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Abstract

In this paper we investigate minimal sufficient fibre conditions for a finitely generated flat
algebra over a noetherian integral domain to be locally A* or at least an A*-fibration. We also
deseribe the structure of finitely generated locally A*-algebras.

1. Introduction

In [3, 3.4}, the following result has been proved.

Theorem. Let R be a noetherian normal domain with quotient field K and let A be

a finitely generated faithfully flat R-algebra such that

() The generic fibre K @r 4 is o polynomial ring in one variable over K.

(it) For each prime ideal P of R of height one, the fibre ring k(P)QgrA is geometrically
integral over k(P) (where k(P)=Rp/PRp).

Then A is R-isomorphic to the Rees algebra R[IT] of an invertible ideal I of R; in

particular, A is an Al-fibration over R, ie., the fibre at every point P of Spec R is a

polynomial ving in one variable over k(P).

The result is somewhat surprising as conditions on merely the generic and codimen-
sion one fibres imply that all fibres are A'. This phenomenon had also been observed
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earlier in [2, 3.10 and 3.12] for subalgebras of polynomial algebras. In this paper we
show that an analogous result holds when the generic fibre 1s A (.. when A 4
is a Laurent polynomial ring K[7, 77'1). More precisely. we prove:

Theorem 3.11. Let R be a noetherian normal domain with quoticnt ficld K and et
A be u finitely generated flat R-algebra such thatr

(i) The generic fibre K sop A is a Laurent polynomial ring in one variable over K
(ii) For each prime ideal P of R of height one. the fibre ring k(P) A i geoniet-

rically integral but is not A' over k(P).

Then there exists an invertible ideal 1 in R such that 4 is « Z-graded R-algebra
isomorphic to the R-subalgebra R[IT,1-'T~'] of K|T. 7'V In particular. A is locally
A and hence an A*-fibration over R.

The crucial step in the proof is a patching Lemma 3.1. As an application ot the
patching lemma we shall also prove the following structure theorem for locally A
algebras over noetherian domains.

Theorem 3.4. Let A be a finitely generated algebra over a noctheriun domain R such
that for each maximal ideal M of R, Ay is a Laurent polynomial ring Ry [Ty T\, .
Then there exists an invertible ideal I in R such that A is a Z-graded R-algchra
isomorphic to R[IT,I~'T~'].

The above result is an analogue of a result of Eakin—Heinzer [4, 3.1] that aflin¢e do-
mains which are locally Al are the symmetric algebras of invertible ideals. (In fact. a
little modification of our proot will give an alternative proof of the Eakin Ieinzer theo-
rem for noetherian domains.) Finally, we investigate minimal sufficient conditions for a
finitely generated flat algebra over an arbitrary noetherian domain to be an A*-fibration
and prove the following analogue of [3, 3.5].

Theorem 3.13. Let R be a noetherian domain with quotient ficld K and let A4 be a
finitely generated flut R-algebra such that

(1) The generic fibre K ©r A is a Laurent polynomial ring in one variable over K.
(it) For each prime ideal P of R of height one, the fibre ring k(P) -z A is geomet-

rically integral but is not an A'-form over k(P).

Then all the fibre rings are A*-forms. In fuct, there exists a finite birational extension
R' of R and an invertible ideal I of R' such that R' @ A is a Z-graded R'-algebru
isomorphic to R'[IT,1"'T~']. Further, if R contains a Sield of charucteristic =cro.
and if all the fibres have more units than the respective residue fields, then A is an
A*-fibration over R.

We also give examples to show that the conditions in our theorems cannot be relaxed.
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2. Preliminaries

In this section we set up the notations, define the terms used in the paper, state a
few clementary results and prove a result on A*-forms. Throughout our paper we will
Assume our rings to be commutative.

Notation. For a ring R R will denote the multiplicative group of units of R. For a
prime ideal 77 of RoA(S) denotes the residue field Rp/PRp. The notation 4 = RV will
mean that A is a polvnomial ring in i variables over R.

Definition. An R-algebra 4 is defined to be A* if it is a Laurent poynomial ring in
one indeterminate over K. ie., if there exists an element 7 in 4 which is algebraically
independent over R such that 4 = R[T.T~').

An R-algebra A is defined to be focallvy A" if 4, is A" over Ry for every maximal
ideal A of R,

A finitely generated Hat R-algebra 4 is defined to be an A*-fibration over R if, at
cach point 2 of SpecR. the fibre ring k(P) - p A 1s A" over k(P).

Let & be a field and let & denote the algebraic closure of 4. A k-algebra B is said
1o be geomerrically integral (over k) if k - B is an integral domain. B is defined to
be an A -fornt over k itk - B is A" over k. A k-algebra C is said to be an Al-form
orer koifk L C = /\TI”.

Lemma 2.1. Let B A be integral domains. Suppose that there exists a non-zero
clement w© in B such thar Bl 'm] = A[1/n] and the canonical map B/nB — A/nd is
imjective. Then B =4,

Proof. Since the map B nB — A/nA is injective, it is easy to see that BN 7"4 = "B
for all n - 1. Let « £ A. Then a = b/n" for some b € B and non-negative integer .
Therefore b = na € n"B. Hence « € B. [

Lemma 2.2. Lot B he geometrically integral over the field k. Then k is algebraically
closed in B.

Proof. Let 7 be the algebraic closure of & in B. Then L &y B is an integral domain.
Suppose that L # & and let ¢ € L \ k. Let f be the minimal polynomial of a over k
and let Ly = k(a) Z k[XT/(f(X)). Then Ly &y B(— L &y B) is an integral domain. On
the other hand. L, 4 B(= B[X]/(/(X))) cannot be an integral domain since (X —a)
is a factor of f(X) in B[X]. The contradiction shows that L=4k. [

We now show that over a perfect field k, any A*-form having non-trivial units is A*,

Proposition 2.3. Let k be a field and let B be a k-algebra such that B* # k™. Suppose
that there exists a separable field extension L of k such that L @y B is A* over L.

Then B is A* over k.
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Proof. Let L&, B=L[T,T~']. We identify B with its image in L (8. 1t is casy 1o see
that B is finitely generated over A. Hence, there cxists a finitely generated separable
extension L; of k such that L, sop B = Li[T. 77! Thus. replacing Loby 1,0 we miy
assume L to be finitely generated over k to start with.

We first consider the case when L is finite algebraic over k. Replacing £ by its
splitting field, we may assume L to be finite Galois over & with Galois group (. say.
Any ¢ € G can be extended to a B-automorphism of L - B(=L]T.7 '}) by delining
cx®b)=cx)xbforxcl, b€ B. Let

T=ay@1 4+ad1 Qe +---+a, e,

where 1,ey,...,e, form part of a k-basis of B and a; € L. Since L is Galois. the bilinear
map L x L — k given by (x, ») — Trace(xy) is non-degeneratc. Hence. replacing 77
by aT (a € L) if necessary, we can assume that 7r(a;) # 0 for some i > 1. Thus.

W= ZG(T) =Tr(a) 21+ Tram) ey + -+ Tr(a,) - ¢

is an element of B\ k; in particular, " # 0.

We now show that B=k[W,1/W]. Let f € B*\ k*. Since k is algebraically closcd
in B by (2.2), f is transcendental over & and hence over L. Therefore. f = aT™ for
some a € L* and some non-zero integer m. Replacing f by 1/f if necessary. we may
assume m > 0. Since B is invariant under every g € G, we have

al™ = f = o(f) = o(a)(o(T))".

Since o(a) € L*, the above relation shows that ((¢(7))/T )" € L*, and hence (6(7T)) T =
L*. Therefore, o(T) = a,T for some a, € L*. Hence, W = aT for some a € L. Since
W #0, acL* Therefore, L{IW, 1/W]=L[T, T~ '] =L = B. Now, L being a finitc cx-
tension of &, L &; B is integral over B. Hence, BN (L%, B)* = B*. Therefore, 1 'H < B.
Now, as k[W,1/W]C B, by faithful flatness of L over k, it follows that B=k[W. 1. 1}'].

We now consider the case when L has positive transcendence degree over k. Now,
since L is a finitely generated separable extension of &, there exists a purely transcen-
dental extension K =k(X),...,X,) of k such that L is a finite separable extension of K.
Since L&k (K @4 B)=L[T.T'], by the previous case, it follows that K >4, B=K[W. 1 1¥']
for some W < K @y B. Since B is finitely generated over k, it is easy to see that there
exists a polynomial F(X),...,X,) € k[X1,....X,] such that

BIX, X, UF(XG X)) = kX, X, YF(X, LX), W 1V (%)

If k¥ is an infinite field, then we can choose elements Cl,...,¢y € k such that
Fcy,...,cy) #£ 0. Let N be the maximal ideal of KXY, X UF(X, ., X)) gener-
ated by Xi —cp,.... X, — ¢, 1/F(XY,..., X,) — 1/F(c1, ..., c,). From Eq. (%), it follows,
by taking quotient modulo the ideal N, that B is A* over k.

If k£ is a finite field, let N be any maximal ideal of X, X VFXG, LX)
and let &' =k[Xy,..., Xy I/F(X),...,X,)]/N. Then &’ is a finite vector space over k by
Hilbert’s Nullstellensatz and separable over k. Since &’ & B is A* over by Eq. (x),
it follows, by the previous case, that B is A* over k. [J
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Remark 2.4. The assumption that B* £ k* is essential in the above result. For instance,
consider the co-ordinate ring of the real circle, i.e., B =R[X,Y])/(X? + Y2 — 1). Then
C g Bis A" over C, though B is not A* over R.

3. Main theorems

In this section we shall prove our main results. We first prove a patching Lemma 3.1
and deduce a structure Theorem 3.4 for locally A*-algebras. Next we prove our result

(3.11) on A"-fibration over Krull domains and finally we investigate the general case
(3.13).

Lemma 3.1. Let R be un integral domain with quotient field K and let A be a flat
R-alyebra. Suppose that there exists non-zero elements x,y in R such that

(i) x and v either form an R-sequence or are comaximal in R.

(it) A[1'x} is A" over R[1/x].
(ii1) A[1 v} is A" over R[1/¥].

Then there exists an incertible ideal I in R such that A = @, ., 1"T" (CK[T, D
as a L-graded R-algebra.

Proof. Let
A =PRI and 4, = Prw
ner. nef.
Then
Ay = EPRT") = DRI,

nel nel

Therefore, it is easy to see that W is either AT or AT ' for some / € R;,. Replacing
T by T if necessary, we assume that W =2T. Let . =a/x"y" where a € R and m is
a non-negative integer. Again, replacing ' by y”#W and T by I)x™, we assume that

W =uaT forsome a € RNRY,.
Since A is R-flat and (R, T"), = (R, W");, using condition (i), it is easy to see that

A=A, N4, =4,
nel
where

Ay =RTI"NRW" = (R, Na"R)T" = (RNa"R)T". ()

Thus 4, is R-flat for every n. Note that, by condition (1), 4o(=R: N Ry) =R, showing
that 4 is a Z-graded R-algebra. Now let

I=RMNaR, and J=RMaR,.
Therefore,

I, =R., I,=aR,, J.=aR and J, =R,.
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We now show that IJ = aR. Since R, N R, =R, clearly / NJ = «aR so that 1/ T uR.
Let M denote the module aR/LJ. Recall that 4, = /T is R-flat so that / is flat over R.
Hence I/IJ is flat over R/J. From the construction of J it follows casily that v Is a
non-zero divisor in R/J. Hence, by flatness, x remains a non-zero divisor in / £/ and
hence in the submodule M. But M, = aR./I.J; = 0. Hence M =0, i.c.. I/ =uaR. Thus
I is an invertible ideal of R.

Let B:EB”EZ ["T7. Since I" CRNa"R, for all n, by (¥}, B A. I being invertible.
B is R-flat. Hence, from condition (i), it follows that B = B, N B,. Now. since «¢ is u
unit in R,, and I, =R,, it follows from (x) that (4,), =R, T"=1"R,T", so that 4, =5..
Similarly U(A,z )y =d"R,T" =1"R,T", so that 4, = B,. Thereforc. 4 =4, 4. =B, "
B, =B=,, I"'T". [

Example 3.2. The assumption of flatness is essential in Lemma 3.1. For instance. let
R=C[X,Y,Z W]/(XY — ZW) and let x, v,z and w be the images in R of X.Y.Z and

W, respectively. Let I = (x,z)R and let 4 = R[IT.17'T~']. Then clearly 4 is not R-flat
although 4, and 4, are A" over R, and R,, respectively.

We shall now apply the patching Lemma (3.1) to prove a structure theorem for
locally A* algebras. For convenience, we first prove the structure theorem over semi-local
noetherian domains.

Lemma 3.3. Let R be a semi-local inteyral domain and let 4 be an R-algebra swhich
is locally A* over R. Then A is A* over R.

Proof. Clearly, A is finitely generated and flat over R. Let Py, ..., P, be the maximal
ideals of R. We prove the result by induction on », the number of maximal idcals of R.

If n =1, there is nothing to prove. So let # > 2 and assume the result when the
number of maximal ideals is < n — 1. Let S, =R\(P\U---UP, 1)and ;=R\ P,. By
induction hypothesis, SflA and SQ“IA are A* over S,“R and S;IR, respectively. Since
A is finitely generated over R, it follows easily that there exists a pair of elements
x €81,y € 8 such that A(1/x] and A{1/y] are A* over R[1/x] and R[1/¥], respectively.
Clearly, x and y are comaximal so that from (3.1) it follows that 4 is A* over R. [

We now prove the structure theorem for Jocally A* algebras.

Theorem 3.4. Let R be an integral domain which is either noetherian or a Krull
domain. Let 4 be a finitely generated R-algebra which is locally A* over R. Then
there exists an invertible ideal I in R such that A is isomorphic to R[IT,I-'T~'] as
a Z-graded R-subalgebra of K[T,T'], where K is the quotient feld of R.

Proof. Since 4 is finitely generated, from the given condition, it is easy to see that
there exists x € R such that A[1/x] is A* over R[1/x]. If x ¢ R*, we are through. If
not, then since R is either noetherian or a Krull domain, xR has finitelv manv prime
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divisors. Let Py, P, be the prime divisors of xR. Let S =R \(PyU---UPy). Then
S 'R being a semi-local integral domain, by (3.3), S~'4 is A* over S'R. Hence there
exists v < 8 such that A[1 v] is A* over R[1/v]. By construction, x and y either form
an R-sequence or are comaximal. Hence, 4 being flat, the result follows from (3.1).
O

By a result of Asanuma [1, 3.4], an A'-fibration over a noetherian ring R is neces-
sarlly an R-subalgebra of a polynomial algebra over R; in particular, there is a retract
from 4 to R (i.c.. an R-algebra homomorphism from 4 to R). By contrast, the follow-
ing corollary shows that even when 4 is locally A* over a noetherian domain R, there
would be a retract from A to R if and only if 4 is itself A* over R.

Corollary 3.5. Let 4 be a finitely generated locally X* algebra over a noetherian
domain R. Suppose that there exists a retract from A to R. Then A is A* over R.

Proof. By (3.4). A =@,., ["T" for some invertible ideal J of R. Let ¢ be a retract
from 4 to R. Let J, = ¢(UT) and J, = ¢(I ' T~"). We show that the ideals .J; and J,
of R are actually the unit ideal. Let «y,...,a, € I and b,...,b, € [~" be such that
1 =5 abj =3 (a;T)b;T~"). Therefore,

T=¢(h) = $aT)pbiT ") €

showing that J,J» = R and hence J; =J, = R. Thus there is an R-surjection from / to
R showing that / is principal. Therefore 4 = R[T,7~']. [

Example 3.6. The assumption of finite generation is essential in Theorem 3.4. For
instance, consider R=7Z and 4 =Z[X/2,2/X, X/3,3/X,....X/p, p/X,...] where p varies
over the set of prime integers. Then Q&z4=QI[X, 1/X] and Z,\®zA4=2»\1X/p, p/X]
for each prime integer p. Thus A4 is locally A* over R. But A is not finitely generated
over R.

We now investigate minimal sufficient conditions for a finitely generated overdomain
of a discrete valuation ring to be A",

Proposition 3.7. Let R be a discrete valuation ring with uniformising parameter m
and residue field k. Let A be a finitely generated overdomain of R such that
(i) The generic fibre A[1/x] is A" over R[1/x].
(ii) The closed fibre A/nA is geometrically integral over k.
Then there are precisely two possibilities:
(a) If (A/nA)* + k*, then A is A" over R.
(b) If (A/nAY =k*, then A = R[X, Y]/(n" XY +aX + pY +7) for some o, € R*, 7y € R
and positive integer m. In particular, A/nA = kUL

Proof. Let A=R[1,...,1,]. Since 7 is a prime element in 4 and A[1/7] is factorial, it
follows that 4 is factorial. From the factoriality of A, it is easy to see that there exists
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an element 7 € A such that T=' € 4 and A[1/n] =R[1/r][T.T ']. Let Ay =R[T.T '},
If Ag =4, then 4 is A* over R.

Suppose that Ay # A. Let xo=T, yo=T "' and Fo(X. Y )=XY — 1. For an clement « 1.
denote its image in 4/n4 by a. Since Ap[1/n]=A[1/n] and Ay # A by hypotheses. the
canonical map 4o /mdy — A/mA cannot be injective by (2.1). Thercfore, dim(k|Xy. v |)
0. Since £ is algebraically closed in A/mA4 by (2.2) and Xy =1. it follows that Xy vy
k*. Hence there exist x, y; € 4 and Ag, fto € R* such that xo=mx,+2 and yo=my) + .
Let A =R[x|, y;]. Clearly 49 € 4;. Since )_,0/70:,\70'\"0: 1. it follows that 2y — | =1
for some element 7, € R. Now,

Fo(mX + 70, 7Y + 119) = (X + 70)(TY + 119) — 1
= TCZXY + e X + oY + = nF (XL ).

where F; € Rl Note that, by construction, F(X,Y)=nXY + u.X + ;Y + 7. where
a1 (=pg) € R*, fi(=/g) € R* and 7, € R. Therefore, F is irreducible and hence prime.
and F(x1, ¥1)=0 (since F(xp, yo)=0). Hence it follows that 4} = R[X. V] (F (X 1))
If A=A, then we are through (since in this case, (4/m4)* = (k") =4* and statement
(b) is satisfied).

If 4y # A, then we show that there exists a finite increasing chain of rings
AgCA C- - CAy CAp1 T+ CAm = A with 4, = R[x,. v,], and a sequence of ir-
reducible polynomials F,(X,Y) € R[X, Y|(=R)), (1 < n < m), satisfying conditions
(1) and (I}) below for 1 < n < m, and the recurrence relations (Il1) and (I1V) for
1 <n<m-1.

) FX,Y)=a"XY +a,X + .Y + 74, where v, € R and =,, , € R*.

(D) Fu(xy, ) =0 and the map R[X, Y|/F(X,Y) — A, defined by X — x,.Y — v,
is an isomorphism.

() xy = mxp1 + Ayy Yo = Type1 + py for some 4, 1, € R.

(V) Fu(Xni1, Yoi1) = Fpp (xpi1, Yni1)-

We have already defined 4; and F satisfying conditions (I) and (II) for n = 1.
Assume that we have defined upto 4, = R[x,, y,] and F,, for some integer n > 1,
such that conditions (I) and (II) hold. We show that if 4, £ 4, then it is possible to
construct A, | = R[x, 1. y,11] and F,, using relations (IIT) and (IV), such that 4, is
a proper subring of A4, and conditions (1) and (II) are satisfied by A,y and F,, ;.

Since 4,[1/n] = A[l/r] and 4, # A4, it follows, by arguing as in the case n = 1,
that X,,, ¥, € k. Let 4,14, € R be such that X, = 7, and ¥r = I,,. Hence there exist
Yntts Yat1 € A such that relation (1) holds. Let 4, | =R[x,;, Yur1]. Clearly A, C A4, .
Since by induction hypothesis, condition (1) is valid for F,, we have

Fo(TX + gy Y + i) = (X 4 A, ) (Y + ) + (X =+ 7)) + Bu(mY + pty) +

="2XY + nX (o, + 7" + 1Y (B, + 720 4 Fulons 1),

Now since (II) is valid for F,, we have, 0=Fu(xy, yn) = Fp(mx,q + s T Ynat + )
which shows that F,,(2,,1t,) € TA N R =nR. Let y,. = Fu(ps 412)/7(€ R). Now by the
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previous equations we can define
Fy. (XY)= F,,(T(,\/ + }vrz~ Y + Hy )/’7!
=n" I\/Y + %y lX +ﬁn¢ 1Y +Vn 1,

where », (=2, +7"1,) € R*. f, (=, +n"/,) € R* and 7,,, are all elements of R.
Thus construction shows that £, is an irreducible (and hence a prime) element of
RLX.Y] which satisfies condition (1) and the recurrence relation (IV). Moreover,

Fn~ TRFIEN AR )= F,,(.\’,,, Y )/'/T[ =0.

It follows that there is an R-isomorphism R[X,Y]/(F,. (X, Y)) — A,;1 mapping the

images of X and Y to x,.; and y,.,, respectively. Thus (II) holds for the pair F,
and 4, ..

We now show that 4, # A, . Recall that A=R[t,,...,7,]. Let £, be the least integer
such that 7n’71; € 4, Vj.1 < j < p. Such an integer exists since A,[1/n] = A[1/x].
Moreover, 7, > 0 since A, # 4. Hence there exists ¢ € RI? such that

/o
T = ¢(-Y/1~ Yn)
- (j)(T[X,H |+ )~17- TV + ,“n)

- ¢()~na ,U,,) + 7'(6()(,, v1s Vit )
for some 0 € Rl Since 7, > 0, ¢(p. itn) € 1A N R = nR. Thus if
l,//(/\/v Y)= (/)()-lz’llrz )/7[ + ()(X~ Y),

then

fo—ly R
T l/_l//(erl’yn—H)EA;HI

showing that
OS/,,,:,] S/n*l </17-

This shows that 4, # A4,,,.
Since the chain of integers

OS"’/M‘1</M<"’</0

obviously cannot be infinite, there exists a positive integer m for which £, =0, i.e.,
A, = A. In particular, 4/n4 = kM by construction of 4,,.

We can now deduce conclusions (a) and (b).

(a) If (A/mA)* £ k*, then A=A, (for otherwise, by our previous arguments, 4= A,
for a positive integer m and hence (4/n4)* = (k!)* = k*, a contradiction). Thus 4 is
A" over R.

(b) If (A/mA)* = k*, then obviously 4 # Ay and hence 4 = 4,, for some positive
integer m and therefore by conditions (I) and (I), 4 = R[X, Y]/(n"XY +aX + Y +7)
for some o, € R* and y € R. [
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Remark 3.8. Unlike the case of A'-fibration, the condition of geometric imtegrality on
the closed fibre is not sufficient to ensure that a finitely gencrated overdomain ol a
discrete valuation ring, whose generic fibre is A®, is itself A", In fact it is casy 1o see
that if (R, m,k) is a discrete valuation ring, then for any 2. ff € R, » & R and positive
integer m, R[X, Y]/(n"XY + 2X + BY + ) is a finitely generated flat R-algebra whose
generic fibre is A* and closed fibre is A'.

Corollary 3.9. Let R be a Principal Ideal Domain with quotient ficld K- and suppose
that A is a finitely generated overdomain of R such thui
(i) The generic fibre K ®p 4 is A" over K.
(i) Each closed fibre A/PA is geometrically integral but is not A* over R P.
Then A4 is A* over R.

Proof. Let P be a maximal ideal of R. By the hypotheses, Rp is a discrete valuation
ring and Ap is a finitely generated flat Rp-algebra whose generic fibre is A™, and whose
closed fibre k(P)®g 4 is geometrically integral, but £(P) =z 4 # k(P)'"). But then. by
part (b) of Proposition 3.7, (k(P) g A)Y* # k(P)*. Therefore, by part (a) of (3.7). Ap
is A* over Rp.

Thus, A4 is locally A* over R. Since every invertible ideal of a PID is principal. by
Theorem 3.4, it follows that 4 is A* over R. [

Remark 3.10. Suppose that R is a PID and A4 is a finitely generated flat R-algebra
such that the generic fibre is A* and all the closed fibres are geometrically integral.
Then, by (3.7), each closed fibre is either A" or Al. It is possible that some arc A"
and some A'. For instance, let R be a PID with two maximal ideals (m) and (7-). Let
A =R[X,Y]/(m2 XY + mX + 7Y + 1). Then the generic fibre of 4 is A*, the closed
fibre 4/m14 is A* but the closed fibre A/m,4 is Al

We now prove our main theorem over Krull domains.

Theorem 3.11. Let R be a Krull domain with quotient field K and let A be a Jinitely

generated flat R-algebra such that

(1) The generic fibre K @g A is A* over K.

(i1) For each prime ideal P of R of height one, the Jibre ring k(P) %p A is geomet-
rically integral but is not Al over k(P).

Then there exists an invertible ideal I in R such that 4 is isomorphic to €5, ., 1"T"

as a L-graded R-algebra. <

Proof. Since 4 is finitely generated over R, by condition (i), there exists a non-zero
element x € R such that A[1/x] is A* over R{1/x]. If x € R*, we are through. If not,
then let Py,..., P, be the prime divisors of xR and let S=R\ (P U---UP,). Since R
is a Krull domain, it P; =1 Vi,1 < i < m. Therefore S—'R is‘ a semi-local Dedekind
domain and hence a PID. It follows, by (3.9), that S~'4 is A* over S~'R. Hence there
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exists v = S such that 4, is A" over R,.. Since by construction x and v either form a
sequence or are comaximal. the result now follows from (3.1). O

Remark 3.12. Note that the example in (3.10) shows that, in the statement of Theorem
311000 1s necessary to impose the condition that the codimension one fibres are not
A'. From Proposition 3.7, it follows (assuming all other hypotheses in (3.11)) that any
codimension one fibre which is not A', is automatically A*. Also note that, by (3.7),
the codimension one fibres are Al if and only if they do not have non-trivial units.
Thus. condition (ii) in Theorem 3.11 will be satisfied, for instance, under either of the
following hypotheses on the fibres at the prime ideals P of R of height one:

() (K(P) gAY # (k(P))".

(i) k(P): p A4 are A*-forms.

We now investigate the general case.

Theorem 3.13. Ler R be a noetherian domain with quotient field K and let A be a

Sinitely generated flat R-algebra such that

(1) The generic fibre K =g A is A" over K.

(11) For cach prime ideal P of R of height one, the fibre ring k(P) g A is geomel-
rically integral but is not an A'~form over k(P).

Then the following results hold:

(a) All the fibre rings are A*-forms.

(b) There exists a finite birational extension R’ of R and an invertible ideal I of R
such that R' v A is a Z-graded R-algebra isomorphic to R'UT, I~ T'].

(¢) If R contuins a field of characteristic zero, and all the fibre rings have more
units than the respective residue fields, then A is an A*-fibration over R.

Proof. Suitable modifications in the arguments in [3, 3.5] would give a proof of (a).
For the convenience of the reader we sketch the proof below.

Fix a prime ideal P of R. Replacing R by Rp, we assume that R is a local noetherian
domain with maximal ideal P. We prove (a) by induction on Af P = dim R. The case
ht P =90 is trivial.

If it P(=dimR) = 1, then, from the Krull-Akizuki theorem ([5, 33.2}), it would
follow that the normalisation R of R is a PID and k(P) are algebraic extensions of
k(P) for all maximal ideals P of R. Therefore, from condition (ii), it follows that for
all P e MaxR, k(P) @5 (R ©5 A) are geometrically integral but are not Al over k(P).
Moreover, by condition (i), the generic fibre of R @z 4 is A* over R. Hence, by (3.9),
R&p A is A over R. In particular, k(P)@g A is A* over k(P) VP & Max R. Hence
k(P)®g A is an A*-form over k(P).

If bt P > 2, then, by induction hypothesis, we assume that the fibre rings k&(Q) ®z 4
are A*-forms for all non-maximal prime ideals O of R. Let R denote the completion of
Rand let A=R@gA. Now R is a complete local ring with maximal ideal 2 such that
R/P > R/P and A4 is a finitely generated flat R-algebra whose non-closed fibres are all
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A*-forms. Moreover, if O is a minimal prime ideal of R. then. since R is R-flat. by
the “going-down theorem”, O contracts to (0) in R. Hence. it follows from condition
(i) that, the fibres of A at all minimal prime ideals of R arc A". Let 0, be a minimal
prime ideal of R such that dimR = dinl(]é/Q()). Then, replacing R by R O, and 4 by
AA/QAOAA, we may assume R to be a complete local noetherian domain to start with. and
assume A to be a finitely generated flat R-algebra such that the generic fibre of . is A7
and the fibres at all non-maximal prime ideals of R are A*-torms. In ({5. 32.1]). the
normalisation R of R is a finite R-module and hence a noetherian normal local domain.
Now, as before, it would follow that R %p A is A" over R showing that A(P) - p 1 is
an A"-form over k(P).

We now prove (b). Let R denote the normalisation of R and let A=R ;4. Bya
theorem of Nagata [5, 33.10], R is a Krull domain. Clearly A is a finitely generated
flat algebra over R and its generic fibre is A*. Moreover. since the residuc ficlds of R
are algebraic over the residue fields of R, by result (a), all fibres of A are A“-forms
over their respective residue fields. Hence, by Theorem 3.11, there exists an invertible
ideal 7 in R such that

Reopd =RUTI 771, ()

I, being invertible, is finitely generated, say, I = (a],...,a,,,)R Let by..... by € K be
such that @16, + - - - +aub, =1, so that iil is generated by b,.....b,, as an R-module.

Since 4 is finitely generated over R, A=R[1,,...,t,] for some fi.....t, € A. By Eq.
G 1@G=3"_, <ic, g T" for some g; € I', 1 < j < p. The coefficients ¢;; may be
expressed as

i ; .
E Cjiyeiy@) -ay fori >0
ity =i

i 1 .
> G bl bl fori <0,

i tiy=—i

g5 =

where ¢j;,...;, € R. Again, by Eq. (%), we have

Cl,‘T = E Uir & Uy and biT_] = E Wiy & zZjy

1</<q, 1</<y

for some u;s, w;, € R and Viryzis € A.

Now let R' be the R-subalgebra of R generated by the elements a,...,a,; a:b,
(where 1 < i,/ < m); cj.., (Where ij + -+ i, = lil, —=s; <i < ri, 1 <j < p);ouy
(where 1 </ < g;,1 <i<m) and w, (where 1 < £ < 1,1 <7< m), Let [ be the
ideal (ai,...,a,)R". Then R’ is a finite birational extension of R and | is an invertible
ideal of R’

' Since 4 is flat over R, R’ @r 4 may be identified with its image in R ®z A. Then it
is easy to see that R" @p A = R'[IT, 7' T~'],

Part (¢) follows from (2.3). [J
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Remark 3.14. The above proof shows that in the statement of (3.13), in condition (i),
1t 1s enough to assume that the generic fibre is an A*-form. (In the proof take R to be
the integral closure of R in L. where L is a finite extension of K such that L g 4 is
AT over L)

Suppose that R is a one-dimensional noetherian domain and 4 is a finitely generated
flat R-algebra whose generic fibre is A® and whose closed fibres are geometrically
integral. We have seen in (3.10) that, in this situation, a closed fibre might be Al
Moreover. if R is a PID and a closed fibre is not A, then, by (3.7), that closed fibre
1s necessarily A", However, the following example shows that if R is not normal, then,
under the above hypotheses, a closed fibre might be a non-trivial A'-form. Therefore
we do need the stronger hypothesis in condition (ii) of Theorem 3.13 as compared to
the corresponding condition in Theorem 3.11.

Example 3.15. Let &k be a non-perfect field of characteristic p. Let § € k be such that
Zr — [ is irreducible in K[Z). Let L=k[Z]/(Z? — ) = k(2), where 2 = f5. Now let
R =k + (U)L[{U]]. considered as a subring of L[[U]]. Then R is a one-dimensonal
local domain with maximal ideal M =(U )L[[U]], quotient field K=L{((U)) and residue
ficld 4. Being a finite module over A[[U]], R is noetherian.

Let X;=X+2Y and ¥, =Y —X/”. Then it is easy to see that that K[X;, ¥, ]=K[X,Y]
and UX,.Y € RIX.Y]. Let F(X.Y)=UX\Y, + Y, +1 and 4 =R[X,V]/(F(X,Y)). One
can verify that 4 is R-flat, the generic fibre K g 4 is A* over K and the closed fibre
k- x A is a non-trivial A'-form over k.

In [3, 3.5], it was shown that if R contains the field of rationals, then conditions on
generic and codimension one fibres are enough to conclude that 4 is an Al-fibration
over R. But below we give an example of a finitely generated flat algebra 4 over a
two-dimensional noetherian local domain R, whose fibres at all non-closed points of
SpecR are A, but whose closed fibre is a non-trivial A*-form. Thus in the non-normal
situation, we need a condition on «/l fibres (i.e., the existence of non-trivial units) to
conclude that all fibres are actually A™.

Example 3.16. Let R and C denote the field of real numbers and complex numbers,
respectively. Let R=R+ (U, V)C[[U, V1] (considered as a subring of C{{U, V']]). Then
R is a two-dimensional local domain with maximal ideal M =(U, V)C[[U, V]|, quotient
field K = C((U,V)) and residue field R. Being a finite module over R{[U,V]], R is
noetherian. Let 4 = R[X, Y]/(X? + ¥Y? — 1). Then A4 is a finitely generated R-algebra
and being a free module over R[X7], it is also flat over R.

Now let R denote the normalisation of R. Then R=C[[U, V]} and M is the conductor
of R in R. Clearly R %z A is A* over R and hence k(Q) @x 4 is A* over k(Q) for
every prime ideal O of R.

Since M is the conductor of R in R, for every non-maximal prime ideal P of R,
Rp=Rp so that k(P) g 4 is A* over k(P). But k(M) @r A =R[X, Y]/(X? +Y? —1)
is an A*-form over k(M )(=R) but is not A" over £(M). U
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