
On the Stroock-Varadhan theory of diffusions

S. R a m a s u b r a m a n i a n

The S tro o ck -V arad h an  th e o ry  o f  d if fu ­
sion (to be m ore sp e c ific , re ls  \-^) had  
earned for its au th o rs  th e  19 9 6  S tee le  
Prize for sem inal c o n tr ib u tio n  to  re ­
search. To get a b e tte r  a p p re c ia tio n  o f  the 
theory, let us reco u n t b r ie f ly  h o w  p ro b a - 
bilists viewed a d iffu s io n  p ro c e ss  p r io r  to 

the theory.
It is know n that th e  p h e n o m e n o n  

of d-dim ensional d if fu s io n  can  be  d e s ­
cribed in term s o f  a F o k k e r -P la n c k  
equation:

(also called the ‘semigroup approach’) to 
diffusion processes pioneered by Kol­
mogorov and Feller. However this de­
pends heavily on the theory o f  partial 
differential equations for the existence of  
a fundamental solution p,  which in turn 
depends on certain regularity o f a,,, £>, and 
nondegeneracy o f ((a ,/. . .))).

In the meantime Paul Levy had sug­
gested that a diffusion process could be 
represented as a stochastic differential 
equation:

‘pathwise’ representation to a diffusion  
process and can be shown to be the con­
tinuous Markov process associated with 
the Fokker-Planck eq. (1), provided fur­
ther that the fundamental solution exists. 
However this approach is severely inhi­
bited by the requirement that a(t, z) = 
((a ,//, z))) have a Lipschitz continuous 
non-negative definite square root cs(t, z) = 

z))).
In either approach it can be shown that 

for any nice function/,

0t ,z )  = L zi t ( t , z )
d Z ( t)  =  a ( t ,  Z ( t ) )  d B ( t)  + b ( t ,  Z ( t )  d r,

d 32
- 2 L  T T -  ( a , j ( t , z ) u ( t ,  z))

i , j =I ^ i d z j

T — (&/(*. Z)u(t,z)), (1)
i=] °zi

where a ,-,■(. . .), b ,(. . .) are  r e sp e c ­
tively infin itesim al d isp e rs io n  a n d  d rift 
parameters sa tis fy in g  s u ita b le  n o n ­
degeneracy and re g u la rity  c o n d itio n s . L et 
(S, X-1, z) p(s , x; t, z), 0  < s <  t, X,  z e  K 1 

denote the fu n d am en ta l so lu tio n  o f  the  
above equation; ( th a t is, u (t , z) =  \R lf ( x )  

P(s> x, t, z) dx so lv e s th e  ab o v e  F o k k e r -  
Planck equation for / >  j ,  z 6  M 1 w ith  initial 
value u(s, 2) = f(z )  for any bou n d ed  co n ­
tinuous function  /  on IR1). T h e n  p(s, x\ t, 

z) dz can be in te rp re ted  as th e  p ro b a - 
i ity o f finding the  d if fu s in g  p a r tic le  in a 

neighbourhood o f  z at tim e  t i f  the  
Parttcle had sta rted  fro m  x  at t im e  .s.

Fnvtn S ^ ® t*len t*le  a^ove
d-ff Planck eq u a tio n  is th e  h e a t (o r 

sion) equation  and  th e  c o rre sp o n -  

darl n ffus' 0n P h en o m en o n  is th e  s ta n -  
t row nian m o tio n  (w ith  v a ria n c e  

K enf^ ^  ' ' n 6aC^ coorc*mate) in a  ho m o ­
can hpS 'SOtropic m e d iu m ' A s p(s, x\ t, z)

bility d e n s i t v 6 ?  38 “  't r a n s i t io n  P r o b a - 
w e l l - h l  Y f u n c t lo n ’ w h ic h  i s  a l s o  

niqueS - ,V ed ’ U sin S  P r o b a b i l i s t ic  t e c h -  

d c f in e d  1 C 3 n  b e  S h 0 W n  t h a t  a  w e l 1 - 

bc assoc i^ H 'i nU° US M a r k o v  P r o c e s s  c a n

Pondino .f,6 , /  d ' f f u s io n  P r o c e s s  c o r re s -

*Cc!- (1)') T, . e . ^ker-Planck equation 
ls is the  c la s s ic a l a p p ro a c h
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that is,

d Z , ( / ) = X ^ a Z ( 0 )  d f l / f )

+ bj(t, Z(t)) d t, (2)

where d5 (0  can be taken as an ‘infini­
tesimal increment’ o f a d-dimensional 
Brownian motion. The idea behind the 
above is: as Brownian motion represents 
diffusion in a homogeneous isotropic 
medium (without any external forces 
acting), a diffusion can be thought of 
‘loca lly ’ as having two components, one 
predominantly due to fluctuations gov­
erned by a rf-dimensiona! Brownian mo­
tion with a ‘covariance matrix’ a(t, Z(t)) 
a*(i ,  Z(t)),  and the other a ‘drift’ (may be 
due to externa! forces, temperature gradi­
ent, etc.) given by b(t , Z(t)) d/. So d{. . .) 
<7*(. . .) will be a(. . .) = ((a,y(. . ■))) o f eq.
(1). The problem here is, of course, to 
give a meaning to the first term on the 
r.h.s. o f  eq. (2), as it is well known that 
the Brownian motion process has infinite 
variation over any finite interval. This 
was overcome in an ingenious way by Ito 
by defining stochastic integrals and inter­
preting eq. (2) as a stochastic integral 
equation

i
Z{ t)  = Z (0) + J ff(j, Z(s))  dB(s)

- ^ b ( s ,Z ( s ) )  d.5. (3)

When the above equation (also referred 
to as a stochastic differential equation) 
has a unique solution, eq. (3) gives a

- j: a ,
----  +  Z/w
dr x

/ ( r ,Z (r ) )d r , (4)

is a martingale, where Lx is the differen­
tial operator

Lx f { r , x )  = \  Y , a ij0 , * )  - (r<x)
d x fix j

+ ' £ b i ( r , x ) ^ - ( r ,x ) .  (5) 
i=1

(Martingale: Roughly speaking a process 
{£(/)} is a martingale if £(r) -  §(s) and 
i (̂r) are uncorrelated for any r <  s < t; 
that is, the increments are uncorrelated 
and in particular E{E,(t)) = E (^(0)) for all 
t; as many objects/concepts in probability 
theory, ‘martingale’ has its humble ori­
gins in gambling; however, martingale 
theory is now a very versatile tool for not 
only probabilists but also analysts.)

The above can also be put slightly 
differently. Let (Z((): /> .s )  be the diffu­
sion process associated with eq. (1) or eq.
(2) starting from x  at time s. It will 
induce a probability measure P (t on the 
function space Q = C([0, °°) : IK1) = {w: 
[0, °°) ->  fit1: w  continuous). Let X(t , w) = 
w(t), t > 0, w e  Q  denote the /-th coordi­
nate projection. Then eq. (4) can be re­
phrased as

= P.. r -  martingale,

2000

(6)
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for any s > 0 ,  x  e  R 1' for any nice func­
tion /. Here note that

are formal adjoints o f each other when­
ever the operators make sense. Note also 
that, for Lx to make sense one needs less 
stringent assumptions on a,,, bj. Under 
PSxX the process {X (t): t > 5} has all the 
properties o f a diffusion starting from 
0 ,  x) governed by eq. (1).

As { s > 0 , x e  R '1} contains all the 
information about the diffusion, this 
family of probability measures is the 
focus in the Stroock-Varadhan theory. 
The question is: Does the above martin­
gale property eq. (6) characterize (/*«}?  
In two fundamental papers Stroock and 
Varadhan1 have answered the question in 
the affirmative; and, in fact, the martin­
gale property eq. (6) determines uniquely 
a family {/*„) o f probability measures 
even if a(J, bt are just bounded and con­
tinuous (even these requirements can be 
relaxed in lower dimensions and with 
suitable growth conditions), and ( (a ,/ . ..))) 
nondegenerate. Moreover under PSJt, the 
process {X (/): r>.v} is a strong Markov 
process. The Stroock-Varadhan charac­
terization o f diffusions through a family 
of martingales is called ‘Martingale 
problem’ in the probabilistic literature. 
Anyone familiar with probability theory 
will recall that all the relevant informa­
tion concerning a random variable/random 
characteristic under consideration is con­
tained in its distribution, which is a proba­
bility measure o n IR or R ‘‘. The point of 
view here is similar, viz. the family {P ^}  
o f probability measures on the function 
space £1 are the relevant objects. And the 
Stroock-Varadhan characterization is akin 
to the characterization of probability meas­
ures on Euclidean spaces by their Fou­
rier/Laplace transforms (i.e. expectations 
of certain test functions).

The Stroock-Varadhan theory enlarges 
in a substantial manner the class of coeffi­

cients au, b, for which diffusion process 
can be defined in a meaningful way; for 
example the class o f differentiable or 
Lipschitz continuous functions forms a 
‘meagre’ set in the class of continuous func­
tions. However, the Stroock-Varadhan 
theory has provided not just a technical 
improvement, but has resulted in a con­
ceptual change in the way Markov pro­
cesses are viewed upon.

The martingale problem has now  
become a standard technique for charac­
terizing many Markov processes (not just 
diffusion processes); see the monograph 
of Ethier and Kurtz5 for a detailed dis­
cussion of this aspect. As a consequence, 
martingale problem provides a very use­
ful way of establishing convergence of 
many Markov chains and processes to 
diffusion-type processes. A detailed account 
of this aspect is given in Ethier and 
Kurtz5, and, o f course, in Stroock and 
Varadhan4.

Traditionally probability theory has 
borrowed heavily from PDE theory; the 
advent o f the martingale problem, how­
ever, has marked a turning point. Since 
then probabilistic methods have become 
an important tool for studying PDEs. In 
two other important papers, Stroock and 
Varadhan2,6 have applied these ideas to 
obtain their famous Stroock-Varadhan 
support theorem (characterizing the supp­
ort o f the measures {P,,*} even when the 
diffusion coefficients are degenerate), 
strong maximum principles for the corres­
ponding differential operators, and stu­
died Dirichlet problems for degenerate 
parabolic and elliptic operators. Freidlin7, 
Hsu1* and others have used the proba­
bilistic notion of solution to study vari­
ous boundary value problems.

The martingale problem has also given 
rise to the concept of the so-called ‘weak 
solutions’ o f stochastic differential equa­
tions: this has become quite indispensa­
ble in applied fields like control theory 
and filtering theory. A nice account is 
given in the monograph o f Karatzas and 
Shreve9.

D iffusion processes with reflecting 
boundary conditions have similarly been 
characterized in terms of the ‘submartin­

gale problem’ by Stroock and Varadhan3 
in the case o f smooth domains, and later 
by Varadhan and W illiams10 in the con­
text o f  reflecting Brownian motion in a 
wedge; (in the latter case there is an inte­
resting phenomenon: the corner of the 
wedge can becom e an absorbing boun­
dary under certain conditions!), see Rama­
subramanian11 for an exposition.
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