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For the multivariate normal mean (vector) estimation problem, 

some characterizations of the Pitman closest property of a  general 

class of shrinkage (or Stein-rule) estimators (including the so 

called positive-rule versions) are studied. Further, for the same 

model when the parameter is restricted to a positively homogeneous 

cone. Pitman closeness of restricted shrinkage maximum likelihood 

estimators is established.

1. INTRODUCTION

Consider a p-variate normal distribution with an unknown mean 

vector 0. Under a  quadratic loss, the classical maximum likelihood
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estimator (MLE) is not admissible for p > 3, and shrinkage or 

Stein-rule versions dominate the MLE in the sense of having 

uniformly (in 0) a smaller (or at most equal) risk. Sen, Kubokawa 

and Saleh (1989) have shown that a similar dominance result holds 

under a (generalized) Pitman closeness criterion (PCC), and further 

for this, it suffices to take p > 2. The POC is an intrinsic 

measure of the comparative behavior of two estimators withou: 

requiring the existence of their first or higher order moments. On 

the other hand, a characterization of the Pitman closest property 

(PCP) of an estimator (even within a class) may require at 

exhaustive pairwise comparisons with other estimators (belonging to 

the same class), and thereby may generally demand additional 

regularity conditions. Actually, such a  PCP characterization may 

not universally hold. The usual transitiveness property which 

pertains to quadratic or other conventional loss functions may not 

hold under the PCC [viz., Blyth (1972)], and hence, some 

non-standard analysis (specifically tailored for specific models} 

may be necessary for such a  PCP characterization. For some simple 

(mostly, univariate) models, some success along this line has been 

achieved, only very recently, by restricting to suitable class ol 

equivariant estimators where equivariance is sought with respect to 

suitable group of transformations which map the sample space onto 

itself [viz., Ghosh and Sen (1989), Nayak (1990), and Sen (1990) 

among other]. In genuine multivariate estimation problems, the 

entire class of equivariant estimators may be too big to ensure the 

PCP characterization. For example, for the multivariate normal 

dispersion matrix model, there is a  gradation of various equivariai11



estimators of the dispersion matrix, and a (generalized) PCP 

characterization may hold for certain subclasses, but not for the 

entire class [viz., Sen, Nayak and Khattree (1990)]. In this 

respect, the results in Sen, Kubokawa and Saleh (1989) are only 

partial, and there is a need to incorporate the PCP characterization 

results for a more comprehensive account. Motivated by this query, 

the first objective of the present study is to examine the PCP 

characterizations of estimators of the multivariate normal mean 

vector within a  class of shrinkage or Stein-rule estimators. As 

will be seen that for some class of shrinkage estimators, such a PCP 

holds while it may not do so for some other class.

Sengupta and Sen (1991) have considered some multivariate 

normal mean models when the parameter is restricted to a positiuely 

homogeneous cone, and they have shown that in the light of the usual 

quadratic risks, the usual restricted MLE (RMLE) dominates the 

unrestricted MLE (UMLE), but is dominated by appropriate restricted 

shrinkage MLE (RSMLE) . In view of the PC dominance results in the 

unrestricted model, treated in Sen, Kubokawa and Saleh (1985), it is 

quite natural to inquire whether parallel PC domiance results hold 

f°r the restricted parameter space model too? This is the dual 

objective of the current study.

Section 2 is devoted to the study of PCP characterization of 

shrinkage estimators of multivariate normal mean vectors in an 

^restricted setup. Section 3 deals with the Pitman closeness 

dominance of RSMLE over the RMLE when the parameter belongs to a 

Positively homogeneous cone. Some general remarks are appended in 

concluding section.



2. PCP OF SHRINKAGE ESTIMATORS

Let X ~  ^p(§’ a^ Y) where p is > 2, 0 = (0^.....are

unknown parameters and V is a known positive definite (p.d.) matrix.

For two estimators 6  ̂ and 6^ of 0, and for a given positive definite

2
(p.d.) matrix Q, defining the norm IIx-ĵ IIq as (x-^)'Q(x-j^), we say

that 6, is closer to 0 than 6„ (in the norm I M L )  in the Pitua:. ~1 ~ Q

sense if

PQ {116, - Gll„ < II6„-0IL} > 1/2, V e.a, (2.1)
0 , a l ~1 ~ Q  - ~2 ~  Q ’ - ~

with strict inequalities holding for some 0. Note that (2.1) is ar.

equivalent representation of

P0 {116, - 0lln < II6„ - 0ll„} > PQ {116, - 0ll„ > II60 - 0IL}, V 0.a.
0,crl ~l ~  Q ~2 ~ Q  0 , a l 1 ~ g  ~2 g

However, in (2.1), the "less than or equal to” sign may not be

generally replaceable by "less than" sign (unless the probability

for the tie 116, - GII„ = II6„ - 0ll„ is null, for all 0), and in the 
~1 ~ g  ~2 ~ Q  ~

context of shrinkage or Stein-rule estimators, we shall find (2.1)

more convenient than its variants. In the particular model, choser.

above, one may take Q = V although Q  may often be chosen froa

other extraneous considerations. Sen, Kubokawa and Saleh (1989)

considered some shrinkage (or Stein-rule estimators of 0 of the font

6^ = X - ^(X,S)SIIXI|-2V Q_1 V _ 1X, (2.2)

2 —1 2 2 
where S is distributed as o q \ , independently of X, \ has the

central chi square distribution with q degrees of freedom (DF), 0 i

£ (P- l)(3p+l)/2p for every (X.S) a.e., p > 2 and IIXIIq y =

. - 1 - 1 - 1 2  2 
X  X 8 X X- If a  is known, in (2.2), S has to be replaced by a



Then, they have shown that

(2.3)

so that a SMLE 6 dominates the MLE X in the Pitman closeness 

treasure for all p > 2 and all shrinkage factors <#>(•) satisfying the 

bounds stated above. An important member of this class of SMLE is 

the simple James-Stein (1961) estimator for which ^(X.S)

= b : 0 < b < (p-1)(3p+l)/2p, where the upper bound is modified in 

the light of the PC measure as in Sen, Kubokawa and Saleh (1989) and 

Keating and Mason (1988). The PC measure in (2.1) is a pairwise 

ir«asure. If (2.1) holds for all 6^ C ^ and 6  ̂ € for a suitable 

class *€ of estimators, then <5̂  is said to be the Pitman closest 

estimator (PCE) of 0 within the class '€. Let us denote by the 

class of all SMLE {5 } where f satisfies the inequalities 0 < </>(X,S) 

{ (p-1)(3p+l)/2p. We are primarily interested in a characterization 

of the PCE of 0 within the class *£ (or a suitable subset of it). In 

Sen, Kubokawa and Saleh (1989), positive rule versions of the SMLE 

& , (denoted by 6+ ) were also considered, and it was shown that 6+ 

dominates in the PC sense. There is a natural question whether

a PCE exists within the class of positive rule versions of SMLE? We 

shall study this problem too.

To set the inquires in proper perspectives, let us first

2
consider the simplest situation where a is known, and without any 

loss of generality, we may set V = 1^. In this setup, without any 

loss of generality, we let g  = 1 ^, so that in (2 .1 ), we need to use 

the Euclidean norm 11*11 and (2 .2 ) reduces to

£* = {1 - *(X. o2 ) a2nxif2}x . (2.4)



For the usual James-Stein (1961) version, we set = b (> 0), so 

that (2.4) reduces to

6(b) = {1 - b CT2 IIXlf2 }X, b > 0. (2.5)

For the positive-rule version, we set

f llxll2/ct2 , llxll2 < b a 2

j  2 2 {2 ' 6) 
b , llxll > b a ,

so that

6+ (b) = {1 - b cr2 llxll 2 }+ X, b > 0, (2.7)

where a+ = (a V 0) max(a.O). It follows from Sen, Kubokawa and 

Saleh (1989) that 6+ (b) dominates 6(b) in the Pitman closeness 

sense, for all permissible values of b (> 0 ) (for which 6(b) 

dominates X in the same sense). This leads us to formulate the 

following classes of shrinkage estimators'-

(i) <ejs = {6(b) : 0 < b < (p-1)(3p+l )/2p}

(ii) = (6+ (b) : 0 < b < (p-1) (3p+l )/2p}

and (iii) “6 = general class in (2.4) with <p < (p-1)(3p+l)/2p.

Even within each of these subclasses, there may not be a  Pitman

closest estimator. To illustrate this point, we denote by m = 

2
med(Xp) and let

= {6(b) : mp < b < (p-l)(3p+l)/2p> (2 .S)

= {6(b) : 0 < b < mp } (2.9)

Then, we have the following.

Theorem 2.1 6(m ) = 6^ is the Pitman closest estimator of 0 within-vv p ^ <v

the class ^ .
Jo



P r o o f . Note that

1.6(b) - 9II2 = IIX - Oil2 - 2b <72 IIXlf2 X'(X-B) + b2 IIXII 2 a4 ,

for every b > 0. Therefore, by (2.1), we obtain that for every 

2
b > m , setting a = 1,

P {116° - 011 < 116(b) - 011} 
y ~ ~ ~ ~

= Pfl{(b2 - ™2 ) > 2(b-m ) X'(X - 0)} 
g p p

= Pe {X'(X-0) < i{b + mp )}

= P„ { X2 , < X + k  (m + b )>: X = |- II01I2 , (2.10) 
A p , A Z p t

1 2
where the last step follows by noting that x'(x-0) = lix - ^

- X  and X - j r e - A  (I e. I ) .  Note that 
~ 2 ~ p v2 ~ ~p'

(b + mp ) > mp , for every b > mp , {2 . 1 1 )

(X) 2
while by the subadditive property of nr = median of \p ^ [viz.,

Sen (1989)], we have

+ \ = m + X, V X > 0. (2.12)
P _ P P

Hence, from (2 .10), (2 .1 1 ) and (2 .1 2 ), we have

r0 < M 0 - OU < 116(b) - BU} i V 0, b > n y  (2.13)

so that within the class , 6^ = 6(m ) is the Pitman closest
JS ~ p’

estimator of 0. Q.E.D.

(2 )
Before we proceed to consider the dual class ^jg • we n^y note 

that if in (2 .8), we replace mp by any a  = mp - r), for some



mp by choosing b sufficiently close to m Thus, for 9 = 0  (and a

neighborhood of 0), A + ^ (a + b) will be less than , and hence,
~ 2 p

(2.13) will be < Thus, (2.13) can not hold for every 0, and

hence, the desired PCP does not hold. This explains why the class 

has the vertex 6® and that 6® is the unique estimator of 0 

within this class to ensure the desired PC property.

(2 )
Let us next examine the PCP within the class ‘fi TQ - Proceeding 

as in (2 .1 0 ), we have for every 0 < b < m ,

P0 { 116° - 011 < 115(b) - 011}

= PA < A  ^ A + I (mP + b » ; A = i "S"2 • (2 '14'

Now, we can use (2.24) of Sen, Kubokawa and Saleh (1989) and

conclude that 6^ dominates 5(b) in the Pitman sense whenever

^(m + b) is < (p-1)(3p+l)/4p, i.e.,
<L p

2
0 < b < (p-1)(3p+l)/2p - m = 2^-i - fpi (2.15)

where f is a decreasing function of p; at p = 2, = 0-386 and it

monotonically converges to 0.334 as p increases. In a  similar

manner, it follows that on letting fp = (p2-l)/2p - fp , 5(bp ) is the

Pitman closest estimator of 0 within the subclass {6(b); 0 < b  < b^}

(C 'fijg^). However, 5(bp ) may not dominate 6^ (or any other 5(b),

for b close to m ) in the Pitman sense, and hence, 6(b^*) is not the 
P ~ v p'

Pitman closest estimator within the class ^jg^ • Similarly, we shall

see that 6 fails to dominate (in the Pitman sense) any other 5(b)

when b is very close (from below) to mp . The proof of this rests on

the following result. Let and be respectively the mode

2
and median of Xp for A > 0 and p > 2.



Lemma 2.1 For every p > 2 and X > 0,

m£X ) < M ^ .  (2.16)

Outline of the proof. Although (2.16) has been stated in Sen

(1989), the proof remains obscured due to a multitude of

typographical errors. As such, we provide here a more direct proof.

2
As in Sen (1989), we denote the d.f. and the p.d.f. of \ . by

q , X

G^ ^ ( x )  and g ^ ^ ( x ) ,  respectively, for x > 0, X > 0 and q > 1 . 

Also, let G ^ \ x )  = 1 - G^ ^ ( x ) .  Then, as in Sen (1989), we have

O /ax) g (x >(m£ > )  = (a/ax) > h ^ }

= - K A )(0  + 1  Gp+2 ^Mp+2  ̂ - 4 A ) (M^ ) ( ^ X ) m^

= [1 - ( a/ ax) M^)] g ^ ( M ^ ,  (2.17)

as S^+2 ^ p + 2  ̂ = ®p ^ ^ p + 2 ^ ' Thus, we may proceed as in

(2.23) through (2.28) of Sen (1989) and conclude that for our (2.16) 

to hold, it suffices to show that

= ( a / a x ) M ^  < i ,  v x > o, p > 2. (2 .18)

Writing a. = g ^ ] ( M ^ ) / g ^ ( M ^ )  b = g ^  ( M ^  ) / g ^  ( M ^ )
A p+4v p+2' &p + 2 l p+2;’ A p+6 ' p+2 p+4 p+2

(and noting that by the log-concavity of g Q ^ ( ' ) ,  b^ < a^, 

v X > 0), and making use of (2.13) of Sen (1989), we have



MA = aA + I  ^  - V ^ A  + MX ] " I  aA ( 1 " V

i.e., MX {1 - | ( 1  - a ^ }  = {1 - |  (1 a^) } - ( 1 - ^ )

+ I  V 1 " V  -  l ^ 1 “  V

< {1 - |  (1 - aA ) } ,  (2.19)

whence (2.18) follows by noting that g{l - a^) is < 1, V A  > O.

Now, by virtue of the inequalities

< p + A; < m + A, (2.20)
p - p+2 - p - p

we note that for b sufficiently close to m , b <

X + |  (mp + b) = mp + X - | (m? - b)

= m (X) + (m + X - m {X)} - U m  - b ) , (2.21)
p P P 2 p

where the right hand side of (2.21) is less than mp for A  =  O, but

can be made greater than mp ^  f°r moderately large v a l u e s  of X.

Hence, although 6^ dominates (in the Pitman sense) 6(b) ( for b  close

to m ) near X = 0, as A moves away from 0, the opposite picture 
P

holds. Hence, within the class , <5̂  fails to be t h e  Pitman
JO ~

closest estimator of 9. Nevertheless, as A increases,

{(m + A - m^X ^) - i (m - b)}/{2(p + 2A)}^ -* 0, and h e n c e ,  using 
P P ^ P

the asymptotic (in A) normality of (\p ^ - mpX ^)/{2(p + 2 X ) } ^ , we 

conclude that (2.14) -» lA as A -» °°. Thus, even when 6*̂  m a y  n o t  be 

strictly closer than 6(b), the (generalized) Pitman c l o s e n e s s  

measure (distance) is quite small, so that even within t h e  class



(2 ) 0 (21
, 5 appears to be a natural choice. In this respect, *€ . ' can 

jo ~ Jo

be replaced by '6 TO as well.

Let us next consider the case of posi tive-rule shrinkage

estimators defined by (2.7). For an arbitrary b > 0, note that (on 

2
letting a = 1 )

ii5+ (b) - eii2 = lien2 i(iixii2 < b) + (iixii - en2 + b2 nxif2

- 2bMXII_2 X'(X - 0)} I (IIXII2 > b), (2.22)

(where 1(A) stands for the indicator function of the set A), so that 

for 0 < bj < b^, we have

I(ll6+ (b ) - 011 < H6+ (b2 ) - 011)

= I(IIXII2 < b t) + I(b 1 < IIXII2 < b2 ) I(X'0 > | (IIXII2 - b ^ ))

+ I(IIXII2 > b2 ) I(X ' (X-0) < ifbj + b2 )), (2.23)

so that

P0{ll6+ (b1) - 011 < Il6+ (b2 ) - 011}

= P0 { IIXII2 < b 2} + P0{b 1 < IIXII2 < b2 ; X'0 > IIXII2 - bj)}

+ P0{IIXII2 > b2 ; X (X-0) < \  (bx + b2 )}. (2.24)

In order that 6+ (b^) dominates d>+ (b2 ), in the Pitman sense, (2.24) 

should be > 1/2 for all 0. In particular at 0 = 0, X'0 = 0 with 

probability one, so that the second and third terms in (2.24) drop 

out. Thus,

- g" * "5+ (b2 ) - 611 |0 = 0}

= PS ("XII2 < b i } = P ( X p < b l }. (2.25)



which is > 1/2 only when is > mp . In a similar manner, a t

0 = 0, P0{ll6+ (b1) - 011 < H6+ (b2 ) - 011} > 1/2 for b2 < o n l y  when

b, < m . From this perspective, an ideal choice of b.. is m  , i.e., 
1 p i f

the estimator

6 ° *  = {1 -  a2 m I IX i r2 } +X. ( 2 . 2 6 )

0+
But, then the question is whether the PCP holds for 6 f o r  the 

entire class of positive rule estimators [of the type 2 . 7 ) ]  o r  for 

suitable subclasses? For this, we consider the following:

=  { £ + ( b )  : m p  *  b  *  b 0  =  ( P - l ) ( 3 p + l ) / 2 p } ,  

<ejS2> = {5+ (b ) = 0 < b < mp };

(2 .2 7 )

- j s - « j s  u *js ' (2  28)

0+ -f-
Theorem 2.2 5 (= 6 (mp)) *-s t l̂e Pitman closest estimator- of 9 

within the class
J o

Proof. Note that for every b > mp , by (2.24),



♦ PJIIXII2 < m . X'0 < IIXII2 - i{m + b)}~ p ~ ~  ~ £ p

- P >  < IIXII2 < b, IIXII2 - U ™  + b) < X'0 < IIXII2 - m0l p ~ ~ 2 p ~ ~ ^ I'

= P„{X'6 > IIXII2 - m } + PQ{IIXII2 < m , X'0 < IIXII2 - m }
0l~ ~ ~ ~  p J 0 V ~ p ~ ~  ~ P

+ P >  < IIXII2 < b, IIXII2 - m ) < X'0 < IIXII2 - m } 
gi p 2 V ~ p ' ---  ~ P

- Pn{IIXII2 > b, IIXII2 - i<m + b) < X'0 < IIXII2 - m }
0 l ~  ~  2 v p  > -  ~  ~  p

> Pg{X-e > IIXII2 - mp }

= V V x S B P + x} (x = i "S"2)

{V x  * "pX) + [mP + x ' mpX)]}

{)(̂  ^ < mpX ^} (as < mp + X, VA)

This completes the proof of the theorem.

Hjgorem 2.3 6^  is not the Pitman closest estimator of 

class 'gt̂ 2 ) .
Jo

&oof. Note that for every 0 < b < mp ,

V'S0* - S" * "5+ (b ) ~ g"}

= VllXII2 < M  + P0{b < IIXII2 < mp , IIXII2 - b > 2X'0}

> ">p . X'(X - g) > |(mp + b)}

= V X ’(X-g) > 4 ("> + b)} + P o t ™ 2 S b - X'(X-g) < 5 <

}}

(2.29)

0 m t h i n



+ P 0 {b < IIXII2 < n y  IIXII2 - | (mp + b) < X'0 < (IIXII2 - b)/2}. (2.30)

Now, the first term on the right hand side of (2.30) can be 

expressed as

PA<*p,A > A + I (mp + b)} (A = I lien2 )

= PA {V x  * mpX) + (A + mp “ mJX)) " \ (mp “ b ) } ' (2'31)

where

< A  + m , V A > 0  and I (m - b) > 0. (2.32)
p - p - 2 p

Consequently, noting that mp^  = mp , we conclude that for every

b < m , there exists a A, say A, (> 0), such that A + h (m + b) < 
P D ^ P

mp ^  ’ ^ ^ hence, (2.31) is > |, V A < A^. Actually, by

virtue of Theorem 1 of Sen, Kubokawa and Saleh (1989), whenever 

\ (mp + b) < (p-l)(3p+l)/4p i.e.,

b < (P-l)(3p+l)/2p - m = (p-1)(3p+l)/2p - ( p - l + T j p )

= (p-l)(p+l)/2p - i?p = (p2 - l)/2p - ilp = b*. say, (2.33)

(where 17 > 1/3, V p > 2 and T7p i 1/3 as p tĵ  = .45), (2.33)

exceeds 1/2, for all A > 0. Thus, it suffices to consider only 

a o+
values of b > b^. If 6 is the Pitman closest estimator of 0 

within the class ■ then (2.30) has to be > i, for every

b < mp and A > 0. We consider the case of b approaching mp from 

below and denote this by mp . Then the third term on the right hand 

side of (2.30) can be made arbitrarily small (and zero in the limit 

b = mp ). For the first term, using (2.16) we conclude that whenever

A + m~ > (> m (X)), P ^ k 2 . > A + m“} < P, {*? = 1/2.
p p+2 1 p ' A l̂ p,A ~ p J A l̂ p,A _ p 1



For this, proceeding as in (2. 1S ) — (2. 19) , we have

Mp^2 = P + = p + A - X(1 - a ^ ) , (2.34)

where A(1 - a^) is > 0, V A > 0, and as A increases, A(1 - a^)

converges to 2. Thus, there exists an Xq (> 0), such that

M^l < m + A, for everv A > A„, so that the first term is < for 
p+2 p 0 2

every A > X q . Further, using the asymptotic (in A) normality of 

^ - p - A)//2(p + 2A)}^ [viz., Johnson and Kotz (1970)], we 

obtain from the above that as A increases,

PA < A > m p + A > = I - ° ^ - > -  f2 '3 5 )

To complete the picture, we consider the second term of (2.30). Let

I = (Y,.....Y )' ~  M (0,1) and let Q  = 2^ _ Y 2 . Then we may rewrite1 p p v---  j=2 j

(for b = m ) ,
P

P0{IIXII2 < m~, X'(X-0) < in~}

= P{Q + (Yj + A )2 < m~ + A2 , Q + (Yj + 2 X ) 2 < n T ) . (2.36)

Using Anderson’s (1955) lemma and some standard arguments, it is 

®asy to verify that (2.36) is nonincreasing in X(> 0); at A = 0, it 

is equal to 1/2 and it converges to 0 as A -» Moreover, (2.36) is 

bounded from above by P{Q + (Y^ + 2A ) 2 < m^} < P{Yj < -2A + m^}

- ^{Yj < -X} (for X > nip), so that as X increases, it converges to 0 

at an exponential rate in X. Comparing this with (2.35), we may 

therefore conclude that for large X, (2.30) is strictly smaller than 

M (albeit very close to 1/2). Thus, while for small to moderate

A  | i _

values of X, 6 dominates 6 (b) (for b close to mp ), in the PC



sense, it fails to do so for larger values of X. Hence, the PC 

0+
dominance of 6 does not hold, and the proof of the theorem is 

complete.

Theorems 2.2 and 2.3 imply that within the class ‘fijg there is

0+
no Pitman closest estimator. Nevertheless, 6 emerges as a  strong

contender; it has the PCP over the subclass as well as a

+( 2 )
greater domain of “€ . 1  , and even on the complementary part (of

JO

'), (4.30) is quite close to 1/2, indicating near attainability

of the PCP. In the above comparison, we may note that within the

class C j g ^ ,  *s Pitman closest while within C , there is no

0+
estimator which is Pitman closer than 6 (for all X), and hence, 

0+6 is admissible in the PMC sense.

Let us note that with respect to a quadratic error risk, within

the class of Stein-rule estimators of the form (2.5), an optimal

choice of b is given by b = p - 2  (=M ^ ^ )  < m^, and for this, we need
P P

p > 3. Note that for p = 2, p - 2 = 0, and hence, 6^ dominates the 

Stein-rule estimator (MLE) in the light of the PMC [viz. , Sen, 

Kubokawa and Saleh (1989)]. A natural query is whether such a 

PMC-dominance is true for p > 3? The answer is in the negative. 

Neither 6® nor 6 (p-2) dominates the other in the light of the 

Pitman closeness measure, albeit both of them being admissible in 

the same mode. To draw this conclusion, let us first note that

.,(2 )

proceed as in (2.14), we have

£(p-2) belongs to the class ^jg [see (2.9)]. As such, if we

P0{II6° - 011 < 116 (p-2) - 011}

= V ^ , X ^ X + | ( mp + P-2 )>- (2.37)



Note that mp > p-1 + 1/3 for every p > 2, so that g (mp + P-2) is

> p-1 - 1/3. When X = 0 (or is close to 0), g (mp + p-2) + X is

( and hence, (2.37) is > 1/2, while as X increases,
- p

| (nip + p-2) + X exceeds and, by (2.16), mp ^  ^ ^ p + 2’

V A > 0, so that (2.37) is < 1/2 for large values of X (although it

0+ +
is very close to 1/2). A similar picture holds for 6 vs. 6 (p-2).

But looking at (2.37) we may gather that for a part of the domain of

8, <5® dominates S(p-2) in the Pitman sense, while for the

complementary part, the superiority of 6 (p-2 ) to 6 is very

insignificant. From this picture, we may conclude that 6 *̂ emerges

on a good standing relative to the classical James-Stein estimator

0+
too; a similar picture holds for 6

The PCP for general 6 in (2.2) depends heavily on the form of 

f, and in general, a PCP characterization for <p € {0 < <p(X, s)

( (p-l)(3p+l )/2p} may not hold. Even for the subclass of estimators 

of the form

6(b) = {1 - b SIIXlf2 }X, b > 0, (2.38)

2 2
(where qs/o ~  x , independently of X), the choice of b depends on q

as well as p, and within this class b = m does not have the PCP.
P

To see this, we proceed as in (2.10), and obtain by parallel

arguments that for b > m ,
“ P

Va<"S° -S" s "5 (b) - Si'}

= px{V x  * x + I {mP + b)q_1 (2 -39)

If (2.39) has to be greater than or equal to 1/2 V X > 0 , we must 

have



p0 {q ^ /xq - (mp+b)/2} • 1/2' V b " mp' (240)

“ 1 2 2
Note that q p *p^*q haS the variance ratio (i.e., Fp ^ -) 

distribution with DF(p,q). For this Fp distribution, the mean is

q/(q—2 ), the mode is q(p-2 )/p(q-2 ) and median which is larger than i

m Hence, allowing b to be sufficiently close to m , we conclude 
p P

2 2 1 
that the median of q Xp/Xq can be made larger than ^ (rap + b ) , so

that (2.40) does not hold. A similar treatment holds for the

analogues of Theorems 2.2 and 2.3. In fact, it is quite intuitive

2 2
to replace m by m = med(q Xp/Xq ) and consider the estimator

2 2
6(m ). Note that on defining F by Pr[q X_/P X > F ] =

p,q .o,p,q p q .o,p,q

5 we have m = p F _ . However, the characterization of the 
p,q ^ .5;p,q

PCP of this estimator within the entire class of 6(b) in (2.38) (or

a  subclass of it) requires more elaborate studies of some properties

of non-central beta distributions, and hence, we shall consider then

in a future communication. The simple proof of Theorem 2.1 or 2.2

2
or 2.3 may not work out in this case of unknown a . Naturally, the 

case of arbitrary 1 will be even more complicated to manipulate 

properly.

3. PC DOMINANCE OF RSMLE

As has been mentioned in Section 1, when the parameter 0 (for 

the model X ~  ^p (0,2)) belongs to a restricted domain (viz., 

positively homogeneous cone), the RMLE fares better than the MLE and 

the RSMLE dominates the RMLE in the light of the usual quadratic 

error risk. This has been studied in detail by Sengupta and Sen



(1991)- A parallel picture in the light of the PCC will be depicted 

here.

For simplicity of presentation, we consider explicitly the 

posi tine orthant model for which

e  = e+ = r +p  = {g  e r p  : e > o } .  (3 .1 )

Also, as in Section 2, we consider here the multi-normal model:

X ~ (0, a 2  I J . For the case of jV ( S .  2 ) ,  2  arbitrary (p.d.),

closed expressions for the RMLE and RSMLE are given in Sengupta and

2
Sen (1990). For the specific model, 1 = a 1, we have much more

simplified expressions. For any x € Rp , let x+ = x V 0

: (x, V 0 .....x  V O ) ' .  Then the classical MLE of 0 is X, while for
1 p  > ~

0 confined to 9+ , the RMLE is given by

Srm = X+ = <X i V 0 ..... y O ) ' .  (3.2)

For every x  £ RP , let a(x) be the number of coordinates of x which 

are positive, i.e.,

a(x) = 2P=1 I(Xj > 0), (3.3)

so that a(x) assumes the values 0, 1,..., p. Then, the RSMLE of 0, 

considered by Sengupta and Sen (1991), can be simplied as

0RSM = (! - O ( X )  - 2]+ IIX+ ll“2 ct2 }X+ , (3.4)

where [a-2] = max[0, a - 2 ] , for a  = 0,1,...,p. Note that for >(2 , 

the mode is (p-2) and the median is mp (> p-1). In view of the 

emphasis placed on 6® = 6(m ) in Section 2, we shall consider, side 
~ ~  p'

hy side, an alternative version of the RSMLE, given by



where

ck = n^. 2 < k < p; cQ = c 1 = 0. (3.6)

Our contention is to compare (3.4) and (3.5) with each other and 

with (3.2), in the light of the Pitman closeness criterion. As in 

Sengupta and Sen (1990), we also consider the positive rule

versions -

SSsM = { 1 " [a(X } " 2]+ "X+Il̂ 2 >+ (3 -7 )

- Ca(x) ''XV 2 " V  X+ - M

and compare them with the other versions (under the PCC). In this 

setup, we shall confine ourselves to 0 € 8 .

There is a basic difference in the setup of Sections 2 and 3. 

In the unrestricted case, the MLE (X) or its shrinkage version 6^ is 

equivariant under the group of (affine) transformations:

X -» Y = B X, B non-singular. (3.9)

For this reason, we were able to choose B in such a way that EY = B0

2 2
= tj = (T7, O'), where tj = 11011 . Such a canonical reduction may not 

be possible for the restricted case; the main difficulty stems from 

the fact that the positive orthant 0+ does not remain invariant 

under such a non-singular (or even orthogonal) B, although scalar 

transformations on the individual coordinates does not alter 0  . In 

the negation of this equivariance, it is not surprising to see that 

the performance characteristics (be it in the quadratic risk or the 

PC measure) of the RSMLE and RMLE may depend not only on 11011 but 

also on the direction cosines of the individual elements. As such, 

this picture when 0 lies in the interior of 0^ (i.e., 0 > 0 ) may not



totally agree with the one when 0 lies on the boundary of 0+ (i.e. ,

0 = 0 for some j , 1 < j < p) . However, the relative dominance 

picture remains the same, although the extent may differ from the 

edges to the interior of 0  . With these remarks, we consider the 

following.

Theorem 3.1 For euery p > 2, G^gj^ dominates 0 ^  in the POC, and for

p > 3, 0,,™ dominates 0,,,, in the PCC.
^KoM ~KM

Proof. We provide a proof for 0DCw only, as a  similar case holds
~KoM

/N
for ®jjgj,j- Note that by (3.2), 

lltL. - 0II2 = IIX+ - 0II2<v iv ^

= jP {I(X . < O)02 + I(X > 0 )( X . - e )2 } (3.9)
U J J J J J

Similarly, by (3.5),

" 4 m  - g "2 = "X+ - S "2 + Ca(X) " V 11' 2

~ 2 Ca(X) ct2(^ + - S)'X+ l|X +l'“2 - (3-10)

As a result,

V " 2rsm - S '1 < " 4  - s»>

= Pg{(X+ - £)'X+ > | ca(x) a 2 }, (3.11)

where we may note that whenever a(x) = 0 or 1 , c , , = 0 , so that
a(x)

(3.9) and (3.10) are equal. Hence, we may rewrite (3.11) a little 

but more explicitly as

Pg {a(X) = 0 or 1} + P0{(X+-0)'X > | o2 ca{x ) , 2<a(X)<p}. (3.12)

Each of the terms in (3.12) depends on 0 through the individual



9 , .....9 , and therefore a complete working out of (3.12) for a
1 P

general 9 (E 9+ ) may require considerable manipulations. For 

reasons explained after (3.9), we take 9 = (r;, 0')', tj > 0, and for 

this edge we provide a complete proof. The simple proof holds for 

any of the other p - 1  edges, while for higher dimensional subspaces 

of 9  , one may require much heavier manipulations.

Dealing with a quadratic risk, some of these manipulations are 

reported in Section 6 of Sengupta and Sen (1991), and in view of the 

similarity, we shall omit some of these details. Also, for 

simplicity of presentation, we take a = 1 .

Let $(x) stand for the standard normal d.f. Then note that 

pe{a (x) = 0  or 1 }

= P0 {X < 0} + 2? =1 P0{X. > 0, X. < 0 ,  V j * i}

= $(-tj) 2_(p_1) + $(t))2_(p_1) + <J>(-Tj)(p-l)2~(p_1)

= 2 " (p_1 ){(p-1) *(-n) + 1}. (3.13)

Note that at tj = 0, (3.13) equals to (p+l)/2P , and it monotonically 

decreases with tj (> 0) with l i m ^ ^  (3.13) = 2 ^P ^  . As such, if p

< 2, (3.12) is > g, V tj > 0, and hence, the RSMLE dominates the RMLE 

in the PCC. As such, in the sequel, we only consider the case of 

p > 3. In this case, for 2 < a(X) < p, we may identify the two 

si tuations:

(i) Xj and (a-1 ) of the remaining (p-1 ) coordinates are 

positive, which the rest (i.e., p-a) negative, and (ii) Xj and 

(p-a-1 ) of the coordinates are negative and the remaining a are 

posi tive.



As such, we can write the second term of (3.12) as

-1C) (p-a)
PfXjfXj-r;) + >'* X2 > | ca . X. > 0 ,  Kj< a }

2 P 1 a $(-r)) P{>:a+i  X2 > i  c , X . > 0 , 2< j<a+l} 
j-Z j a j

= 2 (p-i)
l  [  P ‘ ]  P (x2 X l ( x r , )  > i  ca . X, > 0)

a=2 ** a - 1  J a - 1 ,0

P~1 r P-1 'i 2 1
+ J I j ♦(-„) P { £ 0 > | ca}

= 2 (p-1 ) P-1 r P-1 -I 2 ,
l 2 P{xf_0 + (X 1 -r?)X1 > | c Xj > 0)
L a=l  ̂ a J

p - 1  r p - 1  >,

+  2 o  1 J P { x -  r , -  5  Co )  <p( ^ )3.-^ a

2 . 1 
'“a.O - 2 ~a 1

(3.14)

so that by (3.13) and (3.14), we rewrite (3.12) in the following way 

(where Cj = cQ = 0) :

'(P-1)
p -l _ ,

1 + O
a=l > I Ca>

+ P ^ a ,0 + X l^X l“T»> * I Ca+ 1 ’ X 1 > °>
(3.15)

Let 1 = G (= c ) = P{x > - c } and a = G  (= c ), a > 1, so 
a a v2 a y l̂ a ,0 2 a J a  a v2 a + l y

that a = l a > - for every a > 2, a > a , V a  > 1 and1 a 2 J - a a
* 1
aa 2 g- V a > 2. Then, it suffices to show that for every a > 1,

*(-n)aa + p{xJ  Q + XjtXj-n) > |  ca + 1 , Xj > 0} > | ,  v T, > o. (3.16)



As = 1, for a  = 1, the proof of (3.16) is simpler, and hence, we

consider only the case of a  > 2. Note that for r) = 0, the left hand 

side of (3.16) is

k a + i a  , = ^(a +a ,) = a  + ^(a +a ,-2a ) > = , (3.17)2 a  2 a+ 1 2 V a a + 1 ' a  2 V a  a+1 a' 2 1 1

for every a > 2. Letting fi = gii, we rewrite (3.16) as 

*("’?)“a + Xq Ga (| ca+1 + fx2 - (fx-x)2 ) <#>(x)dx

+ Ca+1 + ^  “ (>x+x)2 )'P(x )dx

= a* + *(-n)[aa  - a*] - ^ C “a " ^ ( g  c&+1 + n  - (^-x) ) M * ) d x

+ -TqCGjI ca+1 + n2 - (^+x)2 ) - a * M x ) d x .  (3.18)

The last term on the right hand side of (3.18) is | in tj (or jj.) ; its 

1 *
lower bound, ^ (a , - a ) (> 0) is attained at tj = 0 (= fi) and its 

£ 3.> 1 a.

1 *
upper asymptote is ~(1 - a ). The third term,

2 SL

,T~[a* - G  (= c . + }ir - (n-x)2 )] <p(x)dx is t in V< is nonnegative 
\J Et 3, ^ a + 1

1 *
and its upper asymptote (as rj -* “) is < ^ a . Hence, as 77 -* °>, the

2 3.
X  1 *

right hand side of (3.18) converges to a limit > a  + 0 - ^ a
SL £, SL

1 * 1
+ ^(l - a ) = 5 . Let us consider the first order (partial)2 3, <6

derivative of (3.18) with respect to 17. It is equal to 

- H r 7)[«f c£] - ga(| ca+1)[>(0)-*,(T,)]

+ y ga (| ca+1 + fi2-y2 )[f(>x+y)-'<>(fi-y)]dy 

+ Sa (| Ca + 1 M° )  “ ca +1 + »i2-(^+x)2 )^(x)dx, (3.19)



•here g (x) = -(d/dx)G (x) and g'(x) = (d/dx)g (x). For a = 2,
a  a  a  a

1 1 —lAx
gj(x) = - 2 g 2 ^x  ̂ where = 2 e is decreasing in x - 311(1

hence, (3.19) is bounded from below by

^ 1
-f(v)(.a2 ~ a2^ + g2^2 C3̂

-1'Aac_ -14c . -!4c_

= -<P(T)){e - e - g e }

= -*(T,)e {1 - | e Z }

~~̂ o
= -<p(n)e 2 {1 - .919} = -.025 ^>(-tj) . (3.20)

On the other hand, ^ ( ^  + “3 ) = 0.733, so that for tj > 0, a = 2,

(3.18) is bounded from below by 0.733 - .025 /q </>(y)dy = 0.733 - 

.025 [$(17) - i] > 0.71 > i, V 17 > 0. Also, note that g ca + i *s

> a-2 for a  = 2,3,4 and the opposite inequality holds for a  > 5. As 

such, noting that g^(^ ca + j) is ^ 0 according as g ca + l is f a_^' a 

similar proof works out for a  = 3 and 4. Hence, in the sequel, we

consider the case of a > 5 (for which ^ ca + i ^ a-2). We define jx̂

by (n̂ )2 = a - 2  - 4 c , (> 0 ), and note that for 0 < jx <9. Z a+ X 3.

1 2 2§^ 2 ca+j + l1 _ y ) is > O, V y  < jx, so that the third term in

(3.19) is < 0. On the other hand, in the last term. g^(^ ca + i + ^2  
o

' (n+x) ) 2 0, V x 2 0, and hence, (3.19) is easily shown to be 

negative. Since (3.18) is bounded from below by ^ (as 17 -» »), we

complete the proof by showing that (3.19) remains negative for all



-<f(Tl)aa-|>(0 )-'KT7)] ga (| ca+1) x ga (| ca+1+ n2 - (n-x)2 )>p(x)dx

+ /“ x ga (| ca+1 + n2 - (jx+x)2 ) ip(x)dx. (3.21)

* 1 2 *
For every jx > 0, let jjl be defined by ^ ca + j + f1 ~ (f1+M-a ) = 0-

X 1 ^ . *
Note that ix , for fi = 0, is equal to (~ c ,) (< Va - 2 ) , and u is

'a z a +1 a

decreasing in ji, with lim ^  p.̂  = 0. Then, in the last term in 

(3 .2 1 ), the range (0 ,°>) can be replaced by (0 ,^), and further

J"q x ga (| ca+1 + fx2 - (fx+x)2 ) <#>(x)dx 

*

= J"oa g(| ca+1 + u2 - (fx+x)2 ) x*(x)dx 

*

1  * 4  ca+ l> C

= g{| V i )  [̂ (°) - (3-22)

0 *
Finally, using the definitions of p. and jx , it readily follows that

a a

|Xa  < T1 for every -q < rf̂  = 2>x^, (3.23)

so that from (3.21), (3.22) and (3.23) we conclude that (3.19) is

> 0 ,  V tj > t/\ Thus (3.19) is < 0, V 17 > 0. Hence, (3.18) being 
a

> ^ at r| = 0  and > g at rj -» +“, is > ^ for every tj > 0. This 

completes the proof of the theorem.

We consider next the positive-rule versions in (3.7)-(3.8). By 

virtue of (3.5) and (3.8), we have



where (by virtue of c^ = c^ = 0 ) the first term on the right hand 

side vanishes for a(X) = 0 or 1. Hence, we have

V ' ~ r s m  ~ - n~rsm " 1)11 ̂

= P0{a(X) = 0 or 1} + P0{a(X) > 2, IIX+ II2 > ca ( x f 2 }

+ P0{a(X) > 2, IIX+ [[2 < a 2 c& ( x ) , 1 1 0 ^  - 011 > 11011} - (3.25)

As in the proof of Theorem 3.1, we consider there only the special 

case of 0' = (Tj, O'), r) > 0 .  Then the first term on the right of 

hand side of (3.25) is given by (3.13), so that (3.25) is >

V tj, for p = 2. For p > 2, the second term is given by (for 

a = l )

2 {2-(P-1>[I 4»(-t,)(p^ )  + (P:J) Ga  l(ca -x2 ) *(x-T,)dx]}. (3.26)

Similarly, the last term on the right hand side of (3.25) is given

by

P
2

a=2

+ ^a-1 ̂ ^  Ga-l^Ca+T)2 " (x~V)2 )f(x-v)d^J} (3.27)

As such, we may proceed as in (3.18) through (3.23) and conclude 

that (3.25) is > ^, V tj > 0. A very similar proof holds for the 

case of vs. 0n„ „ . Hence, we have the following.
"'KoH ~KoM

Theorem 3.2 For p > 2, dominates 0!!™ in the PCC, and for
~KoM

A .̂ A 
P > 3, 0„„„ dominates 0„~, in the PCC.

~RSM RSM

By an adaptation of Theorems 2.1, 2.2 and 2.3, it can also be 

shown that there is no PCE of 0 within the class of RSMLE (or their 

Positive-rule versions) where in (3.5), we allow c^ to be arbitrary.

2 {2-(P- 1 )[(P-1)i *(-t,)



4. SOME GENERAL REMARKS

The Theorems presented in Sections 2 and 3 place the PCC on a

comparable standing with the conventional quadratic risk criterion.

Moreover, the PCC leads to the desired dominance results even for

p = 2, while in the other setup, we usually require that p > 3. In

this context, we have confined ourselves to simple shrinkage

estimators of the type (2.5) or (3.5). If instead of (2.5), we

would have considered (2.4), then in (2.10) (and elsewhere), instead

2
of the constant shrinkage factor b, we would have a  ^(X, a ), where

2
<p(*) is arbitrary and 0 < <p(x, a ) < (p-l)(3p+l)/2p. This 

arbitrariness of f(') eliminates the possibility of using the simple 

and direct proof of Theorem 2.2 (or the others), and a much more 

complicated approach may be needed. Moreover, if the PCE 

characterization does not hold within the class on C€tc , it can
J O  J o

not obviously hold for a larger class generated by such <p(*). The 

results of Sen, Kubokawa and Saleh (1989) can, of course, be used to 

strengthen the dominance results of Section 3 to the restricted 

parameter space model- however, the PCE characterization will be a 

trifle harder!

The results presented here are based on the fundamental

properties of (noncentral) chi square distributions some of which

were studied in Sen (1989). In a general context with possibly

2
unknown a and/or arbitrary <#>(•)• the related distributional 

problems may become untractable. Moreover, the role of noncentral 

chi square distributions may have to be replaced by that of 

noncentral beta or variance ratio (i.e., F -) distributions. Some



of these properties are under investigation now and will be reported 

in a future communication. Finally, the results presented here 

relate to underlying normal distributions, and they are exact in 

nature. In an asymptotic setup (i.e., granted the asymptotic

normality of an estimator T of 0), the current results pertain to a
~n

much wider class, and in that sense, the results of the last section 

of Sen, Kubokawa and Saleh (1989) directly extend to the restricted 

parametric models in Section 3. However, we should then keep in 

mind that like in the case of quadratic risks, the PC dominance then 

remains perceptible only in a local neighborhood of the pivot. Of 

course, this is in conformity with the usual asymptotic setup.
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