be available to both the sender and ~ Implementation of F' requires a 1;1 stage pllpe met) thze rlz
L : fier. Once both sides start with a specific key, the first fixed (ie., implemented by a combinational circui

Xy Xk TABLE 1
& o Total Count of the Components
0 —
U1 2 component f-stage 6-stage | 9-stage 12—;2‘43;6]'—LA;Bage
Stage ¢ -1 7x 1 MUX %12 14 | 20 6
Ress L Stage ! e 13 64 85 99
ﬂ;) H‘()p 40 73 115 148

Fig. 4. Transition from stage i to stage i — 1.

416

‘Tt ’TH’ ~7’1 ’ T-register

!]
F

bl v

Fig. 6. Reconfigurable Boolean function F.

W-register

are 4' possible functions F' which can be implemented by
the 14-stage pipeline. We now compare the sizes of direct
and pipelined implementation for F.

Direct Implementation Size: The size of direct implementa-
tion of F is = 2%* gates/flip-flops.

Pipelined Implementation Size: The pipelined implementa-
tion requires:

® 2,048 flip flops to implement the look-up table for A.

® 302 x1MUXes, 99 gates, and 148 flip flops.

The total delay in the system is 14 clock cycles. A direct
implementation of F is prohibitively expensive. On the
other hand, the pipelined implementation is not only
feasible, but requires only moderate cost.

5 RECONFIGURABILITY OF THE BOOLEAN FUNCTION

The pipelined architecture provides a natural way to
reconfigure the hardware. The values of ¥, and 7; are
stored in flip-flops (see Fig. 2). Consider these flip-flops to
be organized into two registers—the U-register and the
7-register. The W-register stores the values (U1, %,,...,0)
and the T-register stores the values (m,...,7). Note that the
bit ¥, is required twice—for the initial circuit and also the
final circuit—hence, it is more convenient to store the bit ¥,
twice in the U-register.

The function F is completely defined by h and the
sequence of values (¥, 7),..., (¥, 7). Thus, it is easy to
reconfigure the pipeline. We have to change the following
two things:

¢ Change the look up table for the function h.
e Change the values of the U-register and the
T-register.

This allows the same circuit to be easily reconfigured to
implement any function constructed using the method of
Section 2 and having a fixed set of parameters (see Fig. 6).
Thus the pipeline architecture is a universal circuit for the class
of secure Boolean functions described in [5].

If the function 4 is implemented using a combinational
circuit, then the first operation cannot be carried out. In this
case, reconfigurability is obtained from the second condi-
tion. The circuit can be reconfigured to implement any of

the 4! possible functions F. This still provides a large choice
of functions.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 25 i
i

6

In

architecture to implement “large” Boolean functiong
design uses the Boolean functions constructed b}
recursive construction of [5]. Several questions remg
to the best possible implementation and the implemeny
of Boolean functions constructed using other methogs

(91,

CONCLUSION ;
this paper, we have designed low cost ha:g

[14], [7]. We feel these are future research topics.

ACKNOWLEDGMENTS

This paper is a revised version of “Efficient Implementaﬁoni
of Large Stream Cipher Systems,” presented at the Wy
shop on Cryptographic Hardware and Embedded Systems,;
CHES 2001, Paris, France, 13-16 May 2001. :

(

REFERENCES)

[1]

[2]

B3]

(4]

[5]

[

[7

(8]

[10]

[11}

f12]

[13]

[14]

P. Camion, C. Carlet, P. Charpin, and N. Sendrier, ‘0
Correlation Immune Functions,” Proc. Advances in Cryptology-
CRYPTO "91, pp. 86-100, 1992.

A. Canteaut and M. Trabbia, “Improved Fast Correlation Atads
Using Parity Checks Equations of Weight 4 and 5, Proc. Adus
in Cryptology—EUROCRYPT 2000, pp. 573-588, 2000.

V. Chepysov, T. Johansson, and B. Smeets, “A Simple Algoritm
for Fast Correlation Attacks on Stream Ciphers,” Proc. fit
Software Encryption—FSE 2000, pp. 181-195, 2001.

T. Johansson and F. Jonsson, “Fast Correlation Attacks through
Reconstruction of Linear Polynomials,” Proc. Advances in Crypt-
logy—CRYPTO 2000, pp. 300-315, 2000.

S. Maitra and P. Sarkar, “Highly Nonlinear Resilient Functirs
Optimizing Siegenthaler’s Inequality,” Proc. Advances in Crypioe
8y—CRYPTO 99, pp. 198-215, 1999, ¢
W. Meier and O. Stafflebach, “Fast Correlation Attacks on Certan:
Stream Ciphers,” J. Cryptology, vol. 1, pp. 159-176, 1989.)
E. Pasalic, S. Maitra, T. Johansson, and P. Sarkar, “Nev
Constructions of Correlation Immune and Resilient Booka
Functions Achieving Upper Bounds on Nonlinearity,” Pt
Workshop Coding and Cryptography—WCC 2001, 2001.]
R.A. Rueppel, Analysis and Design of Stream Ciphers. Spring
Verlag, 1986.

P. Sarkar and S. Maitra, “Construction of Nonlinear Boolea?
Functions with Important Cryptographic Properties,” Proc. A+
vances in Cryptology—EUROCRYPT 2000, pp- 491-512, 2000.
P. Sarkar and S. Maitra, “Nonlinearity Bounds and Constructios
of Resilient Boolean Functions,” Proc. Advances in Cryptology-
CRYPTO 2000, pp. 515-532, 2000. .

J. Seberry, X.M. Zhang, and Y. Zheng, “On Construcnor/}s aﬂd
Nonlinearity of Correlation Immune Boolean Functions,” /it
Advances in Cryptology—EUROCRYPT “93, pp- 181-199, 19%.
T. Siegenthaler, “Correlation-Immunity of Nonlinear Combining
Functions for Cryptographic Applications,” IEEE Trans. nforit-
tion Theory, vol. 30, no. 5, pp. 776-780, Sept. 1984.)
T. Siegenthaler, “Decrypting a Class of Stream Ciphers Usitg

Ciphertext Only,” IEEE Trans. Computers, vol. 34, no. 1, pp. 81|

Jan. 1985. .
Y.V. Tarannikov, “On Resilient Boolean Functions with MaXImUw”
Possible Nonlinearity,” Proc. INDOCRYPT 2000, pp. 19-30, 2000

EFFIC

KA

h sarkar received the Bachelor of Electro-
> d Telecommunication Engineering de-
a 1991 from Jadavpur University, Calcutta,
gree N "\ iaster of Technology in Computer
and the degree in 1993 from the Indian Statis-
SaeﬂCemute, Calcutta. He received the PhD
tical Insfrom the Indian Statistical Institute in
degreecurrently, he is an associate professor at
1999|' dian Statistical Institute. His research
-t:teeregts include theoretical computer science
i

and CrypTOlOgy-

ENT IMPLEMENTATION OF CRYPTOGRAPHICALLY USEFUL “LARGE” BOOLEAN FUNCTIONS 417
1

Subhamoy Maitra received the Bachelor of
Electronics and Telecommunication Engineering
degree in 1992 from Jadavpur University, Cal-
cutta, and the Master of Technology in Computer
Science degree in 1996 from the Indian Statis-
tical Institute, Calcutta. He received the PhD from
the Indian Statistical Institute in 2001. Currently,
he is a faculty member at the Indian Statistical
Institute. His research interests are in cryptology
and digital watermarking.

	00000001.jpg
	00000002.jpg
	00000003.jpg
	00000004.jpg

