
Covering Morphisms Between Nets

Bhaskar Bagchi, Sunanda Bagchi and A.C. Mukhopadhyay 
Stat-Math Division /  Computer Science Unit /  Computer Science Unit 

Indian Statistical Institute 
203 B.T. Road 

Calcutta -  700 035 
India

1. Introduction

1.1
In this paper we introduce an interesting class of functions between nets. By anal
ogy with a classical notion from algebraic topology, we call them covering mor
phisms. The question o f parametric feasibility is studied, and it is found that these 
morphisms must be o f one o f two possible types. An infinite series of Type 1 cov
ering morphisms onto odd order affine planes is constructed. These can be used to 
construct certain mutiway designs which are optimal for statistical applications.

1.2 Preliminaries on nets

Recall [3] that a net of degree r  and order k (in short, an ( r, k) net) is a pair 
( P, L ) where P i s a  finite set (its elements are called the points of the net) and L 
is a set of subsets o f P  (its elements are called the lines of the net) such that on 
each line lie k points, through each point pass r lines, any two lines have at most 
one point in common, and the system satisfies Playfair’s axiom: given a point and 
a line, exactly one line through the given point is parallel to (= equal to or disjoint 
from) the given line. It follows that the set of lines of a net is partitioned intor 
parallel classes, where the lines in each class partition the point set and lines from 
different parallel classes intersect. If X  = ( P ,L ) and X ' = ( P,L') are two nets 
on the same point set, then we say that X '  is a subnet of X  if V  is a subset of 
L. Trivially, if X  is an (r , k) net and r' <  r  then one obtains the (r \  k) subnets 
of X  by deleting the lines from all but r' chosen parallel classes of X.  For the 
existence of ( r, k) nets it is necessary that r <  k + 1 [3,5]. Nets with r = fc + 1 
are called affine planes o f order k ; these are necessarily 2-designs and indeed can 
be characterised as 2-( A:2 , k, 1) designs. If s is  a prime power then the affine plane 
of order s arising from the field of order s is called the arguesian affine plane of 
order s and is denoted by A G ( 2 , s).  Nets have been studied by many authors 
under several names; for instance, mutually orthogonal latin squares [2], partial 
geometries [1] (with t  = r — 1) and (duals of) transversal designs [6].
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1.3 Covering morphisms (definition)
LeiXi = ( Plt //,), i = 1 ,2 ,  be two nets and let a  f  /? be two non-negative 
integers. A function <f> : P\ —> Pz is called a covering morphism from X \ to X 2 
with parameters a , /? provided conditions ( 1) and (2) stated below hold:
(1) For each line b of X 1 and for each point x  o f X z . the number o f points y in 

b with 4>( y) = x is either a  or /3, and the set
I

6 = { 1 E P 2 :  |$- 1( i )  n  b| = a]

is a line of X z . The map 4>: L\ —* L 2 defined by <£(&) = b will be called 
the induced map.

(2) The restriction of the induced map 4> to each parallel class TI of X \ is a 
bijection between n  and L z .

1.4 Results
Say an ( r, k) net is nontrivial if r >  2 and k > 4 .  Then our first result is:

Theorem 1. Let X i be a non-trivial ( r , , k{) net for  i = 1 ,2 .  Let if) be a covering 
morphism from X 1 to X z with parameters a , Then we have:
(a) The prcimagc o f  each point o f  X z under <j> consists o f exactly r \  points o f

I X !.
(b) <j> is o f one o f  the following two types:

Type 1 a  =  2 ,  /3 =  1 ,  r 2  =  +  1 ,  fci =  &2 ( &2 +  1)»
Tvpe2 a = O , 0 =  l , r 2 = kz -  \ , k i  = k2 (k z -  1).

Our sccond result is a construction o f Type 1 covering morphisms into the ar- 
gucsian affine planes A G ( 2 ,  s ) of odd order:

Theorem 2. Let s bean odd prime pow er and let n be such that an ( n+ 1, s+  1) 
net exists. Then there is an (n, s2 +  3 )  net X  and a Type 1 covering morphism 
b from X  to A G ( 2 , s ) .

Note: The hypothesis on nin Theorem 2 may be rephrased as n <  n (s ) : = N ( s +
, 1) + 1, when M(m)  is the largest number o f mutually orthogonal latin squares 

of order m. For a survey of what is known about the function N { .) see [2]. In 
particular, we have n(s) >  3 for 3 ^ 5 , n( s) = s + 1 if .s is a Mersenne prime 
(i.e. a prime of the form 2 p -  1) and n( s) >  s c for all s, where c >  0 is a suitable 
constant.

1.5 Remarks
(a) Recall that a set o f type ( a,  /?) (in short an ( a, J3) set) in a linear incidence 
system is a point set which meets every line in a  or p  points. These have been 
studied extensively in projective geometries and Steiner systems. By part (1) in



the definition of a covering morphism, each fibre (= pre-image of singleton) of 
such a morphism is an (a , /?) set; hence it yields a partition of the point set of 
the domain net into (a, /3) sets each of which has size r \  by Theorem 1(a). In 
particular, Theorem 2 yields a partition o f the point set of an ( n, a1 + s) net into 
s2 ( 2 , 1 )  sets of size ( s  + l ) 2 each. While the construction in [4] yields (2 ,̂0) 
sets in AG{  2 , 2 e) for e >  / ,  ours appears to be the first construction of non-trivia) 
(a ,  /3) sets in nets o f order k where k is not a power of two.

(b) Recall that a covering morphism in algebraic topology is a continuous map 
between topological spaces with a technical requirement which forces, that (i) it is 
a local homeomorphism, and (ii) (when the range is path connected all the fibres 
are homeomorphic. Part (2) of our definition is an in-built analogue oflocal home
omorphism, which, together with part (1) ensures (as shown in Theorem 1(a)) that 
all the fibres have the same size. The analogy is imperfect, though suggestive.

(c) The case n = 3 (with s arbitrary prime power, not necessarily odd) of Theo
rem 2 is essentially contained in a construction in [8], To see the relevance of [8], 
note that the point set of the net X  of Theorem 2 may naturally be identified with 
the positions of a square array of order s2 + s. We expect that Theorem 2 holds 
for s = 2 e as well, though no neat construction is available. Construction of Type
2 covering morphisms is also open.

(d) The definition of covering morphism may painlessly be extended to ( r, it, n) 
nets (for definition see [5] for instance). We don’t indulge in this generalisation 
since we have no non-trivial example with n  >  1 .

(e) Any covering morphism of Type 1 can be used to construct examples of the 
statistical designs in a mutiway setting which were proved to be optimal in the 
paper [7] by two of the present authors. Namely, fixing two of the parallel classes 
of the domain net X \ , the point set of X \  may be identified with the positions 
of a square array in such a way that the lines in the two fixed parallel classes are 
the rows and columns of this array. The remaining lines of X\  are distinguished 
transversals of this square, and the covering morphism is an assignment of the 
points of the range net to the positions of the square. It is easy to verify that this 
assignment is a balanced Youden hypercube as defined in [7],

2. Parametric Restrictions
In this section we prove Theorem 1. So the assumptions and notations are as in 

the statement of that theorem. Let X , = (P , , L {) , i = 1,2.

2.0

Since the induced map <j) is a bijection between the set of fci lines in any parallel 
class of X\  and the set of all r i  fc2 lines o f X z :

ki = rz ki  (2.1)



The fibres of <f> induce a partition o f each line of X\  into k2 cells of size a  and 
k\ -  k2 cells of size /?. So r 2 k2 = k\ = a k 2 + P(k2 -  k2).  Hence,

r2 = a  + j3(kz -  1) (2.2)

2.7 Proof o f  Theorem 1(a)
Let F be a fibre of <f>. That is, F  = 4>~x ( i )  for some x in P2. Fix a parallel class 
n ofXi .  Since 4>: FI —» L2 is a bijection, exactly r2 of the lines b in II satisfy 
1 e 4>(b), that is, |A n  ,F| = a.  For the other ki — r2 lines b in IT, |6 D F | =

! Hence,
\F\ = a r 2 + /3(fci -  r2) = r2( a  + P(k2 -  1)) = r \  

by (2.1) and (2.2).

2.2 Proof o f  Theorem 1(b)
First suppose, if possible, that /3 = 0 . Then by (2.2) a  = r2 . Let F  be as 

above, and let B  be the set of nonempty intersections of the fibre F  with lines of 
X\. Then, clearly, we have: (i) any two elements of B  have at most one point in 
common, (ii) through each point of F  pass r t elements of B, (iii) each element of 
B has size r2, and (from the argument in 2.1 above), (iv) the partition of L\ into 
n parallel classcs induces a partition of B  into rj ‘parallel classes’, where there 
arc r2 elements in each ‘parallel class’ and each ‘parallel class' partitions F. By 
Theorem 1(a), |F | = r2 hence by (ii) and (iii) we get \B\ = n  r2 . By (i), (ii) and 
(iii), given any clement b of B , exactly (r i — l)r 2 other elements of B  intersect 
b and hence n  r2 -  ( n  — l)r 2 = r2 elements of B  are equal to or disjoint from 
I. Hencc (iv) implies that elements of B  from distinct ‘parallel classes’ intersect. 
Hcncc ( F, B ) is an ( n , r2) net.

Let 17], n2 be two distinct parallel classes of X \ . These exist since n  >  2 . 
Since the restriction of 4> to each of 111, n 2 is onto L 2, there are lines 61 in I i i , b2 
in n2 such that <f>(61) = 4>(b2). Let F  be any fibre of <f> meeting 61 and hence 
also bi. Let b* = i ,  n  F, i = 1 ,2 .  Since all the lines of the net ( F, B)  which 
are parallel to b\ are induced by lines from FIi, 6* and b2 intersect, That is any 
fibre which meets b\ passes through the unique point of intersection of 61 and b2; 
hence such a fibre is uniquely determined. But fc2 = fci / r2 fibres meet 61. Hence 

2̂ = 1. Contradiction. /3 >  1.
Since r2 <  k2 + 1 , (2.2) implies a  + { 0  — 1 ) ( k 2 — 1) < 2 .  Since/3 >  1 and 

h  > 4 , it follows that /? = 1 and a  <  2 . As a  p,  this together with (2.1), 
(2.2) completes the proof.



3. The Construction
3.1 Notation and terminology

Throughout this section s is an odd prime power. F„, P G (  1, s) and AG{ 2, a) will 
denote the field, the projective line and the arguesian affine plane, respectively, of 
order s. Thus PG ( 1, s) = Fa U {oo} where oo is a symbol outside F,. We adopt 
the usual conventions for algebraic manipulations involving oo. A G ( 2 , s) is the 
( s + 1, s) net whose point set is F, x Fs regarded as a two dimensional vector 
space over F,  and whose lines are the translates of the one dimensional subspaces 
of this vector space. For m  in P G(  1, s) and c in F„, the line of AG(2,  s) with 
slope m and intercept c is given by the equation y = m x  + c when m f  oo and 
by the equation x = c when m = oo. The lines of A G ( 2 , s) with a given slope 
constitute a parallel class. Thus the parallel classes are naturally indexed by the 
points of the projective line.

3.2 A Product construction o f  nets
Fori = 1,2,  let X i = (Pi, Li) b ean (r ,  fc,-) net with parallel classes n^; 1 < 

j  <  r. For 1 <  j  <  r,  let f j : Pi x Ylj —* Fly2 be functions such that, for each 
fixed x in P i, / / ( x , .): Tif —* I l f  is a bijection. For 6i in Tl}- , bz in Ylj let’s put

£>i * bz = U {{x} x / ; (x ,  62): x  G 61} .

For 1 <  j  <  r,let n ; = {&i * 62: >̂i e n ;-,/)2 G Ylf }. Finally, let P  = Pi x Pi, 
L = U{n; : 1 <  j  <  r } . Then one readily verifies that ( P, L) is an (r, ki ki) net 
with parallel classes n ; , 1 <  j  <  r. We shall denote this net by X \ * X j.

3.3 The domain net X
We now proceed to prove Theorem 2. Thus we are given an ( n + 1, s + 1) net 

X i .  Without loss of generality, we assume that the point set of X \  is

Pi = P G (  1, s) x P G ( 1,«) ,
and that

n  = { { i } x P G ( l , s ) : i e P G ( l , s ) }  3.1

is a parallel class of X 1.
Let X \  be the (n, s  + 1) subnet of X \  obtained by deleting the lines in the 

parallel class II . Let X 2 be any (n, s) subnet of A G ( 2 ,  s) . Then the parallel 
classes of X 2 inherit the natural indexing from A G ( 2 ,  s).  Let us say that the 
parallel classes of X 2 are IT^, m  €  T,  where T  is a subset of size n of PG(  1, s) 
and n 2 consists of the lines of AG( 2 , s) of slope m. Let us also index the parallel



classes of X  i arbitrarily by the same subset T  of P G (  1, s ) . Thus the parallel 
classes of arc n ^ , m e  T.

We shall take the product net X  = X i  * X 2 to be the domain o f the covering 
morphism under construction. To complete the description of X  we must specify 
the functions (see 3.2) / m: P, x n  £  _> n ^ m e T .  Ifm ?  l , t a k e / m( x , 6) = b. 
Ifm = l , i =  ( at,P) e  Pi = ( P G {  1, s) x  P G (  1, s) and b is the unique line 
in n,2 of intercept c £  F„, let /1 (x ,b)  be the unique line in 1122 o f intercept d,  
where we set d  = c + a  \( a  ^ 00, and c' = c if ct = 00.

Note that if n f  s + 1, we may choose the set T  so that 1 does not belong to T. 
Such a choice simplifies our construction considerably.

3.4 The covering morphism j 
We now define a function <f>: P\ x P2 —* P2 such that <j> is a covering morphism 
from X  to A G {  2 , s ) . Here P, = P G ( l , s )  x  P G ( l , s )  andP2 = F .  x F„.

Fix a nonsquare element u of F a. This exists since s is odd. For a , p  E 
PG( 1, s), x, y e  F a, we define:

{( x + o r . y + o r )  i f a ^ o o

( x , u _1j/) if ct = ft = 00 (3.2)

( uPx + y, x + Py)  if a  = 00, p  ft 00.
3.5 Proof of Theorem 2
To verify that <f> is indeed a covering morphism we fix m in T  C  P G (  1, s) and 
examine the action of 4> on the lines o f n m. Take b in I7m. Then b =  b\ * 62 with 

in n ;, t = 1, 2.  Let the intercept of 62 be c. Note that since 61 is a line of Xi 
outside n , (3 .1) implies:

For each h in P G {  1, s) there is a unique k in P G (  1, s) with ( h, k) €  61 .(3.3)
In particular, let k be the uniue point o f P G (  1, s) such that (oo, k) €  b\. Note 

that the function
b —* (k , c )

is a bijection from I~Im onto P G (  1, s) x  F„. (3.4)
In view of (3.2), (3.3) and the definition o f *, it is immediate that the restriction 

of 0 to 6 -  {(0 0 , k ) }  x  62 is a bijection onto P2 = F , x  F t . Also, <f> maps 
{(00, Jfc)}  x  62 bijectively onto the line o f A G (  2 , s) of slope m' and intercept d ,

where
( m k  +  l ) / ( u f c  +  m ) i f m  7* 00 

it i f  m  =  00,
c ( u k 2 -  l ) / ( u f c +  m ) i f  k ?  00, m  f  - u k ,  m  f  00 

c  i f  k  ^  00, m  =  —u k

c = c ( l  -  u k 2 )  i f  k ?  co, m  = 0 0

cf u  i f  k  =  00, m  00

r  i f  Jfc =  00, m  =  00.

m =



This verifies part (1) of the definition of covering morphism with a =  2 , 0 =  I.
The fact that u is a  fixed non-square, together with the above formulae, shows 

that for each fixed m  the map

(fc,c) -> ( m ' , c')

is a bijection of PG(  1, s) x F„ onto itself. From this fact and (3.4) we deduce that 
0  restricted to n m is a bijection from n m onto the set of all lines of AG(2,s).  
This verifies part (2) o f the definition of covering morphism.
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