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E-Optimal Minimally Connected Block Designs
Under Mixed Effects Model

R. Mukerjee!, K.R. Shah? and B.K. Sinha®

Summary: Considering a mixed effects model in a minimally connected block design set-up, we obtain
dgesigns which are E-optimal, uniformly in the ratio of the variance components, for inference on
varietal contrasts which constitute the fixed effects in the model.
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1 introduction and Preliminaries

A connected block design is said to be saturated or minimally connected if the
error degree of freedom is zero under a fixed effects model. This happens when
the usual design parameters v, b, k (= 2) satisfy the relation

v=bk-1)+1 . (1.1)

The study of optimal minimally connected block designs is fairly recent fmd the
following results are known under a fixed effects additive model without interac-
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(a) all minimally connected designs are D-equivalent;

(b) any design having one treatment common to all the blocks is 4- and E-op-
timal; such optimal designs are isomorphic to one another and they are uni-
quely A- and E-optimal.

Throughout this paper, two designs are said to be isomorphic to each other if any
one of them can be obtained from the other by renaming the blocks and/or
treatments. We refer to Mukerjee, Chatterjee and Sen (1986), Krafft (1988), Man-
dal, Shah and Sinha (1991) and Dey and Bapat (1991) for the above-mentioned
and various other related results. Two related references are Mukerjee and Sinha
(1990) and Birkes and Dodge (1991).

In this paper, we initiate a study of optimal minimally connected block
designs under a mixed effects model where the block effects are random with
variance o2 and the treatment effects are fixed. For fixed v=b(k—1)+1,
b, k(=2),let 9= 2(v, b, k) be the class of all minimally connected designs in the
sense of (1.1) and, as usual, let o> denote the error variance. Define 8 = agi/al.
Then for each design d € 2, the information matrix for the treatment effects is
(see Rao (1947), Shah and Sinha (1989, p. 86))

Ci=Ciyt(1+k8) ' Cyy , (1.2)
where

Cig=Ry—k 'NyNy, Coy=k 'NyNy—(bk) 'ryry , (1.3)
Ny is the incidence matrix of d, Ry=diag(rig,...,7a), Ta= g .- ->7wa)s
Tias - - -» Ty being the replication numbers for the v treatments in d. Note that

6 = 0 corresponds to no differential block effects while # = oo corresponds to the
fixed effects model. Our study reveals that the design outlined in (b) above con-
tinue to be E-optimal uniformly in 6.

2 E-Optimal Designs and their Uniqueness

Lemma 2.1: Each d € Z contains at least two blocks such that each of these blocks
contains k~ 1 treatments which are replicated exactly once in d.

Proof: Let Ty=li: 1 <i=<uv, riy = 1. If m,is the cardinality of 7, then one must
have bk=m, ;+2(v—m, ), so that by (1.1),



E-Optimal Minimally Connected Block Designs Under Mixed Effects Model 361
mg=bk—2)+2 . Q.1)

If myq is the number of blocks in d containing k—1 members of T, then con-
sidering the occurrence of the members of T, in d,

m1dsm2d(k—-1)+(b—m2d)(k—2) = b(k—2)+m2d 2

Hence by (2.1), m,;=2, completing the proof. #
In consideration of Lemma 2.1, for each d € %, rearranging the treatments
and blocks, the incidence matrix N, can be expressed as

Nd: 1k—1 7 , (22)
Nig

say, where for positive integral g, 1, is a gx! vector with all clements unity.
Defining the vx1 vector x = (1;_,, —1;_;,07 it follows, after some algebra,
from (1.2), (1.3), (2.2) that for each de %,

X' Cyx=('x)tk '+ +k8) -k ") .
Therefore, for each d € %, the minimum non-zero eigenvalue of C,; satisfies
Amin Ca)sk ™ +(1+k) 7 1=k ) . (2.3)

Consider now the design d*(e 2) with blocks {1,2,...,k}, (1,.k+1,....,
2k—1}, ..., {1, (k—=1)(b-1)+2,...,(k—1)b+1}. By explicit computation using
(1.1)=(1.3), it can be seen that the non-zero eigenvalues of C,. are

Ar=1, A=k T'+(+k) -k, AY=k v, (2.4)
with respective multiplicities b(k—2), b—1 and 1. Since =0, one obtains

A¥>a¥=A%. (2.5)

Hence A, (C;+) = 4%, and comparing this with (2.3), the following holds:
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Theorem 2.1: For each 8 (0 < 0 < o), designs isomorphic to d* are E-optimal in 7.

In the rest of this section, we study the uniqueness of the E-optimal designs
mentioned in Theorem 2.1. The following lemmas will be helpful.

Lemma 2.2: Suppose d(e @) is not isomorphic to d* Then d contains two blocks
such that

(i) each of these two blocks contains k— 1 treatments which are replicated exactly
once in d, and
(i) the remaining treatments in these two blocks are distinct.

Proof: Let T, be as in the proof of Lemma 2.1, B, be the set of blocks in d
which contain exactly ¥—1 members of T,, and a = a, be the cardinality of B,.
By Lemma 2.1, 2<a =< b. If possible, suppose the conclusion of the lemma is false.
Then there is some treatment common to each block of B,. In that case, without
loss of generality, let the a blocks in B, be {1,2, ...k}, {I,k+1,...,2k=1}, ...,
I, k—)a-1)+2,...,(k—1)a+1}.

Since d is not isomorphic to d*, one gets a< b, ie., the set, By, of blocks of
d, which are not members of By, is non-empty. Define

T,={i: k—)a+2=<i<(k—-1)b+1, ry=1}, my,= cardinality of T, ,

1y, = number of blocks in By containing exactly k—1 members of T, .

Then as in the proof of Lemma 2.1, noting that B, contains b—a blocks, that the
treatments (k—1)a+2,...,(k—1)b+1 do not occur in the set of blocks B,, and
that treatment 1 must be replicated at least once in the set of blocks B, (for
otherwise, d is disconnected), one obtains

b-aYkzm+1+2{k— V) (b—a)~m,} ,
and

Mg < Myy(k—1)+(b—a—ry)(k-2) ,

so that, on simplification, my;= 1. Thus there is at least one block in B, contain-
ing exactly k—1 membgrs of T, and hence of T,. But this is impossible by the
definitions of B, and B,. This completes the proof. #

Lemma 2.3: Suppose d(e 2) is not isomorphic to d* Then for each (0< < o),
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Amin(Cd)<k 1+(1+k0) I(l‘/\' I) .

Proof: Since d is not isomorphic to d* by Lemma 2.2, without loss of generality,
d has two blocks of the form {1,2, .. .k}, (& k+1,. .., 2k- H, where Eg41,2, ..
2k—1} and r,; =1 2=<i<2k-1). Let w be a vx1 vector defined as

o

w=(—(k=1)(w; +w), w1}, wali 0 . (2.6)
Then it can be seen that

W Rgw = (k— 1) (w +wy) ri + (k- D)(wiiwd |
W NgNyw = (k=1 2w5+ (W, +wa) (rg - I

wiryryw = (k- I)z(r“, = l)z(wI + wz)2 ,
so that by (1.2), (1.3),

w Cw—th "4 (1+k0) "1 -k Yww

= Ay (0) (W7 —wi+ Ay (0) () +w2)* (2.7

where A,4(0) = (k— 1)2 8/(1+k6) and A4,,(8) depends on # and the characteris
tics of the design d but is free from w,, w.. For #>0, A, () >0, and 1t 1s casy
to see that one can choose (w,, wy) # (0,0) such that the right-hand ade ot (2.7)
is negative. Since by (2.6), 1.w =0, the result now follows from (2.7). #

From (2.4), (2.5) and Lemma 2.3, it follows that for cach ¢ (0= o), the
designs isomorphic to d* are uniquely E-optimal in . For # = (0, however, uni-
queness is not preserved since, as one can casily verify, designs non-isomorphi
10 d* can also be E-optimal in 7. Anyway, from the above discussion, 1t i« clear
that the only designs which are E~optimal in  over the entire range O < ti< x are
those which are isomorphic to d*

Acknowledgement: The authors are thanktul to the referees and the editor for vern Lol e Sy

festions,



164 R. Mukerjee et al.

References

Birkes D, Dodge Y (1991) Optimal ax b Connected Designs with a+ b Observations. J Statist Plann
Inf 28:49 - 59

Dey A, Bapat RB (1991) Optimal Block Designs with Minimal Number of Observations. Statist Prob
Lett (to appear)

Krafft O (1988) On Optimum Designs for Estimating all Contrasts in a Block Model. Preprint

Mandal NK, Shah KR, Sinha BK {1991) Uncertain Resources and Optimal Designs: Problems and
Perspectives. Calcutta Statist Assoc Bull (HK Nandi Memorial Volume) 40:267 — 282

Mukerjee R, Chatterjee K, Sen M (1986) D-Optimality of a Class of Saturated Main Effect Plans and
Allied Results. Statistics 17:349 - 355

Mukerjee R, Sinha BK (1990) Almost Saturated D-Optimal Main Effect Plans and Allied Results.
Metrika 37:301 307

Rao CR (1947) General Methods of Analysis for Incomplete Block Designs. J Amer Statist Assoc
42:541- 561

Shah KR, Sinha BK (1989) Theory of Optimal Designs. Lecture Notes in Statistics, No 54, Springer,
Berlin



	00000001.jpg
	00000002.jpg
	00000003.jpg
	00000004.jpg
	00000005.jpg
	00000006.jpg

