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ABSTRACT

Two versions of Yates-Grundy type vatiance estimators are usually emploved for
large samples when estimating a survey population total by a generalized regression
(Greg, in brief) predictor motivated by consideration of a lincar regression model
Their two alternative modifications are developed so that the limiting values of
the design expectations of the model expectations of variance estimators ‘match’
respectively the (1) model expectations of the Taylor approximation of the design
variance of the Greg predictor and the (II) limiting value of the design expectation
of the model expectation of the squared difference between the Greg predictor and
the population total. The exercise is extended to yield modifications needed when
randomized response (RR) is only available rather than direct response (DR) when
one encounters sensitive issues demanding protection of privacy. A comparative
study based on simulation is presented for illustration.

AMS subject classification: 62 D05.

1. INTRODUCTION
We consider a survey population U = (1,...,N) of ¥ individuals la-
belled ¢ bearing unknown values y; and known positive values z; with re-
spective totals Y and X. The problem is to estimate ¥ on surveying a sample
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sfrom U chosen according to asuitable design powith probability »{s) hit\’il\g

poritive inclusion probubihiies = 0x respectively for ¢ oawd 1007). A model
15 postulated as plorable for whioh one may winte
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Here dis an unhnown constant, o s are uncorrelated random variables with

e LBy [] SN we

denote sums over 1o 1)+ gy in 0 respectively and by YN the same

over those n s By l;,,( ,,) we shal denote design expeciation (\armnce)

expectations £ )= 0 and vartances Vi le,) = a*,

operator. Further, Ay = 77, = 7y, and (002 0) are constents to choose at
discretion,
3 niQ. C). 3
dg = }: =y e =y - Jya,
'8 r.Q. .
ij = ;3—(—‘)“’ f‘,‘ = Y, — Ifu.l‘,.

Then Sarndal's (1980) Greg predictor for ¥ is

Xjg+ 30 (2)

I%ig,. where ggr = 1 + (X — Z — e (3)
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Two usual rhoirm of Q, given by Hijek (1971) and Brower 119791 are respec-
SR - S R - 1 ’
tivelv ), = 77 Q. = ~—4 and two others are 0, = = aud (= zael.

Saradal (1982) ((msulors the Tavlor approximation to the varianee 1,,(0;?

of t¢; given by
ZZ ko
Al) -~ ,__.)

T,
and gave two Yates and Grundy (YG,1953) type variance estimators,
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which are discussed in details by Sirndal, Swensson and Wretman (1992).
Besides having a YG form these do not scem to have any particular prop-
erties but are supposed to serve variance estimation purpose well in large
samples. Our interest here is to investigate two specific design-cum-model
motivated asymptotic properties of them. For this we follow Brewer’s (1979)
approach to calculate the ‘limiting’ values of the design expectations of the
model expectations of vg; and vg, and compare them to the model expec-
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tation of V assuming correctness of (1) and also to the ‘limiting' value of the
design expectation of the model expectation of the squared error (tg — Y )*.
Since we find ‘no match’ in either case we proceed to apply ‘adjustments’ on
v¢y,7 = 1,2, By ‘limiting’ expectation we mean the following in accordance
with Brewer’s (1979) approach.

The population U and Y = (y1,..., %, .., UN), X = (1, -, T5, ..., TN,
Q =(Q1,...,Qi,...,Qn) are supposed to produce themselves T(> 1) times
so as to yield the following entities:
Up = (UQ),...,U(F),...,UM), Yy = (Y(@),...,Y(F),...,Y(T)),
Uy =G-)N+1,..,0-DN+4,...,(F-1N+ N),
Y(5) = (Yo-1)N41r - > YG-1)N4is - YG=1)N 4N s
J=1,...,T where (j —~ 1I)N + ¢ for each j = 1,...,T stands for the same
unit t for each respective i(= 1,...,N). Similarly for X, and Q- From
cach U(J) a sample s(j) is ‘independently’ chosen according to the same p
as noted earlier. The T such samples are amalgamated into a sample sr,
say, which consequently is selected according to a design pr such that

pr(st) = p(s(1))... p(s(T)).

If tg is based on s7, then tg(st) is purported to estimate TY. The limiting
value

, 1
Jim E, (fiG(ST))

denoted as lim F,(tg) then equals Y as one may check - this property of
1z is known as its ‘asymptotic design unbiasedness’ (ADU, in brief). In
calculating similar limiting expectation of other functions of survey data d =
(s,y;,7 € 8) an casy and fruitful way is to apply Slutzky’s (cf, Crame’r 1966)
theorem available in particular for continuous, especially rational functions
and we shall profitably use it throughout below to derive convenient results
of interest in section 2. Finally, in section 3 we shall extend this approach to
cover situations when y,'s relate to stigmatizing issues and so they are not
directly available and only RR’s relevant to them may only be procured.
It is now well-known, especially from recent books by Sarndal, Swensson
and Wretman (SSW, in brief, 1992) and Chaudhuri and Stenger (1992),
why one need not insist on design- unbiased estimators like Horvitz and
Thompson’s (1952) for a survey population total and should rather explore
improved alternatives with controlled mean square errors utilizing available
auxiliary data. Sdrndal’s (1980) greg predictor is such an alternative even
when only one regressor is available. To construct confidence intervals one
has of course Sirndal’s (1982) two variance estimators for it though with
no known theoretical properties. Our motivation here is to seek further
improvements and if possible extend the investigation to cover ‘randomized
responses’. The extent of our success is revealed below.
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2. ALTERNATIVE VARIANCE ESTIMATORS

i (V S gt o?r3Qixd Ly
EanV) = Eol(5 - DA om0 2
T (r7 rQ—nIQ)
L AR - A Ty
- 1(,‘,\\\
‘ ! 02r1Q? T I,9,
Emlves) = Y'T'5 W%+ﬁﬂ(2w(n—%w
90 _ %194 7,.Q.9n02 _I,Q,g.,i
m( ™ L#] )( Lo , )}

Putting g, = 1 in E, (vgy) we get an expression for ]’,, v ). Noting that

lim Ep(g,) = 1 and lim Ep(!],. =1+ —J»—QyL ! ?) we have

R ST

lim By En(vca) = ZUP—U+—42%~EZA 222Q2 4 0t
(14 ZZA"Z S BAS e
e DT Au(s - gt - 28

= Vg, say .

Replacing only the expression in the square brackets by 3 o? r2Q%x, and
keeping the rest intact give a formula for Vg, = lim E, E(ver)-

lim EpEm(tG - }")2 lim EpEm[(tG - Em(tG)) + (Em([(i) - fjnl()))
=(Y = En(Y)))?
= lim E,Vin(tG) = Vim(Y)

Lg, say ,

il

following Godambe and Thompson (1977), noting that (:)lim £y and £,
commute, (11)E (t¢ — Y) = 0 and (i3d)lim E,(t¢) = Y.

Viullg) = 2102[ —r‘—l—(\ + Z ) 2\2

. (3 =Qu)?
+ (k- T 2)

So,

2 1Ty
LG = ZO’ \— — 1) + E(UX:';C 'ZQQK|2 ‘/p(z 1

For practical purposes we assume from now on
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o = o2 fi i€ U (6)

with o(> 0) unknown, but fi(> 0) known, ¢ = I,...,N. For example,
following Smith (1938), Brewer, Foreman, Mellor and Trewin (1977) it is
useful to take f; = 29,0 < ¢ < 2,i = 1,..., N. In practice g is not known
beyond this. But we treat below a special case where ¢ is fully known as gg
in [0,2] and it is of interest to examine the consequence if g is in [0,2] but
different from gg. Such a study of robustness is not yet undertaken. Writing

Age = Ef(Y22Q0)% B= V(3 2, Coa = Ex(Y.'22Q0)
L

and assuming (6) with f; known, we get

Ver = 02[2.[-'(1"“1)'{""2"2.{{1?(2?7"{
i %5 flI Qz_f]IJQj
C'Q(;“/—‘—‘Z U( J 5 T )

= o’agiy, say ,

Vor = AL Az - D+ 5 (D L AuUiQ? + 4,550
S = T Y A0+ £100)
2 ; ; i )
e Y Ay - iy k2l Ly,

T my L8 Ty

2
= 0 agGaf, say,

1o = v?th«(i,—nJrg??zf?z?Q?m
QG

l

I, Z; AV ] .
CQG EZ U(:’r_i - r_j)(f'I'Qz - f;2;Q7)]

= 0o b(;f, say. (7)
So, two proposed alternatives to vgy, vge are
bg b
UG = UG I and UGy = VG2 /
aG1y C‘Zf

Noting

il

Le {Z:fl("_l)+j{‘—’2fx QQ i)

o*Cgy, say ,

(I

two more alternatives to vg;,vg, follow as

Cg J " Co f

"
Vg1 = UGi
G1 a
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3. RANDOMIZED RESPONSE

I case 3,'s relate to sensitive issues like amount spent on gambling,
amount of tax evaded ete., often instead of “direct responses” (DR}, random-
ized responses’ (RR) are gathered. The above developments may extend as
follows to cover them.

As deseribed by Chaudhari (1987) and Chaudhuri and Mukerjee (1932
it is conceivably possible to elicit RR from sampled individuals ¢ of [ as r,.
say, independently of one another, such that, writing Fr(Vg) as operator
for expectation (variance) with respect to ‘randomization’, one may have
(NER(T) =y, (1)VR(7) = aiy? + By + 6, = Vi, say, with . 3,.6, as pre:
assigned coustants, (ii1)V, = (a;r?+ B,ri+6,)/(1+a,), provided (1+a,) # 0.
satisfying Ep(Vi) = 15,1 € U.

Granting availability of r; with (1) — (i7{), we define and write

Bo(r), Bq(r),ta(r),va(r)

ete. to denote BQ,QQ,tG,UG etc. with y; in the latter just replaced by
r; throughout in the former keeping everything else in tact. As a mea
sure of error of {g(r) in estimating Y we may take E,En(ty(r) — Y)F or
En EyEr(tc(r)~Y)? using the extra operator Ey. Noting that Eg(tc(r)) =
tg, we obtain

E,Er(ta(r) = Y)? = EyER((te(r) —1c) + (tc - 3‘:)1'2
= Elto-V)+ DY 4 Bfitndiy - sy

(. Q) '
et (X —z:'fwz”%gﬂ

= Ey(tg-Y)? 4 Dg(V), say.

Approximating Ep(tg - Y )? by V, we approximate E,, EpEr(tg(r) =Y )2 by

M= A¢+ E, Dqg(V) (8]
Now,
Ay edr)  e(r)
v = et S SAP A A Y
alr)=3"Y" 7f.'j( . m )
So,
‘2202 o r
Braclr) = v+ DS + B+ B
[} 3 V5
“yvie (R - IR B

So,
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lint By o Eglvea (1)

) 2N .
ZZA‘J{( 2 __% Z 2 (f *i]r).
]

(T 22Q.)? T
2 i y Ix‘t y I Q
- (B Ty Q—”))}]
Y xiQim W 5 m;
= lim EpEm Ep(vg (1)), say ,
= lim E,E(vey)
= UZ(ZGII. (9)

So. combining (7), (8), and (9) it follows that

N V 2 1T
Lalr) = ba,—‘jéf;HZ +[———é, 2l - Ry
1Ty ’Vle
}:/ QQ; Z )E
= bevGéf )+ Do(V), say , (10)

may be taken as an estimator for a measure of error of {(r) as an estimator
of Y because lim Ep Em Eg(v, (1)) equals M. Again,

toalr) = 33 el 0l

Lk %j
2
ERTG;)(Y’) — vea + ZI Zl eu_[( V-97 _‘:J__’;y_) + (ZI on \)2 _J;Q'.LL lg’l
Ty0s Ilg‘l 1’\, \ _"'1‘10292)
Z 2Q ( i )( L8 ]
Se,

Al V ‘ [ 27 2‘ I 19sy 7
lim E EmER sz(T) ZZ’ J{( gu Jg J) Z Z; Q (I g = ;9 J).

('3 m T
2 ("g“~ ’“’)(”Q"’“—IJ )Qﬂg"m
YarQit m 7 7 7,
= lim E,Ep Ep(vg,(r)), say ,
= limn EpEn(vga)
= 02002/. (11)

%, combining (7), (8), (10) and (11) it follows that

wtalr) = by 22 )+D o(7)
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may be taken as another estimator for a measure of error of {g(r) as an
estimator of Y because lim E,E Ep(vf,(r)) equals M. Again

lim EyEn Er(te(r) — }’)2 = Fg,

say, which equals

At "Vig20? . ciri
Lo + limEpEm[Z—2+Z—I—‘QL(‘X~Z%)-

x; (Z’Iszl)z e
2 . 1T ViziQ:
*z'??cz.(“ 3D By
So, v&(r) = v ) + DQ( )

a1y
and, v, (r) = vg,(r )——J— + Dg(V)
may be taken as alternatne estimators for F; because it is easily checked
that

lim EpEmER(v”’ (r)) = Fg =lm E,,RMEH(vg;/z(T)).

4. KOTT’S ESTIMATOR
Finally we consider Kott’s {1990, a,b) variance estimators

vG; N2
=Y E e -Y Y, =1,2,
Uk, Em(ij) (G ) J

which are ‘free’ of model parameters under (6). Noting
N2 QZfll'Q - 1Zi\9 v fi
Em(tc—}) - [Zl QQ)Q(X_E_T(—") +ZW—5+ZL
2

. 1z ! fizi Q. o
ISELRPPED Bl D

formulae for vy, and vi, easily follow with DR but not with RR.

5. A SIMULATION STUDY
For a comparative study of the alternative procedures with DR we resort
to simulation.
Treating the model (1) as valid, we take (i)¢;’s as N(0,07),0% = %29 0 =
1.0,g = 1.5,8 = 5.5,(ii)xz;’s as independently identically exponentially dis-
tributed with a density

f(1)=§exp(-§),x>0. (12)
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Taking N = 50,) = 7.0, using these we first generate two vectors }' =
(V1,3 ¥ir-- - yn) and X = (z1,...,2i,...,2n). To draw a sample s of
size n = 11, we apply two separate sampling schemes namely (1) due to
Lahiri, Midzuno and Sen (LMS, in brief, 1951, 1952, 1953) and (2) Hartley
and Rao (1R, say, 1962). For this we generate a vector of real numbers
Z = (21,...,2%,-..,2N), ='s independently identically distributed with a
common density (12) with A = 15.0. We take w; = 5 + z;,7 € U, as the
size-measure needed for the sample selection. We draw R = 100 replicates
of the sample chosen by each of these two methods. To study the relative
performances of vcj,v’G]-,v’C';J- and vy, = 1,2, we proceed as explained
below.

For large samples, with e as an estimator for ¥ having v as a variance
estimator,

d=(c-Y)\o

is usually supposed to be distributed as 7, the standardized normal distri-
bution N(0,1). As a result with 7/, as the 100a/2% point in the right tail
of the distribution of 7, the interval (e £ 7,/,4/7) is taken to provide the
100(1 — )% confidence interval (ClL,in brief) for Y. Here a is a number in
(0,1)- we take it only as 0.05. We take e as tg and v as the various vari-
ance estimators mentioned so far. As measure of performances of ({5, v)
we consider the following as recommended by Rao and Wu (1983), among
others.

1. ‘Actual coverage probability’ (ACP, in brief): This is the proportion
of the R(= 100) replicated samples for which (tG £ T.025/7) covers Y.
The closer it is to 0.95, which is the ‘nominal confidence coefficient’,
the better for (tg,v).

2. ‘Average coefficient of variation’ (ACV, 1n briel): This is the average
over the above R samples, of the values of y/v/tg, which reflects the
length of the CI relative to tg and as such the smaller the ACV, the
better the (tg,v).

Numerical findings are given in the table below presenting the values based
on HR scheme within parentheses just below those for LMS scheme.

6. A SUMMARY OF NUMERICAL FINDINGS
Even though the sample and population sizes are small, for LMS scheme
all the variance estimators scem to fare well and advantages in using our
modified estimators are discernible. For vcj,v’cj,vgj, the three choices of
Q; excluding 1/z* which is bad seem equally effective. For v;; the choice



1212

CHAUDHURI AND MAITI

Table
ACP and ACV for (v,Q)
v, Q) ACP T ACV [ (v, Q) ACP | ACY |
(um,}—‘) .90 016 | (voa, xIl) 93 018
(.82) | (.018) (.85) | (020}
(vGr. =) 93 | 019 | (vGa &) 56T 019 |
(.84) | (.021) (.87) | (021)
(e, ) 94 020 [ (vg,, 1) 97 | 020 |
3 ' (.86) | (.022) ' (87) | (.023)
(ver, 25) .93 079 | (ve2, ) 100 | 047
' J (.84) | (.075) ' (97) | (092)
(vG1, ) .90 067 | (vgs, ) .98 071
' l (.82) | (.068) ' (.92) | (.076)
(v&y. 1) 94 081 | (vZ3, ) 1.00 085
' { (84) | (077 ' (.96) | (.06) |
(ver, =) | 90 | 016 | (vGz, =) | 93 | wIs
sy | 018y Coles) o2 |
(vGro55) | 98 019 | (vGe, 75-) | 95 019
(.84) | (.023) (.85) | (.023)
(WG %) | 94 | 020 [ (vd5 +%) | 97 | 020 |
(.87) | (.025) (.85) | (.025)
(vor, 22) | 89 | 016 | (ves, =2+) | 93 | 018
(.80) | (.019) (.84) | {021)
(vor, =) | 93 | 019 | (vgy o) | 95 01
(.85) | (.024) T 8s) | (023
(o, 72y | 84 | 020 [ (G, ) | 9T | o
(.88) | (.027) (85) | (.026)
(ver, =) 97 020 | (vaz, 1) 97 020 |
(.70) | (.022) (.66) | (022}
(a1, ) 99 [ 075 | (vaz, 35) 1.00 | 079 |
' (.84) | (.074) ' (.85) | (.145)
(onr, 55 | 97 | 020 | (vaa, 5%-) | 97 | 020
(73) | (.021) Ty | o
(v, 1,%:-.‘) .97 020 (Ukz,j;:—:‘k 97 020
(73) | (.021) e | e |

Q; = 1/z? seems decidedly poor. For HR scheme there is definite reduction
in ACP though the relative performances of the variance estimators follow
a similar pattern as in LMS scheme. Again 1/z? is a bad choice. So, we
conclude that LMS scheme should be preffered to HR in situations simi-
lar to the one considered here and our alternative variance estimators are

worth consideration as good competitors against the traditional ones, both
in theory and practice.
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