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Abstract

The catastrophic fault pattern is a pattern of faults occurring at strategic locations that may render a system unusable regardless 
of its component redundancy and of its reconfiguration capabilities. In this paper, we extend the characterization of catastrophic 
fault patterns known for linear arrays to two-dimensional VLSI arrays in which all links are unidirectional. We determine the 
minimum number of faults required for a fault pattern to be catastrophic and give algorithm for the construction of catastrophic 
fault patterns with minimum number of faults.
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1. Introduction

Systolic systems have been widely used as parallel 
models of computation [5,7]. These systems consist of 
a large number of identical and elementary processing 
elements locally connected in a regular fashion. Each 
element receives data from its neighbors, computes 
and sends the results again to its neighbors. Few par-
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ticular elements located at the extremes of the systems 
(these extremes depend on the particular system) are 
allowed to communicate with the external world. In 
this paper, we will focus on systolic two-dimensional 
array with unidirectional links.

Fault tolerant techniques are very important to sys­
tolic systems. Here we assume that only processors 
can fail. Indeed, since the number of processing el­
ements is very large, the probability that a set of 
processing elements becomes faulty is fairly high. 
Thus, fault-tolerant mechanisms must be provided in 
order to avoid that faulty processing elements take
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part in the computation. A widely used technique 
to achieve reconfigurability consists of providing re­
dundancy to the desired architecture [1,2]. In systolic 
arrays the redundancy consists of additional process­
ing elements, called spares, and additional connec­
tions, called bypass links. The redundant processing 
elements are used to replace any faulty processing ele­
ment; the redundant links are used to bypass the faulty 
processing elements and reach others. The effective­
ness of using redundancy to increase fault tolerance 
clearly depends on both the amount of redundancy and 
the reconfiguration capability of the system. It does 
however depend also on the distribution of faults in the 
system. There are sets of faulty processing elements 
for which no reconfiguration strategy is possible. Such 
sets are called catastrophic fault patterns (CFPs).

If we have to reconfigure a system when a fault set 
occurs, it is necessary to know if the set is catastrophic 
or not. Therefore it is important to study the prop­
erties of catastrophic sets. Till today, the characteri­
zation of CFPs is known only for linear arrays with 
the following results. The characterization has been 
used to obtain efficient testing algorithms both for 
unidirectional and bidirectional cases [9] with order 
of magnitude improvement over [3,4]. Efficient tech­
niques have been obtained for constructing CFPs [8]. 
Recently, using random walk as a tool, a closed form 
solution for the number of CFPs for bidirectional links 
has been provided in [6], an improvement over [11,4].

The main contribution of this paper is complete 
characterization of catastrophic fault patterns for two­
dimensional arrays with unidirectional links. The re­
quirement on the minimum number of faults in a fault 
pattern for it to be catastrophic is shown to be a func­
tion of the length of the longest horizontal bypass 
link and the number of rows in the two-dimensional 
array. From a practical viewpoint, above result al­
lows to prove some answers to the question about the 
guaranteed level of fault tolerance of a design. Guar­
anteed fault tolerance indicates positive answer to the 
question as: will the system withstand up to k faults 
always regardless of how and where they occur? We 
analyze catastrophic faults having the minimal num­
ber of defective processors. Throughout this paper, by 
catastrophic fault pattern we mean a catastrophic fault 
pattern having minimum number of faulty process­
ing elements. We describe algorithm for construct­
ing a catastrophic fault pattern with maximum width

(i.e., the distance between the first and the last fault 
in the fault pattern). The width of a fault pattern 
must fall with in precise bounds for the pattern to 
be catastrophic. This algorithm gives us the frame­
work for achieving the upper bounds on the width of 
a catastrophic fault patten for different link configura­
tions.

2. Preliminaries

In this paper, we will focus on two-dimensional 
networks. The basic components of such a network 
are the processing elements (PEs) indicated by cir­
cles in Fig. 1. The links are unidirectional. There are 
two kinds of links: regular and bypass. Regular links 
connect neighboring (either horizontal or vertical) PEs 
while bypass links connect non-neighbors. The bypass 
links are used strictly for reconfiguration purposes 
when a fault is detected, otherwise they are consid­
ered to be the redundant links. We now introduce the 
following definitions:

Definition 2.1. A two-dimensional network N  con­
sists of a set V of PEs and a set E of links (where 
a link joins a pair of distinct PEs) satisfying the condi­
tions listed below.

V is the union of three disjoint sets: the set ICUL = 
{ICUL1, ICUL2, I C U L Nl} of left interface control 
units, the set ICUR = {ICUR1 , ICUR2 , I C U R Nl} 
of right interface control units and a two-dimensional 
array A = {ptj : 1 < i < N 1, 1 < j  < N2} of PEs. We 
sometimes refer to the processing element p ij as (i, j) .

E consists of the links obtained as follows. Fix in­
tegers 1 =  g 1 < g2 < ■■■ < gk < N2 -  1 and 1 =  V1 < 
V2 < ■ ■ ■ < vi ^  N 1 — 1. Join pij to pi'j' by a link if 
and only if

(i) i =  i' and (j — j ') is one of g 1 ,g 2 , . . . ,  gk or
(ii) j  = j ' and (i — i') is one of v1, v2, . . vl .

Also join ICULi to pi2 , . . . ,  pigk and join pi,N2 —gk+ 1 , 
pi,N2 —gk+2 , . . . , pt ,N2 —1 to ICURi by links, for i = 
1, 2 , . . . ,  N 1.

We assume that N1 > vl and N2 > gk(N1 — 1) +  
(gk — 1)2 +  1. The idea behind this specific choice of 
lower bound for N2 is given in Result 3.1.



Fig. 1. Two-dimensional network of PEs.

Definition 2.2. We call g i , g2, . . ., gk the horizon­
tal link redundancies of N and v1 , v2 , . . .  ,vi the 
vertical link redundancies of N . We refer to G = 
(g1, g2, . . . ,  gk |v1, v2, . . . ,  vl) as the link redundancy 
of N .

Fig. 1 shows a two-dimensional network with 
N 1 =  4, N2 =  15 and G = (1, 3 | 1, 2). A link joining 
two PEs of the type p ij and p i,j+ 1  is called a hor­
izontal direct link and a link joining two PEs of the 
type p ij and p i+1,j is called a vertical direct link. Di­
rect links are also called regular links. Links joining 
p ij and p i,j+g with g > 1 are called horizontal bypass 
links and links joining p ij and p i+v,j with v > 1 are 
called vertical bypass links.

The length of the horizontal bypass link joining p ij 
to p i,j+g is g and the length of the vertical bypass link 
joining pij to pi+v,j is v .

We assume that the direction of information flow 
through horizontal links is from left to right and the 
direction of information flow through vertical links is 
from top to bottom of the array. Note that, no links 
exist in the network N except the ones specified by 
G as in Definition 2.1. It is assumed that ICUL and 
ICUR always operate correctly and we are considering 
information flow from ICUL to ICUR.

Definition 2.3. Given a two-dimensional array A, 
a fault pattern (FP) for A  is simply a non-empty sub­
set F of the set of processing elements in A. An as­
signment of a fault pattern F to A means that every 
processing element belonging to F is faulty (and the 
others operate correctly).

Given a fault pattern F , define m = min{j: 
(i, j )  e F } and M = max{ j : (i, j )  e F }.

Definition 2.4. The window WF of a fault pattern F 
is the sub-array of A consisting of {pij : 1 ^  i ^  N 1 , 
m ^  j  ^  M }. By the width \\WF || of F we mean 
M — m + 1.

Definition 2.5. A fault pattern is catastrophic for the 
network N if ICUL and ICUR are not connected (i.e., 
there is no path connecting any ICULi to any ICURi' 
which does not involve a faulty PE) when the fault pat­
tern F is assigned to A .

Example 2.1. Consider the fault pattern F = {(1, 5), 
(1, 6), (1, 8), (1,11), (2, 5), (2, 8), (2,10), (2,11), 
(3, 6), (3, 8), (3, 9), (3,11), (4, 7), (4, 8), (4,10), 
(4, 13)} with unidirectional link redundancy G = 
(1, 4 | 1) in a 4 x 24 array as shown in Fig. 2. Links 
and some processors are not drawn in the figure.

We see from Fig. 3, that the removal of the process­
ing elements belonging to F along with their inci-

Fig. 2. Fault pattern F .

Fig. 3. Network N  after the removal of F and their incident links.



dent links disconnects ICUL and ICUR. Hence F 
is catastrophic. It is easy to check that F remains 
catastrophic with respect to unidirectional link redun­
dancy G = (1, 4 | 1, 2).

3. Characterization of catastrophic fault patterns

In this section, we will characterize the catastrophic 
fault patterns for two-dimensional networks and prove 
that the minimum number of faults in a catastrophic 
fault pattern is a function of N 1 and the length of the 
longest horizontal bypass link.

Theorem 3.1. F is catastrophic with respect to N  im­
plies that the cardinality o f F , |F  | > N 1 gk.

Proof. Suppose to the contrary that | F | < N 1 gk. Then 
partition the two-dimensional array A of PEs into

blocks of gk columns as A = (A 1 . A 2 . ■ ■ ■ . A c) 
where c = [N2/gk 1 and place the blocks as consecu­
tive floors to form a cuboid as shown in Fig. 4. Observe 
that, in this cuboid representation, each horizontal reg­
ular link joins two consecutive elements in the same 
row of a floor or the last element of a row of a floor 
with the first element of the same row of the floor just 
above it whereas each vertical regular link joins two 
consecutive elements in the same column of a floor. 
On the other hand, each horizontal bypass link of the 
maximum length joins two consecutive elements in the 
same pillar. So, in this cuboid, going up along a pil­
lar corresponds to using the longest horizontal bypass 
links. Since the number of faulty elements | F | is less 
than the number of pillars, there must be a pillar with 
no faulty element, regardless of the distribution of the 
fault pattern. Since the bottom and top of each pillar 
are linked to ICUL and ICUR, respectively, F can­
not be catastrophic since we can use the bypass links 
of length gk to avoid the faulty PEs, a contradiction 
which proves the theorem. □

This theorem gives us a necessary condition on 
the minimum number of faults required for block­
ing a two-dimensional array. This also tells us that 
fewer than N 1 gk faults occurring in A will not be 
catastrophic. In the following we will restrict ourselves 
to the case where there are at least N 1 gk faults, and we

Fig. 4. Cuboid representation of a 4 x 15 array with link redundancy 
G = (1, 3 | 1).

will characterize the blocking fault patterns containing 
exactly N 1 gk faults.

Not all fault patterns consisting of N 1 gk faults are 
catastrophic. Some additional properties must be sat­
isfied. Before we describe further characteristics of a 
catastrophic fault pattern, we outline an algorithm for 
the construction of a CFP with the maximum width 
for a given link redundancy G when links are uni­
directional. Recall that, N2 is very large compare to 
gk(N1 — 1) +  (gk — 1)2 +  1 and N1 > vl . For simplic­
ity, we also assume that N2 is divisible by gk.

Algorithm UCFP. Construction of a catastrophic fault 
pattern for unidirectional horizontal and unidirectional 
vertical links.



Input: G.
Output: A catastrophic fault pattern F  with the 

maximum width.
Step 1. Partition the two-dimensional array of PEs 

into blocks of gk columns and list the blocks as the 
floors of a cuboid. Mark the first element of the N1th 
row in floor 0 by an X and set f  =  1.

Step 2. If there exists an unmarked element u =
(i, j )  in floor f  such that the element v = (i, j  — gk) 
below u in floor f  — 1 is marked, choose one such u 
and go to Step 4. Otherwise go to Step 3.

Step 3. If there is an unmarked element in floor f , 
then increase f  by 1 and go to Step 2. Otherwise, go 
to Step 5.

Step 4. If v is marked Y, then mark u by Y and go 
to Step 2. If v is marked X , then mark u by Y and 
mark every unmarked element w which is of the form 
(i, j  — g) where g e {g1 ,g 2 gk—1} or (i — v, j )  
where v e {v1, v2, . . . ,  vi}. Mark w by Y if the pillar of 
w contains another marked element; otherwise mark w 
by X. Go to Step 2.

Step 5. Stop. Note that all elements in floor f  are 
marked. The elements marked X form a catastrophic 
fault pattern F  with maximum width for link redun­
dancy G.

Observations. (1) Note that the algorithm assigns ex­
actly N1 gk number of X ’s.

(2) In Step 3, if there is an unmarked element in 
floor f , then there always exists a floor above floor f . 
The reason is this. Since N2 > gk(N  — 1) +  (gk — 
1)2 +  1, there are at least N 1 +  gk — 3 floors in the 
cuboid representation. Note that, the elements in floor 
N 1 +  gk — 3 are all marked. Therefore, a floor f  
with some unmarked elements must be below the floor 
N 1 +  gk — 3, and hence there exists a floor above that 
floor.

Example 3.1. Fig. 5 shows a CFP obtained by the 
above algorithm consisting of 16 faults corresponding 
to G =  (1, 4 | 1, 3) in a 4 x 24 array A when the links 
are unidirectional.

Theorem 3.2. Algorithm UCFP generates a catastrophic 
fault pattern.

Proof. We make the following simple observations on 
the algorithm:
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Fig. 5. Fault pattern for G = (1, 4 | 1, 3).

• Marking takes place only in Step 4. When some 
PE is marked there are two cases: (a) if the pillar 
has no marked PE then the current PE is marked 
by X and (b) if the pillar has at least one marked 
PE then all marked PEs are below the current PE 
and the current PE is marked by Y. When the al­
gorithm terminates, we also have the following:

• There is exactly one X in each pillar, hence | F  | =  
N 1 gk.

• For each pillar the X occurs below the Y’s.
• Let the final value of f  be fo. If a PE p is marked

Y and is adjacent to a PE q then q is marked 
(with X or Y) unless p is in floor fo and q is in a 
floor fo +  1.

We next prove that any PE ^ 1 marked with a Y is 
inaccessible, i.e., there is no way to reach this PE from 
ICUL without using any faulty PEs (those marked



with X). Suppose a  is accessible, i.e., a  is con­
nected to ICUL by a path ^  =  [ICUL,. . . ,  « 2, « 1] not 
containing any faulty PEs (those marked X). We con­
sider two cases:

Case 1. &>1 ,&>2 , • • • are all marked Y. Now, the PEs 
adjacent to ICUL all lie in the 0th floor. But no PE 
in the 0th floor can be marked Y by the algorithm, a 
contradiction which proves that a  is not accessible 
from ICUL.

Case 2. a^, &>2, . . are marked Y and « i+1, 
&>i+2 , . . .  are unmarked. But there is no direct link from 
an unmarked PE to a PE marked with a Y, a contradic­
tion which proves that a  is not accessible from ICUL.

Clearly when the algorithm terminates, all PEs in 
floor fo are either faulty or inaccessible from ICUL, so 
no PE in any floor > fo +  1 is accessible from ICUL; 
in particular, ICUR is not accessible from ICUL and F 
is a CFP.

We prove that the algorithm terminates by show­
ing that the number of marked elements in a floor 
increases strictly until it reaches N 1 gk. Note that all el­
ements of the floor f  +  1, which are above marked el­
ements in floor f , are marked. If there is an unmarked 
element in the f  th floor, note that some marked ele­
ment v is adjacent to an unmarked element z in the 
f  th floor. Then, by the algorithm, the element w in 
floor f  +  1 above z will be marked. □

Conjecture 3.1. The catastrophic fault pattern F , gen­
erated by Algorithm UCFP, has the maximum width of 
the window W f.

We now indicate our basis for the above conjec­
ture. Let F  * be any catastrophic fault pattern with 
N 1 gk faulty PEs. We assume that PE (N 1 , 1) belongs 
to F  *. We now consider the cuboid representation of 
A used in the proof of Theorem 3.1. Note that, since 
there are only N1gk faulty PEs, each pillar can con­
tain only one faulty PE. Now mark the faulty PEs by 
X ’s and in each pillar mark the PEs above the faulty 
PE by Y’s. A PE (i, j )  marked by X and =  (N1 , 1) 
is called fair PE if no PE among the PEs (i, j  — g) 
where g e {g1 ,g 2 , . . . ,  gk—1} or (i — v, j )  where v e 
{v1 , v2 , . . . ,  vl} is marked by Y. In other words, a PE 
(marked by X) is called fair PE if it is not accessible 
from any PE marked by Y using the links in G. In the 
given fault pattern F *, if there exists a fair PE (i, j ) ,  
we obtain a new fault pattern called derived fault pat­

tern by making the PE (i, j  +  gk) faulty instead of 
PE (i, j ) .  Then PE (i, j  +  gk) becomes faulty whereas 
PE (i, j )  becomes accessible from ICUL. Note that, 
the derived fault pattern is still catastrophic and its 
width is greater than or equal to the width of F  *. If 
there is any fair PE (i', j ') in the derived fault pat­
tern then make PE (i', j ' +  gk) faulty instead of PE 
(i', j '). Continuing this process we get a derived fault 
pattern F o with no fair PE. It is easy to check that this 
process terminates in finite number of steps. Clearly 
II WFo || > || WF* ||. Let F  be the fault pattern obtained 
from Algorithm UCFP. Then we think F  will be the 
only catastrophic fault pattern which does not have any 
fair PE, so F o =  F  and || WF || > || WF* ||. Since F * is 
arbitrary, F  has the maximum width.

This conjecture gives us the framework for achiev­
ing specific upper bounds and exact bounds on the size 
of the largest window for a given link configuration. 
Given a link configuration G, we can obtain, by apply­
ing the algorithm, a catastrophic fault pattern F  which 
is contained in the largest window; that is, WF is the 
maximum value possible.

We study the effect of G on the maximum width of 
window of a CFP. We start by showing that the win­
dow size decreases as the size of G increases.

Theorem 3.3. Let G =  (G1 | G2) and G' =  (G^ | G2) 
be two link redundancies with the same largest hori­
zontal link redundancy. I f  G 1 c  G^ and G2 C G2 and 
Wf and WF are the corresponding widest fault win­
dows, then || Wf || > IIŴ H.

Proof. In Algorithm UCFP, we note that there will 
be more X ’s for G' than for G in each floor, so the 
algorithm terminates sooner. Hence the final value of 
f  for G' will be less than or equal to the final value 
of f  for G. Note that the width of window of a CFP 
increases as the final value of f  increases. Hence the 
theorem follows. □

We now present some results which give the max­
imum width of a window of a CFP when there are 
at most two horizontal and at most two vertical link 
redundancies and an upper bound for the width of a 
window of a CFP in the general case. These results 
follow directly from Conjecture 3.1 and application of 
Algorithm UCFP.



Result 3.1. Let G =  (1,g | 1). Then, the maximum 
width o f the window o f a CFP with N 1 g faults is 
g(N1 — 1) +  (g — 1)2 +  1.

Proof. Let F  be the catastrophic fault pattern with re­
spect to link redundancy G =  (1, g | 1) generated by 
Algorithm UCFP. Let Fi c  F  be the set of faulty PEs 
occur only in the ith row of A. Note that all F  ’s are 
identical and of width [1o] (g — 1)2 +  1. We observe 
that, if F; begins at PE (i, j )  then Fi—1 will begin at 
PE (i — 1, j  +  g) for 2 < i < N  and Algorithm UCFP 
starts at PE (N1, 1). Therefore F  begins at PE (N1, 1) 
and ends at PE (1, g(N1 — 1) +  (g — 1)2 +  1). □

Result 3.2. Let G =  (1,g | 1, v) and v divides 
(N1 — 1). Then, the maximum width o f the window 
of a CFP with N 1g faults is given by g ( ( N  — 1)/ 
v +  v — 2) +  (g — 1)2 +  1.

Proof. The proof of the present result is similar to that 
of previous result. Let F  be the catastrophic fault pat­
tern with respect to link redundancy G =  (1, g | 1, v) 
generated by Algorithm UCFP. Here we observe that 
if Frv, r =  1, 2 , . . . ,  (N1 — 1)/v, begins at PE (rv, j)  
then Fi, rv — v +  2 < i < rv — 1, will begin at 
PE (i, j  +  g(rv — i)) and Frv—v+1 will begin at PE 
(rv — v +  1, j ) .  Note that Algorithm UCFP starts at 
PE (N1, 1). Now it is easy to check that F  begins at 
PE (N1, 1) and ends at PE (2, g((N1 — 1)/v +  v — 2) +  
(g — 1)2 +  1). □

In view of Theorem 3.3, when G =  (1, g2 , . . . ,  gk | 
1, v2, . . . ,  vl), we get an upper bound for the width 
of the window of a CFP with N 1 gk faults by replac­
ing g and v by gk and vl , respectively in the expres­
sion given in the preceding result. A similar statement 
holds for Result 3.1.

4. Cuboid representation for fault pattern

Suppose we are given a fault pattern F  with N1gk 
faults in a two-dimensional array with link redun­
dancy G =  (g1 , g2 , . . . ,  gk | v1 , v2 , . . . ,  vi). Without 
loss generality we will assume that the first column of 
A contains a fault. We now consider the cuboid repre­
sentation of A used in the proof of Theorem 3.1. How­
ever, we label the N 1 rows in any floor of the cuboid

with o, 1 , . . . ,  N1 — 1 instead of 1 ,2 . . . ,  N1 and gk 
columns in any floor with o, 1, . . . , gk — 1 instead of 
1 ,2 , . . . ,  gk. The floors are labelled using o, 1, 2 , . . .  
as before. With every PE (i, j )  we can uniquely asso­
ciate the triple (x,y, z) where x , y and z are the row 
label, column label and floor label of the position (i, j ) 
occupies in the cuboid. (Note that x =  i — 1, y is the 
remainder obtained when j  — 1 is divided by gk and z 
is L(j — 1)/gkJ .) We will write

urr \ f !  if (i, j )  e F, 
W ( w )  = 1  o otherwise.o
We will some time refer to (x, y, z) as the location of 
the PE (i, j ) .

Suppose now F  is a fault pattern such that for any 
(x, y), there is exactly one z for which W(x, y, z) =  1 
(i.e., there is exactly one faulty PE in each pillar). We 
then denote this z by hxy and call the matrix

H =

(  hoo 
h1o

ho1
h 11

ho,gk — 
h 1,gk—

\

VhNj — 1,o hNj—1,1 hN1 — 1,gk — 1/
the height matrix of F.

Example 4.1. Consider the CFP F  =  {(1, 5), (1, 8), 
(1, 11), (1, 14), (2, 9), (2, 12), (2, 15), (2, 18), (3, 5), 
(3, 8), (3, 11), (3, 14), (4, 1), (4,4), (4, 7), (4, 1o)} 
with 16 faults for a two-dimensional array A with link 
redundancy G =  (1,4 | 1, 3) which has || WF || =  18 as 
shown in Fig. 5.

The height matrix for this CFP is 
1 3 2 1

H = 2 4 3 2 
1 3 2 1

Vo 2 1 o /
Note that every minimal CFP (i.e., CFP with N 1gk 

faulty PEs) satisfies the conditions stated at the begin­
ning of the preceding paragraph. We now define the 
interior, exterior and border elements in the cuboid 
representation of a minimal CFP.

Definition 4.1. Let F  be a minimal CFP. Then the PE 
of A corresponding to the location (x, y, z) is said to 
be interior, border or exterior with respect to F  ac­
cording as z < hxy, z =  hxy or z > hxy. The interior 
I (F )  of F , the border B(F) of F  and the exterior



E(F)  of F  are defined to be the set of all interior ele­
ments, the set of all border elements and the set of all 
exterior elements of F , respectively.

Lemma 4.1. A fault pattern F is catastrophic for a 
two-dimensional network N  with unidirectional link 
redundancy G iff it is not possible to reach any exterior 
element from any interior element using the links in N .

Proof. It is easy to see that all interior elements are 
reachable from ICUL and ICUR is reachable from all 
exterior elements. The lemma follows from Defini­
tion 2.5. □

5. Necessary and sufficient conditions for 
catastrophic fault patterns

We give the necessary and sufficient conditions for 
the existence of minimal CFPs in terms of the height 
matrix.

Proposition 5.1. An N 1 x gk matrix H = ((hxy)) with 
non-negative integer entries is the height matrix o f a 
minimal CFP for N  with unidirectional link redun­
dancy G =  (1,g | 1) iff the following conditions are 
satisfied:

(i) hx 0 — hx , g —1 =  0 or +1 for all x such that 0 < 
x ^  N 1 — 1; hx 0 =  hx g— 1 =  0 for at least one x .

(ii) hxy — hx,y+ 1  ^  1 whenever 0 ^  x ^  N 1 — 1 and 
0 ^  y ^  g — 2 and

(iii) hxy — hx+1,y ^  1 whenever 0 ^  x ^  N 1 — 2 and 
0 ^  y ^  g — 1.

Clearly the number of minimal CFPs for N  with 
unidirectional link redundancy G =  (1,g | 1) is equal 
to the number of height matrices H  which satisfy 
the conditions of Proposition 5.1. We shall illustrate 
Proposition 5.1 by an example.

Example 5.1. Consider the fault pattern F  =  {(1,1), 
(1,4), (1, 7), (1, 14), (2, 1), (2, 7), (2, 8), (2, 10), 
(3, 5), (3, 8), (3, 11), (3,14)} in a 3 x 20 array A with 
link redundancy G =  (1,4 | 1). Note that in the cuboid 
representation for F  there is exactly one faulty PE in 
each pillar.

Fig. 6. Cuboid representation of F.

The height matrix for this fault pattern is

/  h00 h01 h02 h03 \ /  0 3 1 0  \
H =  h10 h 11 h12 h D =  0 2 1 1 .

h20 h21 h22 h23 1 3 2 1 
Note that, h 10 — h 13 =  — 1 which violates condition (i) 
of Proposition 5.1. We see from Fig. 6, that the ex­
terior processor at location (1, 0, 1) and the interior 
processor at location (1, 3,0) are connected by a hor­
izontal regular link. Hence F  is not a catastrophic 
fault pattern by Lemma 4.1. Similarly condition (ii) 
of Proposition 5.1 is violated since h01 — h02  =  2. 
Note that, locations (0, 1,2) and (0,2, 2) contain an 
interior processor and an exterior processor, respec­
tively, which are connected by a horizontal regular 
link. However it can easily verified that F  satisfied 
conditions (iii) of Proposition 5.1 even though F  is 
not catastrophic.

In the general case, we have the following proposi­
tion:

Proposition 5.2. An N 1 x gk matrix H  =  ((hxy)) with 
non-negative integer entries is the height matrix o f a 
minimal CFP for N  with unidirectional link redun­
dancy G =  (g1 ,g 2 . . . ,gk  | U1 ,U2 , . . . , v ; )  iff the fo l­
lowing conditions are satisfied:



(i) hx 0 — hx,gk—1 =  0 or +1 for all x such that 0 < 
x ^  N 1 — 1; hx 0 =  hx,gk—1 =  0 for at least one x .

(ii) hxy — hx,y+gi ^  1 for all g;, 1 ^  i ^  k — 1 when­
ever 0 < x < N 1 — 1 and 0 < y < gk — g; — 1 
and

(iii) hxy — hx+v;,y ^  1 for all v;, 1 ^  i ^  l whenever 
0 < x < N 1 — v; — 1 and 0 < y < gk — 1.

As before, the number of minimal CFPs for N with 
unidirectional link redundancy G =  (g1, g2 . . . ,  gk | 
v1 ,v2, . . . ,  v;) is equal to the number of height matri­
ces H which satisfy the conditions of Proposition 5.2.

6. Conclusions

In this paper, we extended the characterization 
of CFPs known for linear arrays to two-dimensional 
VLSI arrays. We determined the minimum number of 
faults required for a fault pattern to be catastrophic. 
We gave an algorithm for the construction of mini­
mal CFPs with largest fault window when all the links 
are unidirectional, and studied the effect of different 
link configurations on the size of the fault window. We 
gave the necessary and sufficient conditions for the ex­
istence of CFPs. However, the number of catastrophic 
fault patterns is not known even for the link redun­
dancy G =  (1, g | 1, v).
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