Sankhya : The Indian Journal of Stalistics
1978, Yolume 40, Series A, Pt. 1, pp. 28-37.

ON PROBABILITIES OF MODERATE DEVIATIONS
FOR DEPENDENT PROCESSES
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SUMIMARY. Probabilities of modorato :oviationa of the snmple mean are obtained for

linear proceasss. Tho anmo of rample quantiles and of euitable L-cstimators aco obtained for
mixing processos,

1. INTRODUCTION

Recently, there has been some interest in developing the theory for pro-
babilities of moderato devietions (PMD) for dependent processes (Sco o.g.,
Ghosh and Babu (1977), Babu, Ghosh and Singh (1978) and Babu and Singh
(1978)". In the present paper we obtain expressions for PMD of samplo mean
for a statistically important process, namely linear process, which is not
covered by the previous results. Also we utilise the PMD results known for
sample mean to obtain the same for sample quantiles and L-estimators
making use of the idea of agymptotic representation of quantiles,

Let {X,} be a sequence of r.v.’s defincd on a probeability space (Q, 4, P).
Let M denoto the g-field gencrated Ly Xyla < ¢ < b). {X,} is called ¢-
mixing if
rup  sup  sup | P(B|A)—P(B)| < ¢(n), P(4)>0 . (L)
B2l gent, Bexp,
for some non-increasing sequence of real numbers {@(i)}, with limit zero. Tho
process is called strong-mixing if for some sequenco of positive numbers
fa(n)} with limit zero,
sup su[: sup | P(4 (N BY—P(4) P(B)| < a(n) e (1.2)
) geut, Benp,
and it is ealled a linear process if for a sequenco of real numbers {ns} with
Tat < oo and {En}, some pure white noise process,

Xn =‘Z‘ i En_tyy . (13
or
Xn= E ai¥nu, e (14)
=1

¢ Publishod in this issuo, sceJpp. 38-43,
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In Ghosh and Babu (1977) and Babu, Ghosh and Singh (1978), the

expressions for PMD of sumple mean nre obtained for g-mixing processes with

Soh(i) < 0 v (15)

and in Babu and Singh (1078) the result is cstablished for strong-mixing
processes with {a(n)} setisfying tho condition

a{n) = O(oxp(—An)), A > 0. . (1.6)

It is known that lincar processes are not g-mixing in general even for
exponentially decaying ag’s (see Chanda, 1976). Ifowever, under some res-
trictions, lincar processes nro strong-mixing with a(i) depending on ay’s (see
Chanda, 1976 and Goredtski, 1977). But unfortunately, according to the
oxisting knowledgo, tho condition (1.6) is met only for exponentially decaying
ars. In tho present paper, wo cxploit the particular structure of linear
procosses to get exaet asymptotic expressions for PMD assuming only

D |ag] < 0. . (17
i
Soction 3, deals with tho PMD results of quantiles and L-estimators
for the mixing processes described above, The L-estimators are defined in

Section 3. The result does not appear to bo known in liternturo even for the
independent ense.

2. PMD FOR LINEAR PROCFSSES

Tn this seetion we prove the following theorem
Theorem 2.1: Let {X,} be a lincar process with ay satisfying (1.7). If
for some ¢ >0, F |E,|‘2’=<oo and §n, ==z50, one has, for Sy = 2” Xy
and a* = V(Z,), ' '
P(S,—E(8y) > c|az|(n log n)}) ~ (27c2 log n)~} pee YA )]
P(| Sa—=E(S,)| > c|az[(nlog m)l) ~ 2(2mct log m)-n~I2 .. (2.9)

In tho proof of the above theorem, wo shall make use of the following
result, which follows from Theorem 5 of Babu, Ghosh and Singh (1978).

Theorom 2.2: Let {Y,} be a (possibly non-stalionary) sequence of inde-

pendent rv’s. Define Sy = ) Yy and b3 =7|—l 1(S3). If im inf b, > 0 and
1 —>a
sup E| Y| M) < o for some ¢ > 0, one has for any 8 > 0,
nz1

P(S,—E(Sn) > c(b, &= n~2)(n log n)})~(2nc2 log n)'ln"tn.
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Proof of Theorem 2.1 : We shall prove the theorem for the process {X,}
satisfying (1.3) and the proof for the second caso is similar. Clearly wo need
to prove only (2.1) sinco (2.2) follows from (2.1) by symmetry. From now on,
it is assumed without any loss of generality that EZ} = 1 and E, = 0 which,
in viow of (1.7) and tho fact that z £ 0, i3 equivalent to assuming EX; = 0.

We shall prove first that

P(8, > c|z,|(n log n)l)~(2mc? log n)-In=¢"2 e (23)

whero 22 = % b andt, = b aj, and then show that (2.3) holds with z,
=1 I=1

roplaced Ly z.

Towards this end, wo defino
m
Xmyn= l‘:‘l a‘En—‘+l! mp 1
and decompose S, as
S, = £ Xt E(Xi—Xp0) e (24
=1 =
We shall show that, for any § > 0
I’( p) X > c|z, | (1 £n~%)(n log 'n)i) ~ (276! log n)=tn—"/2 ., (2.6)
1=1
and for sufficiently small € > 0

> oz, [n=4(n Tog n)¥) = o{(log m1n=) ... (26)

P( £ (Xi-Xun
IS

-1
Tt is casy to combine (2.5) and (2.6) to conclude (2.3).

.To provo (2.5), let us observo that

S;=% Xeu= E b,k . (29)
=1 =1

But the r.hus. of (2.7) has tho samo distribution as I i, using the symmetry
1

i-
of tho distribution of (§,,&,, ..., £,). Also P(S,) = X (2 Thus by Cesaro
1
mean convergenco theorem lim n-'P(S,) =22 > 0. Now, (2.5) follows by
n=>o

taking ¥y = Xy in Theorem 2.2,
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Coming to (2.6), it is cuxily scen, taking e = 1/2(c242) and using

Chebychov's incquality and Minkowsky’s incquelity, that for some absolute
constant K,

Llus. of (2.6) € Kyni(n log n)y-H+2 E 2

£ (X—Xu)

i=1

< Ky(log ny-het+n ,L-m—o( % i|a,|)°’+= E|E, |
i=1

= O(n-i®-), v (28)
Tho last statoment is duo to (1.7).

To roplaco |z,| by |z| in (2.3), wo only nced to show in view of Theorem
22,

|28—2?| = O(n-*), for some & > 0.
Wo prove it as follows

l—2| <t B 2| <t £ [h—z) |42
i=1 i=1

2§ Jat)n( § el ) = 0D,
<( ‘_‘|a'|)n (‘_l;|a4|) (n-1)
The proof of Theorem 2.1 is complete.

Remark 2.1 : It can Lo verified that (2.5) remains valid under the
condition

1
-2
a¢=0(im ‘).0>o . (2.9)
for fixed ¢ > 0 and honco a; = O(i~?) suffices for all ¢ > 0. (2.9) can bo taken
as an slternative condition to (1.7).

Remark 2.2 : In view of the results of Michel (1974), it appoars that tho
moment condition assumed in Theorem 2.1 i3 the bost possible.

Remark 2.3 : Sinco Theorem 2.2 romains valid when {Y,} is & ¢-mixing
process, a modified form of Theorem 2.1 ean bo proved oven if {£,} is & ¢-mixing
process instoad of being pure whito noiso procoss.

3. PMD OF QUANTILES AND L-ESTIMATORS

For the process {X,}, wo dofino empirical distribution function F,(x) uy

Fofe) = @ Xo 1 << n)
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und for w rend number p, 0 < p < 1, the p-th sample quantile @, is defined ay
Q= Qup) = inf{z: F\() > P}
Tlroughout this section we assumo that the provess (X} is strictly

stationary with X, having tho distribution F. Let @ denoto tho p-th
quantilo of F.

Wo now stato our resnlt about quantiles formally.
Theorem 3.1 :  If the process {X,} satisfies either of the condilions
@) {X,}is g-mixing with {$(i)} satisfying (1.5)
(i) {X,} is strong-mizing with {a(i)} satisfying (1.6)
uand F has bounded second derivative in a neighbourkood of Q with f=F¥(Q) >0,
then one has, for a fized ¢ > 0,
P(Q,—@Q > f-'ca(log n[n)}) ~ (2nctlog u)'ln_”’z’2 . {3])
P(]Q.—Q| > f-Yea(log nfn)t) ~ 2(2nct log n)=In~¢2 e (329)
where o= V()42 Z cov(py, npt)y m=IXi<Q) (21
2%

(Tt is well known that o* < co under cither of the conditions (i) and (ii)).
Proof : Let us fix & = 1/8.  Clewrly
P(p—F (@) > collog nfn)i-4 Tn-+-%)
—P(Q.—Q)f+F.(Q)~p < —Tn~i-)
< P(Q.—Q > f'co(log nfu)})
< Pip—F (Q) > co(log n/n)i—Tn-i-2)
+PQr—Q)f+F.(Q)—p > Tu-1-2).

Tt follows from tho results of Ghosh and Babu (1977) and Babu and Singh
(1978) that, under (i) as well as under (ii),

P(p—F (Q) > co(log n[n)} £ Tn-i—2) ~ (2mc? log n)in-c¥2:

Thus wo are left to show that
PQ.— Q)+ F (Q)—p > Ta~1-%) = o(n=¢"/2(loy n)-}) e (33)
PUQa— QY+ F Q) —p < —Tn~b=2) = o(u~c2(log w)=l). ... (3.4)
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Wo shall provo (3.3) and the proof of (3.4) is similar. Towarde this end,
lot us supposo that for every z ¢ (Q—21, Q+21), 1 > 0,
0> M > F(z)>m >0 and |Fz)| < b. . (3.5)
Let I denoto tho interval (Q—1, @+1). Lot us observo that
P{Q.— Q)+ F.(Q)—p > Tn1—9)
< PUQ—Qf+FAQ)—p > T, sup | Fye)=F(@)| < 22 w™)

+P( su]’» | Fo(x)—F(z)]| > 231 n~3). .. (3.6)
€

Partitioning tho interval I inbo subintervuls of longth 2-32, it follows that
sup | F,(z)—F(z)]|
xel

< mox [ F(Q+ra¥)—F(Q4rn~3)| + M n e (37)
1 1841
Using (3.7), Markov’s incquality, Lemma 2 of Ghosh and Babu (1977), Lomma
2.2 of Babu and Singh (1978), Bonferroni inoquality and the fact that 3z < 4,
ono vorifies that, under (i) ns well as undeor (ii),

tho last term in the r.h.s. of (3.6) = o(n"”’(log )b . (3.8)

From now onwards the statemonts which follow aro truo afler
cortain 7 (non-random) onwards. In the following statoments, == stands
for ‘impliey’.

Wo now prove that,

sup | Fo(z)—=F(2)| <2M n-3 = |Q,—Q| < 2Mm =% ... (3.9)
zel

Wo havo

Lha. of (3.9) == F(z)—2Mn-¥ < F ()
for yvory zel which, by substituting F(z)—23 n-37 = y, implies that
F\y) € F(y+23n3) e (3.10)
for overy ye(Q—I/2, @+1/2). From (3.10) we concludo casily, with tho help
of menn-valuo theorem and (3.5) that
Q,—Q L 2Mmn-3e.
Similarly wo obtain tho otherway inoquality to concludo (3.9).

Tho sccond order moin valuo thoorom and (3.5) prove that if |Qu—@|
< 2M ma~, thon

) F(Qn)—F(Q)—=(Q@n—Q)f| £ 2b(M mn-31)? e (3.10)
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Henco if |@a—Q| < 2Xmn-¥

H@n—Q)f +Fn(Q)—p| € | Fa(@)—Fu(@n)+(Qn—Q)f |+ | p—Fn(@Qn)|

<1 Fn(@n)—Fn(@)—F(Qn)+F(Q)| 4-2b(3 mn=2)24 | p—Fa(Qa)| -

(3.12)
Also, 1Qa—@Q| < 23/ mn~* implics, using tho assumed continuity of F at @,
that
0 < Fn(Qn)—p < Fa(@n)—Fn(@n—0)
sup | Fu(@na+2)—Fa(Qn)—F(Qa+2)+F(Qn)|

|2 Q4Mmn=3
< 2aup  [Fo(@+2)—Fal@—FQ+0)+FQ)]. e (303)
|z] < 4mn=3*
Therefore, using (3.9), (3.12) and (3.13) and tho fuct that 6z > ;—+a, wo
concludo that

P((Qn—Q)f + Fu(@—F(Q) > Tn ™47, sup | Fa(@)—F(@)| < 20:7%)

<P sup |Fn(Q+I)—Fn(Q)—F(Q+x)+F(Q)l>2n‘“").

V2| < 4Mmn-3
(3.14)
Now dividing the interval [—4Mmn-32, 4 /mn=%] into subintervals of
length n-), it follows that

sup | Fn(Q+2)—Fn(Q)—F(Q+2)+F(Q)|
Izl  4Mmn=2"

max [ Fa(Q@-+7 1) Fa(Q)— F(Q+r n=)+ F(@)] 424~
I < AN min' -2 4 1
and honco, ono gets, using Bonferroni inoquality, that

r.h.s. of (3.14) < n| \ 8“1? P(|F,.(Q+x)—F,.(Q)—F(Q+:)+F(Q)I>n—l—a)
zI < Kyn=e

(3.15)
for somo absoluto constant K,.

Wo cstimato tho r.h.s. of (3.15) by the following lemma.,

Lomma 3.1 :  Letl the process {Xy} salisfy either of the conditions (i) and (ii)
of Theorem 3.1 and let F has a bounded derivative in a neighbourhood of @ poin!
D. Definez(D, D+d) = I(| X—D| € d)—P(|X(—D|< d). Foranys>0,
there ezisls a conslant ¢(s) > O such that for all d < Kgn-%8, o0 > Ky > 0,

r (,é. (D, D+d)|>n 72 _%) < clen-t
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Remark 3.1: c¢(s) depends on the point D only through the upper bound
of F’ in & ncighbourhood of D, a fact to bo used in tho proof of Remark 3.2,

Proof of Lemma 3.1 : Tor $-mixing caso the lemmea follows from
Lommea 2.1 of Bebu end Singh (1978a) end for strong mixing caso the lemma
follows from Lomma 3.3 of Bebu and Singh (1978a).

Clearly, (3.14), (3.15) end Lemma 3.1 completo tho proof of (3.1). Similarly,
we caleulato PMD for Q—@Q, and combine with (3.1) to get (3.2).

Tho proof of Theorem 3.1 s completo.
Expressions for PMD of quentiles for linear processes ean bo obtained

ifa; = 0(»’""‘2") and F has bounded density. The proof runs parellol to tho
proof of the nbove thcorom. Ono gets PMD for #'s defined above by
imitating tho erguments of Ghosh end Babu (1977) and meking use of the
following modification of Lemma 3.2 of Philipp (1977).

Lemma 3.2: Let X and Y be random variables with
E|X-Y| <e
Suppose that density of X is bounded by A > 0. Then for all —c0 <1 < o0,
E|IX <O)—-IY )| < 4(4-+Neh
The deteils are too long to be presented here.

Nextly, we extend tho technique of above theorem to got PMD of
L-cstimators.

Let Qne and @, donoto £-th sample quantile and ¢(-th population quantilo
respectively for 0 < ¢ < 1. Lot K bo a distribution function with support
J=uv,0<ugv<]

Wo defino the statiatic
Ly = IQM dK(l)

a8 on estimator of the paramoter
L= (QdK().
In tho literaturo such estimators are roferred to as L-ostimators.
Lot us supposo that for every ze(Qu—1I, @Qu+1), I > 0, F*(x) oxists and
o>HU2F@E)>h'>0 and F'z)<p<o. .. (3.10)

Wo adopt tho notations F(Q)=fi, nu=(—I(X;< Q) and
78 =[ 9udK(). Lot I* stand for tho interval (Qu —I/2, Qu+1/2).
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Remark 3.2: If {X,} sntisfies cither of tho conditions (i) and (ii) of
Theorem 3.1 and F satisfics (3.16), one has, for a fixed ¢ > 0,
P(L,—L > co*(log njn)i) ~ (2mc? log n)in~c/2 . (317)
P(|L,—L]| > co*(log n[n)}) ~ 2(2mct log n)~tn=¢2 . (318)
whera o*% = V(n})+2 $ cov (O]
(=1

alternativoly, o*? = [ k(s, ()dK(s)dK (1), k(s, 1)

= €OV (74s, 1)
+2F-l COV (710, P14 yt)-

Proof :  Tho proof runs parallel to that of previous theorom. Vo present
here only tho essentinl points. Clenrly

|E—L—x £ 5] <& sup |@u—Q)fet-Fo(@)—1] = Dlsay).
1 teJ

Henco wo havo, for & = 1/8,

P(L,—L > co*(log n[n)l)—P (% ."3 7t > ca(lognfn)t 4 7n,'|"')l
y

< P(D > i) e (309)
To neglect the r.lus. of (3.19) wo note that for
T = sup |F.(z)—F(z)|,
Xete

P(D > =)< PD > n4=2) (\(T < 2Hn=2)+P(T > 2ln~) ... (3.20)

Tho sccond torm in tho r.h.s. cf (3.20) is neglectod using argumeonts similar
to (3.7). To neglect tho first torm in the r.lus. of (3.20) one proves, imitating
tho proof of (3.9), that for » sufficiontly largo

‘stulp | Fo(x)—Flz)| <2lIn-% =psup |Qu—Q| < 2Mhn-.
Xele teJs

Other changos aro similar. At the lnst atage, wo shall show, by dividing tho
interval J into subintorvals of longth n-!, that

b)— -
£oRon D PP~ Fle+ D)+ )]

max max | Fn(Qu+(’l+7)"'_l)—F..(Qu‘{"l"r_l)—F(Qu+(q+")n"

0Gas dy Irinir,

+F(Qutgn1)| +n-t-2,
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whero g and r donoto integers, d, = [(Qo—Qu)n]+1 and r, = [41Ihn'-31| 41,
Finally Bonforroni inequality and Romark 3.1 is mado uso of.

Choosing K suitably, ono gots PMD of trimmed menns and Winsorised
means using Romark 3.2,
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