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Abstract—  The problem of segmentation of multispectral 
satellite images is addressed. An integration of rough-set-theo­
retic knowledge extraction, the Expectation Maximization (EM) 
algorithm , and minimal spanning tree (MST) clustering is de­
scribed. E M  provides the statistical model of the data and handles 
the associated measurement and representation uncertainties. 
Rough-set theory helps in faster convergence and in avoiding 
the local minima problem, thereby enhancing the performance 
of EM. For rough-set-theoretic rule generation, each band is 
discretized using fuzzy-correlation-based gray-level thresholding. 
MST enables determination of nonconvex clusters. Since this is 
applied on Gaussians, determined by granules, rather than on 
the original data points, time required is very low. These features 
are demonstrated on two IRS-1A four-band images. Comparison 
with related methods is made in terms of computation time and 
a cluster quality measure.

Index Terms—Clustering, granular computing, minimal span­
ning tree, mixture modeling, rough knowledge encoding.

I. I n t r o d u c t i o n

SEGMENTATION is a process of partitioning an image 
space into some nonoverlapping meaningful homogeneous 

regions. The success of an image analysis system depends on 
lie quality of segmentation. Two broad approaches to segmen­
tation of remotely sensed images are gray-level thresholding 

pixel classification. In thresholding [I], one tries to get a
set of thresholds { !] .  T>........ 7).} such that all pixels with gray
values in the range 7’,+ i ) constitute the /th region type. On 
the other hand, in pixel classification, homogeneous regions are 
determined by clustering the feature space o f multiple image 
bands. Both thresholding and pixel classification algorithms 
roay be either local (i.e., context dependent) or global (i.e., 
blind to the position of a pixel). The multispectral nature of 
roost remote sensing images makes pixel classification the 
natural choice for segmentation.

Statistical methods are widely used in unsupervised pixel 
classification framework because of their capability o f handling 
uncertainties arising from both measurement error and the pres­
ence of mixed pixels. In most statistical approaches, an image 
is modeled as a “random field” [2] consisting o f collections of 
IW0 random variables Y  =  (K-W .s and X  =  (X ,) .,€s-T h e  
fet one takes values in the field of “classes,” while the second 
°ne deals with the field of “measurements” or “observations.” 
Tta problem of segmentation is to estimate Y  from X .  A 
general method of statistical clustering is to represent the

probability density function of the data as a mixture model, 
which asserts that the data are a combination of k individual 
component densities (commonly Gaussians), corresponding 
to k clusters. The task is to identify, given the data, a set of k 
populations in it and provide a model (density distribution) for 
each of the populations. The Expectation Maximization (EM) 
algorithm is an effective and popular technique for estimating 
the mixture model parameters. It iteratively refines an initial 
cluster model to better fit the data and terminates at a solution 
that is locally optimal for the underlying clustering criterion 
[3], An advantage of EM is that it is capable for handling 
uncertainties due to mixed pixels and helps in designing 
multivalued recognition systems.

The EM algorithm has the following limitations.

• Number of clusters needs to be known.
• Solution depends strongly on initial conditions.
• It can only model convex clusters.

The first limitation is a serious handicap in satellite image pro­
cessing, since in real images the number of classes is frequently 
difficult to determine a priori. To overcome the second, sev­
eral methods for determining “good” initial parameters for EM 
have been suggested, mainly based on subsampling, voting, and 
two-stage clustering [4]. However, most of these methods have 
high computational requirement and/or are sensitive to noise. 
The stochastic EM (SEM) algorithm [5] for segmentation of im­
ages is another attempt in this direction that provides an upper 
bound on the number of classes, robustness to initialization, and 
fast convergence.

Rough-set theory [6] provides an effective means for analysis 
of data by synthesizing or constructing approximations (upper 
and lower) of set concepts from the acquired data. The key no­
tions here are those of “information granule” and “reducts.” The 
information granule formalizes the concept of finite-precision 
representation of objects in real-life situations, and reducts rep­
resent the core of an information system (both in terms of ob­
jects and features) in a granular universe. An important use of 
rough-set theory and granular computing has been in generating 
logical rules for classification and association [7], These logical 
rules correspond to different important regions of the feature 
space, which represent data clusters.

In this paper, we exploit the above characteristics o f the 
rough-set-theoretic logical rules to obtain an initial approxima­
tion o f Gaussian mixture model parameters. The crude mixture 
model, after refinement through EM, leads to accurate clusters. 
Here, rough-set theory offers a fast and robust (noise-insensi­
tive) solution to the initialization, besides reducing the local 
minima problem of iterative refinement clustering. Also, the 
problem of choosing the number of mixtures is circumvented,
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dataset D  having m  patterns and d features. Let a: € D be a 
pattern; the mixture model probability density function evalu­
ated at x  is

P(X) =  ^ 2 w hfh(x\<f>h)- (1)

/ i= l

Fig. 1. Block diagram of the proposed clustering algorithm.

since the number of Gaussian components to be used is 
automatically decided by rough-set theory.

The problem of modeling nonconvex clusters is addressed by 
constructing a minimal spanning tree (MST) with each Gaussian 
component as nodes and Mahalanobis distance between them 
as edge weights. Since MST clustering is performed on the 
Gaussian models rather than the individual data points and since 
the number of models is much less than the data points, the 
computational time requirement is significantly small. A block 
diagram of the integrated segmentation methodology is shown 
in Fig. 1. Discretization of the feature space, for the purpose 
of rough-set rule generation, is performed by gray-level thresh­
olding of the image bands individually.

Experiments were performed on two four-band IRS-1A 
satellite images. Comparison is made both in terms o f a 
cluster quality index [1] and computational time, in order to 
demonstrate the effect of the individual components.

II. M ix t u r e  M o d e l  a n d  E M  A l g o r it h m

The mixture model approximates the data distribution by fit­
ting k component density functions f h, h =  1 , . . . ,  k, to a

The weights Wh represent the fraction of data points belonging 
to model h,  and they sum to one i w  ̂ =  *)• The functions 
fh{x\4>h), h =  1 . . . . .  /c, are the component density functions 
modeling the points of the hth cluster. 4>h represents the specific 
parameters used to compute the value of fh- We use Gaussian 
distribution as the choice for component density function. The 
quality of a given set o f parameters $  =  {(wt , . /</,. £>,), h = 
1 . . . .  , k ] ,  is determined by the log-likelihood L ( $ )  of the data, 
given the mixture model. The EM begins with an initial estima­
tion of $  and iteratively updates it such that L(3>) is nonde­
creasing. We outline the EM algorithm in the Appendix.

III. R o u g h  S e t s

We present some preliminaries of rough-set theory that are 
relevant to this paper. For details one may refer to [6] and [7], 

An information system  is a pair S  =  (U. A), where U is a 
nonempty finite set called the universe, and A  is a nonempty 
finite set of attributes. An attribute a can be regarded as a func­
tion from the domain U  to some value set Va.

With every subset of attributes B  C A, one can easily asso­
ciate an equivalence relation I b on U: Ib — {(#, y) € U: for 
every a € B , a (x ) =  a(y) } .  Then IB =  D oes

We now define the notions relevant to knowledge reduction. 
The aim is to obtain irreducible but essential parts of the knowl­
edge encoded by the given information system; these would 
constitute reducts o f the system. Reducts have been nicely 
characterized in [7] by discernibility matrices and discernibility 
functions. Consider U =  { x \ . . . . .  x n} and A — {ai, • •.,«,»} 
in the information system S  =  (U, A). By the discernibility 
matrix, M(«S) of <5 means a n n x n  matrix such that

cij =  {a 6  A: a(xi ) ^  a (z j)} . (2)

A discernibility function f s  is a function of m  Boolean variables 
a i , . . .  , a m corresponding to the attributes o i , . . . ,  om, respec­
tively, and defined as follows:

») =  A { V ( c i j ) :  1 <  i j  < n , j  <
(3)

where V(c*j) is the disjunction of all variables a with a £ Cjr 
It is seen in [7] that { , . . . ,  a ip} is a reduct in S  if and only if 
a*. A - • -Aalp is a prime implicant (constituent of the disjunctive 
normal form) of f s -

IV. R o u g h  S e t  I n it ia l iz a t io n  o f  EM P arameters 

A. Discretization o f Feature Space

Discretization o f the feature space is performed by gray-leve' 
thresholding of the individual band images. Thus, each attribute  

(band) now takes on values in { 1 . 2 , . . . ,  iV +  1}, where N is & 
number of threshold levels for that band. The fuzzy co rre la tio n
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i |C()ii-/'■>)• defined in the Appendix) between a fuzzy represen- 
tation of an image (//1 ) and its nearest two-tone version (//,2) is 

> u sed . For details of the above method, one may refer to [8], We 
h a v e  considered correlation as a measure of thresholding, since 
i t  i s  found recently to provide good segmentation in less com­
putational time compared to similar methods [ 1 ]. However, any 
oth er  gray-level thresholding technique may be used.

S. Generation o f  R o ug h -S et R a im  is

Here we discuss the methodology for generating rough-set 
reducts, which represents crude clusters in the feature space. Let 
there be in sets of discretized objects in the attribute-value table 
having identical attribute values, and let their cardinalities be
)UV i = 1....... in. Let /(/;.;. ffjv..........denote the distinct

i elements among//*.,........m-n such that > ■•■ >
. in-, Let a heuristic threshold function be defined as [9]

where Tli is a constant (=0.5. say), so that all entries having fre­
quency less than it are eliminated from the table, resulting in the 
reduced attribute-value table S . The value o f Tr is high if most 
of the Hj.-s are large and close to each other. The above condi­
tion occurs when a small number of large clusters are present. 
On the other hand, if the //.*.' s have wide variation among them, 
then the n u m b er  of clusters with smaller size increases. Accord­
ingly, Tr attains a lower value automatically.

From the reduced attribute-value table obtained, reducts are 
obtained using the methodology described in Section III. From 
the reducts, one obtains a rule viz. P, —> duster*, where Pi is 
the disjunctive normal form (d.n.f) of the discernibility function.

Also, define the support factor sf, for a rule r, as

sf, =  (5 )
E
(=i

"'here / = 1........p, are the cardinality of the sets Oi of
identical objects belonging to the reduced attribute-value table.

C. Mapping Reducts to Mixture Parameters

We describe below the methodology for obtaining the mixture 
Hodel parameters, namely, the number o f component Gaussian 
density functions (k ) and weights (wh), means (nh), and vari­
ce s  (Eft) of the components from the rough-set rules gener­
ated.

1) Number o f Gaussians (k): Consider the antecedent part 
of a rule r ,,. For each such conjunctive rule, assign a com­
ponent Gaussian. Let the number o f such formulae be k; 
then we consider k Gaussians.

2) Component weights (wh): Weight o f  a each Gaussian is 
set equal to the normalized support factor sf j [obtained 
using (5)] of the rule ( r , ) from which it is derived, wh =

3) Means (/</,): A rule consists of conjunction o f a number of 
literals. The literals are interval variables o f pixel values 
of a feature (band). The component o f the mean vector

along that feature is set equal to the center (c) o f the cor­
responding interval. Note that all features do not appear 
in a formulae, implying those features are not necessary 
to characterize the corresponding cluster. The component 
of the mean vector along those features that do not appear 
are set to the mean of the entire data along those features.

4) Variances (£/,): A diagonal covariance matrix is consid­
ered for each component Gaussian. As in means, the vari­
ance for feature j  is set equal to half the width of the in­
terval corresponding to that feature appearing in the rule. 
For those features not appearing in a formulae, the vari­
ance is set to a small random value.

V . C l u s t e r i n g  o f  G a u s s i a n  C o m p o n e n t s  U s i n g  M S T

In this section, we describe the methodology for obtaining the 
final clusters from the Gaussian components used to represent 
the data. An MST-based approach is adopted for this purpose. 
The MST is a graph that connects a set of N  points so that a com­
plete “tree” of N  — 1 edges is built. (A tree is a connected graph 
without cycles.) The tree is “minimal” when the total length of 
the edges is the minimum necessary to connect all the points. An 
MST may be constructed using either Kruskal’s or Prim’s algo­
rithm. The desired number of clusters may be obtained from an 
MST by deleting the edges having weights above a threshold. 
The threshold is selected from maxima of the derivative of the 
edge weights.

Instead of using individual points, we construct an MST 
whose vertices are the Gaussian components of the mixture 
model, and the edge weights are the Mahalanobis distance (D ) 
between them. D  is defined as

D 2 =  (mi — M 2 ) t 0.5(£i +  £ 2 ) - 1 (/xi — M 2 ) (6)

where //i ,  /x2 and £ 1 , £ 2  are the means and variances of the pair 
of Gaussians.

Note that each cluster obtained as above is a mixture model 
in itself. The number of its component Gaussians is equal to the 
number of vertices of the corresponding subgraph. For assigning 
a point (x ) to a cluster, the probability of belongingness of x  to 
each cluster (submixture models) is computed using (1), and the 
one with the highest probability p(x)  is assigned to x,  i.e., we 
follow the Bayesian classification rule.

V I. E x p e r im e n t a l  R e s u l t s

Results are presented on two IRS-1 A (four-band) images. The 
images were taken usingthe LISS-II scanner in the wavelength 
range 0.77-0.86 nm, and it has a spatial resolution o f 36.25 m 
x 36.25 m. The images are of size 512 x 5 1 2 .  They cover areas 
around the city of Calcutta and Bombay, respectively.

For the Calcutta image, the gray-level thresholds obtained 
using the correlation-based methodology (described in Sec­
tion IV-A) are band 1: {34, 47}, band 2: {20, 29}, band 3: 
{24, 30}, and band 4: {31, 36}. For the Bombay image, the 
corresponding values are {36, 60}, {22, 51}, {23, 68}, and 
{11,  25}. After discretization, the attribute-value table is 
constructed. Eight rough-set rules (for the Calcutta image) 
and seven rules (for the Bombay image), each representing a 
crude cluster, is obtained. The rules are then mapped to initial



TABLE I
Comparative Perfo rm ance  of  D ifferent  Clust er in g  M ethods  

for the C alcutta  Im ag e

Algorithm No. of 
clusters

Index (3 Time
(sec)

EM 5 5.91 1720
KM 5 5.25 801
REM 8 6.97 470
RKM 8 5.41 301
KMEM 8 6.21 1040
EMMST 5 6.44 1915
FKM 5 5.90 2011
Proposed 5 7.37 505

TABLE II
C o m p a ra tiv e  P e r f o r m a n c e  o f  D i f f e r e n t  C lu s te r in g  M ethods 

f o r  t h e  B om bay Im age

Algorithm No. of
clusters

Index (3 Time
(sec)

EM 5 9.11 1455
KM 5 8.45 701
REM 7 10.12 381
RKM 7 10.00 277
KMEM 7 12.71 908
EMMST 5 14.04 1750
FKM 5 9.20 1970
Proposed 5 17.10 395

parameters o f the component Gaussians and refined using 
the EM algorithm. The Gaussians are then merged using the 
MST-based technique discussed in Section V; thereby resulting 
in five clusters (from original eight and seven Gaussians). For 
both images, progressive improvement was observed from 
the initial gray-level thresholding of the individual bands, 
clustering using crude mixture model obtained from rough-set 
rules, clustering using the refined mixture model obtained by 
EM, and finally to graph-theoretic clustering of the component 
Gaussians.

The performance of the proposed hybrid method is com­
pared extensively with various other related ones. These involve 
different combinations of the individual components of the 
proposed scheme, namely, rough-set initialization, EM and 
MST, with other related schemes, e.g., random initialization 
and /c-means algorithm. The algorithms compared are

1) randomly initialized EM and fc-means algorithm (EM, 
KM) (best o f five independent random initializations)

2) rough-set-initialized EM and /. -means (centers) algo­
rithm (REM, RKM)

3) EM initialized with the output of fc-means algorithm 
(KMEM)

4) EM with random initialization and MST clustering 
(EMMST)

5) fuzzy fc-means (FKM) algorithm.
For the purpose of qualitative comparison of the segmentation 

results, we have considered an index (3 [1], which measures the 
ratio of total variation and within-cluster variation. The higher 
the (3 value is the better is the segmentation. The detailed defini­
tion of the index (3 is provided in the Appendix. We also present 
the total CPU time required by these algorithms on a DEC Alpha 
400-MHz workstation. It may be noted that except for the algo­
rithms involving rough sets, the number of clusters is not auto­
matically determined.

Comparative results are presented in Tables I and II. Seg­
mented images o f the city of Calcutta obtained by these algo­
rithms are also presented in Fig. 3, for visual inspection. For 
the Bombay image, we show the segmented versions only for 
the proposed method and KM algorithm having the highest and 
lowest (3 values. The following conclusions can be arrived at 
from the results:

1) EM versus KM: It is observed that EM is superior to KM 
both with random and rough-set initialization. However, 
fc-means requires considerably less time compared to EM.

I -  -  random 
| —  rough set

5 10 15 20  25  30  35  40 4S 5C
ite ra tio n

Fig. 2. Convergence o f log-likelihood of EM with rough-set and random 
initialization.

The performance o f fuzzy fc-means (FKM) is interme­
diate between KM and EM, though its time requirement 

is more than EM.
2) Effect o f Rough-Set Initialization: Rough-set-theoretic 

initialization (REM, RKM) is found to improve the 3 
value as well as reduce the time requirement substantially 
for both EM and KM. Rough-set-initialized EM is seen 
to converge in much fewer steps compared to randomly 
initialized EM (Fig. 2). Rough-set initialization is also 
superior to KM initialization (KMEM).

3) Contribution o f MST: Use of MST adds a small compu­
tational load to the EM algorithms (EM, REM); however, 
the corresponding integrated methods (EMMST and the 
proposed algorithm) show a definite increase in (3 value.

4) Integration of all the three components, (EM, ro u g h  set. 
and MST) in the proposed algorithm produces the best 
segmentation in terms of /? value in the least com puta­
tion time. This is also supported visually if we consider  
Figs. 5 and 6, which demonstrate the zoomed image of 
two man-made structures, viz., river bridge and airport 
strips of the Calcutta image corresponding to  the pro­
posed method and KM algorithm providing th e  highest 
and lowest (3 values, respectively.

5) Computation Time: It is observed that the proposed algo­
rithm requires significantly less time compared to other 
algorithms having comparable performance. Reduction 

in time is achieved due to two factors. Rough-set ini­
tialization reduces the convergence time of the EM al-
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Segmented IRS image of Calcutta using (a) proposed method, (b) EM with MST (EMMST), (c) fuzzy A-means algorithm (FKM), (d) rough-set-initialized 
EM (REM), (e) EM with A -means initialization (KMEM), (f) rough-set-initialized A;-means (RKM), (g) EM with random initialization (EM), and (h) A-means
*ith random initialization (KM ).

gorithm considerably, compared to random initialization. 
Also, the MST, being designed on component Gaussians 
rather than individual data points, add very little load to 
the overall time requirement, while improving the perfor­
mance significantly.

VII. C o n c l u s i o n  a n d  D i s c u s s i o n

The contribution of the paper is twofold. First, rough-set 
theory is used to effectively circumvent the initialization and

local minima problems of the EM algorithm. This also im­
proves the clustering performance, as measured by the (3 value. 
Besides, the number of clusters is automatically determined.

The second contribution lies in the development o f a method­
ology integrating the merits of graph-theoretic clustering (e.g., 
having the capability of generating nonconvex clusters) and it­
erative refinement clustering (e.g., having a low computational 
time requirement). At the local level, the data are modeled by 
Gaussians, i.e., asa combination of convex sets, while globally 
these Gaussians are partitioned using a graph-theoretic tech-

d



(a) (b)
Fig. 4. Segmented IRS image of Bombay using (a) proposed method and (b) fc-means with random initialization (KM).

(a) (b)
Fig. 5. Zoomed images of a bridge on the river Ganges in Calcutta for
(a) proposed method and (b) fc-means with random initialization (KM).

(a) (b)

It may be noted that the role o f the threshold function of (4) is 
to reduce the size o f  the mixture model by eliminating the noisy 
pattern representatives (having lower values of ) from the re­
duced attribute-value table, thereby reducing the computational 
time. If no such reduction is performed, the computational time 
increases, but the final mixture model obtained remains almost 
the same, since the initial insignificant Gaussian components get 
merged with the larger ones when the EM algorithm converges.

A p p e n d ix  
EM A l g o r it h m

Given a dataset D  with m  patterns and d continuous features, 
a stopping tolerance e >  0, and mixture parameters $  ' at itera­
tion j ,  compute $-?+1 at iteration j  +  1 as follows.

Step 1) E-Step: For pattern x € D: Compute the member­
ship probability of x  in each cluster h = l , . . . ,k

w 3h(x ) =  wh f h W h,^h)

Step 2) M -Step: Update mixture model parameters.

w j'+i
=  w i ( x ) ^ h3 + 1  _

E
x£D

xdD E w i ( x )
x£D

Fig. 6. Zoomed images of two parallel airstrips of Calcutta airport for 
(a) proposed method and (b) A--means with random initialization (KM).

nique, thereby enabling fast and efficient detection of the non- 
convex clusters. The reduction in time is due to the merits o f  
granular computing. Although the methodology of integrating 
rough sets, fuzzy sets, MST, and the EM algorithm has been ef­
ficiently demonstrated for segmenting remote sensing images, 
the concept can be applied to other unsupervised classification 
problems, even for mining large datasets.

V -7  +  1

E w 3h{ x) { x -  nJh l ) {x -  Mh+1)J + i \ T

E Wh(x)
x£D

h = 1,-

Stopping Criterion: If L(3?J) -  L ( $ J+1)| < e, stop.Else 
set j  <— j  +  1 and go to Step 1). L(<£) is given by

(7 )

x£D



Fiery Correlation: Fuzzy correlation C ( i i. \ . f io ) is defined
I as [ 8 ] '

= 1 ■ Y T T x ;
T 1 - 1  \

+  5 ^  {[i - )  (8)
i=o ,=r+ i /

withA'i = [‘2/i i (v) -  !]“//(/) and A'2 =  -
lfh(i) = conKtant; L — 1 is the maximum gray level; and 
h(i) is the frequency of the /th gray level. The maxima of the 
C[ji\. P2) represent the threshold levels.

Index ;i: l i  is defined as [ 1 ]

E  E  -  - v ) r ( -v„ -  X )
0 =  ^ ------------- --------------------  (9 )

E E(-V,y -x.Vix, ,  -x , )  
i =l j =l

where n, is  the number of points in the /th (*  =  1 , . k)  
cluster; X tJ is the feature vector o f the jth pattern 
(j = 1.......ji,) in cluster A", is the mean of n; pat­
terns of the ?th cluster; n is the total number o f patterns; and X  
is the mean value of the entire set o f patterns.
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