On the Stroock—Varadhan theory of diffusions
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The Stroock-Varadhan theory of diffu-
sion (to be more specific, refs 1-4) had
earned for its authors the 1996 Steele
Prize for seminal contribution to re-
search. To get a better appreciation of the
theory, let us recount bricfly how proba-
bilists viewed a diffusion process prior to
the theory.

It is known that thc phenomenon
of d-dimensional diffusion can be des-
cribed in terms of a Fokker—Planck
equation:
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vyhere ag(...), bi(...) are respec-
tively infinitesimal dispersion and drift
Parameters  satisfying suitable non-
degeneracy and regularity conditions. Let
xLpls, 5t z), 0<s<tx.ze R
denote the fundamental solution of the
above equation; (that is, u(t, z) = JR/f(x)
Ps, x:1,2) dx solves the above Fokker—
Planck equation for ¢ > s, z € R with initial
value u(s, z)=1(z) for any bounded con-
tinuous function fonR"). Then pis, x5 ¢,
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Zl_lﬂy of finding the diffusing particle in a
< r}ﬁlghbourhood of z at time ¢ if the
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(also called the ‘semigroup approach’) to
diffusion processes pioneered by Kol-
mogorov and Feller. However this de-
pends heavily on the theory of partial
differential equations for the existence of
a fundamental solution p, which in turn
depends on certain regularity of a;;, b; and
nondegeneracy of ((ay(. . .))).

In the meantime Paul Levy had sug-
gested that a diffusion process could be
represented as a stochastic differential
equation:

dZ(1) = o(t, Z(t)) dB(1) + b(z, Z(1) dt,
that is,
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where dB(f) can be taken as an ‘infini-
tesimal increment’ of a d-dimensional
Brownian motion. The idea behind the
above is: as Brownian motion represents
diffusion in a homogeneous isotropic
medium (without any external forces
acting), a diffusion can be thought of
‘locally’ as having two components, one
predominantly due to fluctuations gov-
erned by a d-dimensional Brownian mo-
tion with a ‘covariance matrix’ o(t, Z(f))
o*(t, Z(1)), and the other a ‘drift’ (may be
due to external forces, temperature gradi-
ent, etc.) given by b(z, Z(r)) dt. So ot. . )
o*(. . )willbea(...) = ((ay(. . .))) of eq.
(1). The problem here is, of course, to
give a meaning to the first term on the
r.hs. of eq. (2), as it is well known that
the Brownian motion process has infinite
variation over any finite interval. This
was overcome in an ingenious way by Ito
by defining stochastic integrals and inter-
preting eq. (2) as a stochastic integral
equation

1
Z(t)=Z(0)+ [o (s, Z(s)) dB(s)
0

+ j(’)b(s, Z(s)) ds. 3)
When the above equation (also referred

to as a stochastic differential equation)
has a unique -solution, eq. (3) gives a
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‘pathwise’ representation to a diffusjon
process and can be shown to be the con-
tinuous Markov process associated with
the Fokker—Planck eq. (1), provided fur-
ther that the fundamental solution exists.
However this approach is severely inhi-
bited by the requirement that a(s, z) =
((ay(t, 2))) have a Lipschitz continuous
non-negative definite square root o(t, z) =
((oy(t, D).

In either approach it can be shown that
for any nice function f,
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is a martingale, where L, is the differen-
tial operator
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(Martingale: Roughly speaking a process
{&H} is a martingale if &(r) — &(s) and
&(r) are uncorrelated for any r<s<y
that is, the increments are uncorrelated
and in particular E(&() = E(&(0)) for all
t; as many objects/concepts in probability
theory, ‘martingale’ has its humble ori-
gins in gambling; however, martingale
theory is now a very versatile tool for not
only probabilists but also analysts.)

The above can also be put slightly
differently. Let {Z(¢): ¢t = s} be the diffu-
sion process associated with eq. (1) or eq.
(2) starting from x at time s. It will
induce a probability measure P,, on the
function space € = C([0, =) : R") = {w:
[0, ) — R’ : w continuous}. Let X(r, w) =
w(t), 120, w e Q denote the ¢-th coordi-
nate projection. Then eq. (4) can be re-
phrased as
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= P, . — martingale, (6)
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for any s20, x€ R! for any nice func-
tion f. Here note that

d d  x
= -—+L
(ar+Lx)and( 8t+ x]

are formal adjoints of each other when-
ever the operators make sense. Note also
that, for L, to make sense one needs less
stringent assumptions on a;, b;. Under
P, the process {X(?) : t2 s} has all the
properties of a diffusion starting from
(s, x) governed by eq. (1).

As {P;:520,x€ R"} contains all the
information about the diffusion, this
family of probability measures is the
focus in the Stroock-Varadhan theory.
The question is: Does the above martin-
gale property eq. (6) characterize {P,,}?
In two fundamental papers Stroock and
Varadhan' have answered the question in
the affirmative; and, in fact, the martin-
gale property eq. (6) determines uniquely
a family {P,,} of probability measures
even if ay, b, are just bounded and con-
tinuous (even these requirements can be
relaxed in lower dimensions and with
suitable growth conditions), and ((ai(. . .)))
nondegenerate. Moreover under P,,, the
process {X() : t2 s} is a strong Markov
process. The Stroock-Varadhan charac-
terization of diffusions through a family
of martingales is called ‘Martingale
problem’ in the probabilistic literature.
Anyone familiar with probability theory
will recall that all the relevant informa-
tion conceming a random variable/random
characteristic under consideration is con-
tained in its distribution, which is a proba-
bility measure on R or R“. The point of
view here is similar, viz. the family {P,,}
of probability measures on the function
space 2 are the relevant objects. And the
Stroock—Varadhan characterization is akin
to the characterization of probability meas-
ures on Euclidean spaces by their Fou-
rier/Laplace transforms (i.e. expectations
of certain test functions).

The Stroock—Varadhan theory enlarges
in a substantial manner the class of coeffi-
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cients ay, b; for which diffusion process
can be defined in a meaningful way; for
example the class of differentiable or
Lipschitz continuous functions forms a
‘meagre’ set in the class of continuous func-
tions. However, the Stroock—Varadhan
theory has provided not just a technical
improvement, but has resulted in a con-
ceptual change in the way Markov pro-
cesses are viewed upon.

The martingale problem has now
become a standard technique for charac-
terizing many Markov processes (not just
diffusion processes); see the monograph
of Ethier and Kurtz® for a detailed dis-
cussion of this aspect. As a consequence,
martingale problem provides a very use-
ful way of establishing convergence of
many Markov chains and processes to
diffusion-type processes. A detailed account
of this aspect is given in Ethier and

. Kurtz®, and, of course, in Stroock and

Varadhan®.

Traditionally probability theory has
borrowed heavily from PDE theory; the
advent of the martingale problem, how-
ever, has marked a turning point. Since
then probabilistic methods have become
an important tool for studying PDEs. In
two other important papers, Stroock and
Varadhan®® have applied these ideas to
obtain their famous Stroock-Varadhan
support theorem (characterizing the supp-
ort of the measures {P,,} even when the
diffusion coefficients are degenerate),
strong maximum principles for the corres-
ponding differential operators, and stu-
died Dirichlet problems for degenerate
parabolic ‘and elliptic operators. Freidlin’,
Hsu* and others have used the proba-
bilistic notion of solution to study vari-
ous boundary value problems.

The martingale problem has also given
rise to the concept of the so-called ‘weak
solutions’ of stochastic differential equa-
tions: this has become quite indispensa-
ble in applied fields like control theory
and filtering theory. A nice account is

given in the monograph of Karatzas and
Shreve’.
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Diffusion processes with reflecting
boundary conditions have similarly beep
characterized in terms of the ‘submaip.
gale problem’ by Stroock and Varadhay’
in the case of smooth domains, and laer
by Varadhan and Williams'® in the con-
text of reflecting Brownian motion in 3
wedge; (in the latter case there is an inte.
resting phenomenon: the corner of the
wedge can become an absorbing boun-
dary under certain conditions!), see Rama-
subramanian'’ for an exposition.
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