

106 D. Chakrabarti et al.

Hence, key pre-distribution to each of the sensor nodes
before deployment is a thrust area of research and the most
used mathematical tool for key pre-distribution is combina-
torial design. Each of the sensor nodes contains M many
keys and each key is shared by Q many nodes, (thus fixing
M and Q) such that the encrypted communication between
two nodes may be decrypted by at most Q − 2 other nodes
if they fall within the radio frequency range of the two com-
municating nodes. Similarly, one node can decrypt the com-
munication between any two of at most M(Q − 1) nodes if
it lies within the radio frequency range of all the nodes who
share a key with it.

Let us present an exact example from [11]. Take N =
2401, M = 30, Q = 49. The parameters are obtained using
a Transversal Design (for a basic introduction to Transversal
Designs, refer to [15, p. 133]). It has been shown that two
nodes share either 0 or 1 key. In this case, M(Q − 1) gives
the number of nodes with which one node can communicate.
The expected number of keys that is common between any

two nodes is M(Q−1)
N−1

= 0.6, (in [11], this is called the prob-
ability that two nodes share a common key). Further, it can
be checked that if two nodes do not share a common key,
then they may communicate via another intermediate node.
Let nodes νi , ν j do not share a common key, but νi , νk share
a common key and νk, ν j share a common key, i, j, k are all
distinct. Hence the secret communication between νi and νk

needs a key (encrypted by νi , decrypted by νk) and that be-
tween νk and ν j needs another secret key (encrypted by νk ,
decrypted by ν j). It has been shown in [11] that the commu-
nication between two nodes is possible in almost 0.99995
proportion of cases (this is based on some assumptions on
the geometric distribution of nodes, which we do not use for
our analysis). However, the following problems are immedi-
ate:

1. Communication between any two nodes in 60% of the
cases will be in one step (no involvement of any other
node), but the communication between any two of them
needs two steps for the rest 40% of the cases, making the
average of 1.4 steps in each communication. This is an
overhead. Thus, we need a design where we can guaran-
tee that there is a common key between any two nodes.

2. The direct communication between any two nodes can
be decrypted by at most Q − 2 other nodes. However, if
one takes the help of a third intermediate node, then the
communication can be decrypted by at most 2(Q − 2)

nodes. Thus, any communication can be decrypted by at
most 1.4(Q − 2) many nodes on an average.

3. In an adversarial situation, if s many nodes are compro-

mised, it has been shown that 1 − (1 − Q−2
N−2

)s proportion
of links becomes unusable. In this specific design, for
s = 10, out of 2401 nodes, the proportion of unusable
links becomes as high as 17.95%.

The solution to all these problems is based on the fact that
we need to increase the number of common keys between
any two nodes. The issues at this point are as follows:

1. The number of keys to be stored in each node will clearly
increase. So one needs to decide the availability of stor-
age space. In [11, p. 4], it has been commented that stor-
ing 150 keys in a sensor node may not be practical. On
the other hand, in [6, p. 47], [10, Sect. 5.2], scenarios
have been described with 200 many keys. If one con-
siders 4 Kbytes of memory space for storing keys in a
sensor node, then choosing 128-bit key (16 byte), it is
possible to accommodate 256 many keys.

2. It is not easy to find out combinatorial designs with pre-
specified number of common keys (say for example 5)
among any two nodes for key pre-distribution [5, 14].
Consider the following technique. Generally, a sensor
node corresponds to a block in combinatorial design [2,
11]. Here we merge a few blocks to get a sensor node.
Thus, the key space at each node gets increased and the
number of common keys between any two nodes can
also be increased to the desired level. It will be shown
that this technique provides a much better control over
the design parameters in key pre-distribution algorithms.

3. Further, it is also shown that by this random merging
strategy, one gets more flexible parameters than [11].

Thus, the goal in this paper is to present a randomized block
merging based design strategy that originates from Transver-
sal Design. We differ from the existing works where it is
considered that any two nodes will have either 0 or 1 com-
mon key and motivate a design strategy with more number
of common keys. This is important from resiliency consider-
ation in an adversarial framework since if certain nodes are
compromised, the proportion of links that becomes unusable
can be kept low, i.e. the connectivity of the network is less
disturbed.

The computation to find out a common key is also shown
to be of very low time complexity under this paradigm as
explained in Sect. 5. Note that Blom’s scheme [1] has been
extended in recent works for key pre-distribution in wireless
sensor networks [6, 10]. The problem with these kinds of
schemes is the use of several multiplication operations (as
example see [6, Sect. 5.2]) for key exchange.

The randomized key pre-distribution is another strategy
in this area [7]. However, the main motivation is to maintain
the connectivity (possibly with several hops) in the network.
As example [7, Sect. 3.2], a sensor network with 10,000
nodes has been considered and to maintain the connectivity,
it has been calculated that it is enough, if one node can com-
municate with only 20 other nodes. Note that the communi-
cation between any two nodes may require a large number
of hops. However, as we discussed earlier, only the connec-
tivity criterion (with too many hops) can not suffice in an
adversarial condition. Further, in such a scenario, the key
agreement between two nodes requires exchange of the key
indices.

The use of combinatorial and probabilistic design (also a
combination of both – termed as hybrid design) in the con-
text of key distribution has been proposed in [2]. In this case
also, the main motivation was to have low number of com-
mon keys as in [11]. On the other hand, we propose the idea

Key pre-distribution 107

of good number of common keys between any two nodes.
The novelty of our approach is to start from a combinatorial
design and then apply a probabilistic extension in the form
of random merging of blocks to form the sensor nodes and
in this case there is good flexibility in adjusting the number
of common keys between any two nodes.

Note that in our approach, we first consider the block
merging strategy in a completely randomized fashion. In
such a case there is a possibility that the constituent blocks
(which are merged to form a sensor node) may share com-
mon keys among themselves. This is a loss in terms of the
connectivity in the designed network as no shared key is
needed since there is no necessity for ‘intra-node commu-
nication’. Thus, we further consider a merging strategy to-
wards minimizing the number of common keys among the
blocks that are being merged. We present a heuristic for this
and it works better than our initial random merging strategy.
The scheme is a hybrid one as combinatorial design is fol-
lowed by a heuristic.

The organization of the paper is as follows. We present
some preliminaries of combinatorial design and the main
idea of [11] in the following section. Section 3 presents the
results related to the proposed random merging strategy of
the blocks to form a node. Further, some heuristic improve-
ments are suggested in Sect. 4. The key exchange protocol
between any two nodes is described in Sect. 5. Section 6
concludes the paper.

2 Preliminaries

2.1 Basics of combinatorial design

Let A be a finite set of subsets (also known as blocks) of a set
X . A set system or design is a pair (X, A). The degree of a
point x ∈ X is the number of subsets containing the point x .
If all subsets/blocks have the same size k, then (X, A) is said
to be uniform of rank k. If all points have the same degree r ,
(X, A) is said to be regular of degree r .

A regular and uniform set system is called a (v, b, r, k)−
1 design, where |X | = v, |A| = b, r is the degree and k is
the rank. The condition bk = vr is necessary and sufficient
for existence of such a set system. A (v, b, r, k)−1 design is
called a (v, b, r, k) configuration, if any two distinct blocks
intersect in zero or one point.

A (v, b, r, k, λ) BIBD is a (v, b, r, k)−1 design in which
every pair of points occurs in exactly λ many blocks. A
(v, b, r, k) configuration having deficiency d = v−1−r(k−
1) = 0 exists if and only if a (v, b, r, k, 1) BIBD exists.

Let g, u, k be positive integers such that 2 ≤ k ≤ u. A
group-divisible design of type gu and block size k is a triple
(X,H,A), where X is a finite set of cardinality gu, H is a
partition of X into u parts/groups of size g, and A is a set of
subsets/blocks of X . The following conditions are satisfied
in this case:

1. |H
⋂

A| ≤ 1 ∀H ∈ H, ∀A ∈ A,

2. every pair of elements of X from different groups occurs
in exactly one block in A.

A Transversal Design T D(k, n) is a group-divisible design
of type nk and block size k. Hence, H ∩ A = 1 ∀H ∈
H, ∀A ∈ A.

Let us now describe the construction of a transversal de-
sign. Let p be a prime power and 2 ≤ k ≤ p. Then there ex-
ists a T D(k, p) of the form (X,H,A) where X = Zk × Zp.
For 0 ≤ x ≤ k − 1, define Hx = {x} × Zp and H = {Hx :
0 ≤ x ≤ k − 1}.

For every ordered pair (i, j) ∈ Zp × Zp, define a block
Ai, j = {x, (i x + j) mod p : 0 ≤ x ≤ k − 1}. In this
case, A = {Ai, j : (i, j) ∈ Zp × Zp}. It can be shown that
(X,H,A) is a T D(k, p).

Now let us relate a (v = kr, b = r2, r, k) configuration
with sensor nodes and keys. X is the set of v = kr number
of keys distributed among b = r2 number of sensor nodes.
The nodes are indexed by (i, j) ∈ Zr × Zr and the keys
are indexed by (i, j) ∈ Zk × Zr . Consider a particular block
Aα,β . It will contain k number of keys {(x, (xα+β) mod r) :
0 ≤ x ≤ k − 1}. Here |X | = kr = v, |Hx | = r , the
number of blocks in which the key (x, y) appears for y ∈ Zr ,
|Ai, j | = k, the number of keys in a block. For more details
on combinatorial design refer to [11, 15].

Note that if r is a prime power, we will not get an in-
verse of x ∈ Zr when gcd(x, r) > 1. This is required for
key exchange protocol (see Sect. 5). So basically we should
consider the field G F(r) instead of the ring Zr . However,
there is no problem when r is a prime by itself. In this paper
we generally use Zr since in our examples we consider r to
be prime.

2.2 Lee–Stinson approach [11]

Consider a (v, b, r, k) configuration (which is in fact a
(rk, r2, r, k) configuration). There are b = r2 many sen-
sor nodes, each containing k distinct keys. Each key is re-
peated in r many nodes. Also v gives the total number of
distinct keys in the design. One should note that bk = vr
and v − 1 > r(k − 1). The design provides 0 or 1 com-
mon key between two nodes. The design (v = 1470, b =
2401, r = 49, k = 30) has been used as an example in [11].
The important parameters of the design are as follows:

1. Expected number of common keys between two nodes:

This value is p1 = k(r−1)
b−1

= k
r+1

. In the given example,

p1 = 30
49+1

= 0.6.
2. Consider an intermediate node: There is a good propor-

tion of pairs (40%) with no common key, and two such
nodes will communicate through an intermediate node.
Assuming a random geometric deployment, the example
shows that the expected proportion such that two nodes
are able to communicate either directly or through an in-
termediate node is as high as 0.99995.

3. Resiliency: Under adversarial situation, one or more sen-
sor nodes may get compromised. In that case, all the keys

108 D. Chakrabarti et al.

present in those nodes cannot be used for secret commu-
nication any longer, i.e. given the number of compro-
mised nodes, one needs to calculate the proportion of
links that cannot be used further. The expression for this
proportion is

fail(s) = 1 −

(

1 −
r − 2

b − 2

)s

,

where s is the number of nodes compromised. In this
particular example, fail(10) ≈ 0.17951. That is, given a
large network comprising as many as 2401 nodes, even
if only 10 nodes are compromised, almost 18% of the
links become unusable.

3 Our strategy: merging blocks in combinatorial design

We use the concept of merging blocks to form a sensor node.
Initially we do not specify any merging strategy and consider
that blocks will be merged randomly. In this direction we
present the following technical result.

Theorem 1 Consider a (v, b, r, k) configuration with b =
r2. We merge z many randomly selected blocks to form a
sensor node. Then

1. There will be N = � b
z
� many sensor nodes.

2. The probability that any two nodes share no common key

is (1 − p1)
z2

, where p1 = k
r+1

.
3. The expected number of keys shared between two nodes

is z2 p1.
4. Each node will contain M many distinct keys, where zk−

(
z
2
) ≤ M ≤ zk. The average value of M is M̂ = zk −

(
z
2
) k

r+1
.

5. The expected number of links in the merged system is

L̂ =

(

(

r2

2

)

−

⌊

r2

z

⌋

(

z

2

)

)

k

r + 1
− (r2 mod z)k.

6. Each key will be present in Q many nodes, where 	 r
z

 ≤

Q ≤ r . The average value of Q is

Q̂ = 1
kr

(� b
z
�)(zk − (

z
2
) k

r+1
).

Proof The first item is easy to see.
Since the blocks are merged randomly, any two sensor

nodes will share no common key if and only if none of the
keys in z blocks constituting one sensor node are available in
the z blocks constituting the other sensor node. Thus, there
are z2 many cases where there are no common keys. As we
have considered random distribution in merging z blocks to
form a node, under reasonable assumption (corroborated by
extensive simulation studies), all these z2 events are inde-
pendent. Note that p1 is the probability that two blocks share
a common key. Hence the proof of the second item.

The number of common keys between two blocks ap-
proximately follows binomial distribution. The probability
that two blocks share i many common keys is given by

(
z2

i
)pi

1(1 − p1)
z2−i , 0 ≤ i ≤ z2. Thus, the mean of the

distribution is z2 p1 which proves the third item.
For the fourth item, note that each block contains k many

distinct keys. When z many blocks are merged, then there
may be at most (

z
2
) common keys among them. Thus, the

number of distinct keys M per sensor node will be in the
range zk − (

z
2
) ≤ M ≤ zk. The average number of common

keys between two nodes is k
r+1

. So the average value of M

is zk − (
z
2
) k

r+1
.

Consider that z blocks are merged to form a node, i.e.

given a (v = rk, b = r2, r, k) configuration we get � r2

z
�

many sensor nodes. The total number of links was (
r2

2
) k

r+1
before the merging of blocks. For each of the nodes (a node

is z many blocks merged together), (
z
2
)) k

r+1
many links be-

come intra-node links and totally, there will be a deduction

of � r2

z
�(z

2
) k

r+1
links (to account for the intra-node links) on

an average. Further, as we use � r2

z
� many sensor nodes, we

discard (r2 mod z) number of blocks, which contribute to
(r2 mod z)k many links. There will be a deduction for this
as well. Thus, the expected number of links in the merged
system is

(

(

r2

2

)

−

⌊

r2

z

⌋

(

z

2

)

)

k

r + 1
− (r2 mod z)k.

This proves the fifth item.
Note that a key will be present in r many blocks. Thus,

a key may be exhausted as early as after being used in 	 r
z

many sensor nodes. On the other hand a key may also be
distributed to a maximum of r many different nodes. Hence
the number of distinct nodes Q corresponding to each key
is in the range 	 r

z

 ≤ Q ≤ r . Now we try to find out the

average value of Q, denoted by Q̂. Total number of distinct
keys in the merged design does not change and is also kr .

Thus, Q̂ = N M̂
kr

= 1
kr

(� b
z
�)(zk −

(z
2

)

k
r+1

). This proves the
sixth item. ��

3.1 Calculating fail(s) when a block is considered
as a node (no merging)

The expression fail(s), the probability that a link become
unusable, if s many nodes are compromised, has been cal-
culated in the following way in [11]. Consider that there is a
common secret key between the two nodes Ni , N j . Let Nh

be a compromised node.Now the key that Ni , N j share is
also shared by r − 2 other nodes. The probability that Nh is

one of those r − 2 nodes is r−2
b−2

. Thus, the probability that
compromise of s many nodes affect a link is approximately

1 − (1 − r−2
b−2

)s . Given the design (v = 1470, b = 2401, r =
49, k = 30) and s = 10, fail(10) ≈ 0.17951.

We calculate this expression in a little different man-
ner. Given b = r2 many nodes, the total number of links

is (
r2

2
) k

r+1
. Now compromise of one node reveals k many

Key pre-distribution 109

Table 1 Calculation of fail(s) and Fail(s)

s 1 2 3 4 5 6 7 8 9 10

fail(s) 0.019591 0.038799 0.057631 0.076093 0.094194 0.111940 0.129338 0.146396 0.163119 0.179515
Fail(s) 0.020408 0.040408 0.060000 0.079184 0.097959 0.116327 0.134286 0.151837 0.168980 0.185714
Expt. 0.020406 0.040609 0.059986 0.078376 0.096536 0.117951 0.135109 0.151639 0.165508 0.184885

keys. Each key is repeated in r many nodes, i.e. it is being
used in (

r
2
) many links. Thus, if one key is revealed, it dis-

turbs the following proportion of links:

(
r
2
)

(
r2

2
) k

r+1

=
1

kr
.

Now s many nodes contain ks − (
s
2
) k

r+1
many distinct keys

on an average. This is because there are (
s
2
) many pairs of

nodes and a proportion of k
r+1

of them will share a common
key. Thus, in our calculation, on an average

Fail(s) =
ks − (

s
2
) k

r+1

kr
=

s

r

(

1 −
s − 1

2(r + 1)

)

.

Note that to distinguish the notation we use Fail(s) in-
stead of fail(s) in [11]. Note that considering the design
(v = 1470, b = 2401, r = 49, k = 30), we tabulate the
values of fail(s), Fail(s) and experimental data (average of
100 runs for each s) regarding the proportion of links that
cannot be used after compromise of s many nodes. The re-
sults look quite similar. However, it may be pointed out that
our approximation is in better conformity with the experi-
mental values (see Table 1) than that of [11], which looks a
bit underestimated.

3.2 Calculation of Fail(s) when more than one blocks
are merged

Let Na and Nb be two given nodes. Define two events E and
F as follows:

1. E : Na and Nb are disconnected after the failure of s num-
ber of nodes,

2. F : Na and Nb were connected before the failure of those
s nodes.

The sought for quantity is

Fail(s) = P(E | F) =
P(E ∩ F)

P(F)
.

Let X be the random variable denoting the number of
keys between Na and Nb and following the proof of The-

orem 1(2), we assume that X follows B(z2, k
r+1

). Thus,

P (F) = P (X > 0) = 1−P (X = 0) = 1−

(

1 −
k

r + 1

)2

.

Next define two sets of events:

1. E1i : i number of keys (shared between Na and Nb) are
revealed consequent upon the failure of s nodes,

2. E2i : i number of keys are shared between Na and Nb.

Let Ei = E1i∩E2i for i = 1, 2, . . . , z2. So, Ei ∩

E j = ∅ for 0 ≤ i �= j ≤ z2. As E ∩ F = ∪z2

i=1 Ei ,

we have P(E ∩ F) = P(∪z2

i=1 Ei) =
∑z2

i=1 P(Ei) =
∑z2

i=1 P(E1i |E2i)P(E2i) and also P(E2i) = (
z2

i
)(k

r+1
)i

(1 − k
r+1

)
z2−i

.

Now we estimate P(E1i | E2i) by hypergeometric dis-
tribution. Consider the population (of keys) of size kr and
γ number of defective items (the number of distinct keys
revealed). We shall draw a sample of size i (without replace-
ment) and we are interested in the event that all the items
drawn are defective.

Note that γ is estimated by the average number of

distinct keys revealed, i.e. γ = szk(1 − sz−1
2(r+1)

). So

P(E1i | E2i) =
(

γ
i)

(
kr
i)

, i = 1, 2, . . . , z2.

Finally, P(E |F) =
P(E

⋂

F)

P(F)

=

∑z2

i=1

(
γ
i)

(
kr
i)

(
z2

i
)(k

r+1
)i (1 − k

r+1
)

z2−i

1 − (1 − k
r+1

)
2

.

The estimate γ is a quadratic function of s and hence is
not an increasing function (though in reality, it should be an
increasing function of s ∀s). That is why Fail(s) increases
with s as long as γ increases with s. Given γ = szk(1 −

sz−1
2(r+1)

), it can be checked that γ is increasing for s ≤ 2r+3
2z

.

As we are generally interested in the scenarios where a small
proportion of nodes are compromised, this constraint on the
number of compromised nodes s is practical.

Based on the above discussion, we have the following
theorem.

Theorem 2 Consider a (v, b, r, k) configuration. A node is

created by random merging of z many nodes. For s ≤ 2r+3
2z

,

Fail(s) ≈

∑z2

i=1

(
γ
i)

(
kr
i)

(

z2

i

)

(

k
r+1

)i (
1 − k

r+1

)z2−i

1 −
(

1 − k
r+1

)2
,

where

γ = szk

(

1 −
sz − 1

2(r + 1)

)

.

110 D. Chakrabarti et al.

Table 2 Comparison of Fail(s) values in different cases (a node is formed by merging four blocks)

s 1 2 3 4 5 6 7 8 9 10

Fail(s) (Theorem 3) 0.020408 0.040408 0.060000 0.079184 0.097959 0.116327 0.134286 0.151837 0.168980 0.185714
Fail(s) (Theorem 2) 0.022167 0.044369 0.066527 0.088560 0.110385 0.131917 0.153069 0.173756 0.193891 0.213388
Expt. (random) 0.022987 0.045345 0.068904 0.090670 0.114853 0.135298 0.158633 0.181983 0.203342 0.222167
Expt.(heuristic) 0.022414 0.041457 0.066885 0.091181 0.106597 0.132854 0.156337 0.177984 0.200212 0.218968

It may be mentioned that while estimating P(E1i | E2i) by
(

γ
i)

(
kr
i)

, we are allowing a higher quantity in the denominator.

The number of distinct keys revealed is under the restriction
that the keys are distributed in s distinct blocks. However,
the denominator is the expression for choosing i number of
distinct keys from a collection of kr keys without any restric-
tion. As a consequence, the resulting probability values will
be under estimated, though the experimental results reveal
that the difference is not significant at all (see Table 2).

Note that in Theorem 2, there is a restriction on s.
Next we present another approximation of Fail(s) as follows
where such a restriction is not there. However, the approxi-
mation of Theorem 3 is little further than that of Theorem 2
from the experimental results (see Table 2).

Theorem 3 Consider a (v = kr, b = r2, r, k) configura-
tion. A node is prepared by merging z > 1 nodes. Then in
terms of design parameters, Fail(s) ≈

1

1 − (1 − k
r+1

)z2

z2
∑

i=1

(

z2

i

) (

k

r + 1

)i (

1 −
k

r + 1

)z2−i

π i ,

where

π = szk

(

1 −
sz − 1

2(r + 1)

)

Q̂(Q̂ − 1)

2L̂
.

Proof Compromise of one node reveals M̂ many keys on

an average. Thus, there will be s M̂ many keys. Further, be-

tween any two nodes, z2 k
r+1

keys are common on an aver-

age. Thus, we need to subtract (
s
2
)z2 k

r+1
many keys from

s M̂ to get the number of distinct keys. Thus, the number of

distinct keys in s many merged nodes is = s M̂−(
s
2
)z2 k

r+1
=

s(zk − (
z
2
) k

r+1
) − (

s
2
)z2 k

r+1
= szk(1 − sz−1

2(r+1)
).

We have N = � b
z
� many sensor nodes, and L̂ = ((

r2

2
) −

� r2

z
�(z

2
)) k

r+1
− (r2 mod z)k many average number of total

links. Each key is repeated in Q̂ many nodes on an average,

i.e. it is being used in Q̂(Q̂−1)
2

many links. Thus, if one key

is revealed that disturbs Q̂(Q̂−1)

2L̂
many links on an average.

Hence compromise of one key disturbs
Q(Q−1)

2

L̂
proportion of

links. Hence, compromise of s nodes disturbs π = szk(1 −
sz−1

2(r+1)
)

Q̂(Q̂−1)

2L̂
proportion of links on an average. Thus, we

can interpret π as the probability that one link is affected
after compromise of s many merged nodes.

Now the probability that there are i many links between
two nodes given at least one link exists between them is

1

1−(1− k
r+1

)z2 (
z2

i
)(k

r+1
)i (1 − k

r+1
)z2−i . Further, the probabil-

ity that all those i links will be disturbed due to compromise
of s nodes is π i . Hence Fail(s)

=
1

1 − (1 − k
r+1

)z2

z2
∑

i=1

(

z2

i

)(

k

r + 1

)i(

1−
k

r + 1

)z2−i

π i .

��

The following example illustrates our approximations
vis-a-vis the experimental results. Consider a (v = 101 ·
7, b = 1012, r = 101, k = 7) configuration and merging of
z = 4 blocks to get a node. Thus, there will be 2, 550 many
nodes. In such a situation we present the proportion of links
disturbed if s many (1 ≤ s ≤ 10) nodes are compromised,
i.e. this can also be seen as the probability that two nodes get
disconnected which were connected earlier (by one or more
links). In Table 2 we present the values that we get from
Theorem 3, Theorem 2 and also experimental results which
are the average of 100 runs.

3.3 Comparison with [11]

In the example presented in [11], the design (v = 1470, b =
2401, r = 49, k = 30) has been used to get N = 2401, M =
30, Q = 49, p1 = 0.6, 1 − p1 = 0.4.

Now we consider the design (v = 101 · 7 = 707, b =
1012 = 10201, r = 101, k = 7). Note that in this case p1 =

k
r+1

= 7
102

. We take z = 4. Thus, N = � 10201
4

� = 2550. Fur-
ther, the probability that two nodes will not have a common

key is (1 − 7
102

)16 = 0.32061. Note that this is considerably
lesser (better) than the value 0.4 presented in [11] under a sit-
uation where the number of nodes is greater (2550 > 2401)

and number of keys per node is lesser (28 < 30) in our
case. Thus, our strategy is clearly more efficient than that
of [11] in this respect. On the other hand, the Fail(s) value
is worse in our case than what has been achieved in [11].
In Table 3, for our approaches, we present the experimental
values which are average over 100 runs. For the time being
let us concentrate on the comparison between our contribu-
tion in this Sect. 3 and the idea presented in [11]. In the next
Sect. 4, we will present a better idea and the result of that is
also included in Table 3 for brevity.

Key pre-distribution 111

Table 3 Comparison with an example presented in [11]

Comparison Random merging Sect. 3 Heuristic Sect. 4 [11]

Number of nodes 2, 550 2, 550 2, 401
Number of keys per node ≤ 28 ≤ 28 30
Probability that two nodes do not share a common key 0.320555 0.30941 0.4
Fail(s), for s = 10 0.222167 0.218968 0.185714

The comparison in Table 3 is only to highlight the per-
formance of our design strategy with respect to what is de-
scribed in [11] and that is why we present a design with
average number of common keys between any two nodes
≤ 1. However, we will present a practical scenario in the
next subsection where there are more number (≥ 5) of com-
mon keys (on an average) between any two nodes and con-
sequently the design achieves much less Fail(s) values.

One more important thing to mention is that we consider
the average case analysis for our strategy. The worst case
situation will clearly be worse than the average case, but that
is not of interest in this context as we will first try to get a
merging configuration which is close to the average case. As
this is done in preprocessing stage, we may go for more than
one attempts for the configuration and it is clear that in a few
experiments, we will surely get a configuration matching the
average case result. On the other hand, it is very important
to identify the best case as this will provide a solution better
than the average case. However, this is open at this point of
time.

The strength of our scheme is in the presence of several
common keys between two nodes, which in fact makes it
more resilient. Of course, this is at the cost of an obvious
increase in number of keys in each node by a factor of z.
The example presented in Sect. 3.3 and Sect. 3.4 illustrate
this fact. In Sect. 3.3, we deliberately allowed a very low
number of common keys (so that the node size is compara-
ble to that of [11]) and hence the negative resiliency measure
Fail(s) increased slightly. In what follows, we demonstrate
that with an increase in the node capacity, the negative re-
siliency measure Fail(s) assumes a negligible value.

3.4 A practical design with more than one keys (on
average) shared between two nodes

We start with the idea that a node can contain 128 keys and
as we like to compare the scenario with [11], we will con-
sider the number of sensor nodes ≥ 2401, as it has been used
in the examples in [11].

Consider a (v = rk, b = r2, r = 101, k = 32) config-
uration. If one merges z = 4 blocks (chosen at random) to
construct a node, the following scheme is obtained (refer to
Theorems 1 and 2).

1. There will be � 10201
4

� = 2550 sensor nodes.
2. The probability that two nodes do not share a common

key is approximately (1 − 32
102

)16 = 0.0024.
3. Expected number of keys shared between two nodes =

16·32
102

≥ 5.

4. Each node will contain on an average M̂ = 4 × 32 −

(
4
2
) 32

102
≈ 126 many distinct keys and at most 128 many

keys.
5. Fail(10) = 0.019153 ≈ 2% and Fail(25) = 0.066704

≈ 7%.

This example clearly uses more keys (≤ 128) per sensor
node than the value 30 in the example of [11]. Note that
directly from a (v, b, r, k) configuration, it is not possible to
have k > r . However, in a merged system that is always pos-
sible. Moreover, the average number of keys shared between
any two nodes is ≈ 5. It is not easy to get a combinatorial
design [15] to achieve such a goal directly. This shows the
versatility of the design proposed by us.

4 A Heuristic: merging blocks attempting to minimize
the number of intra node common keys

So far we have used the concept of merging blocks to form a
sensor node without any constraints on how the blocks will
be chosen to form a node. Now we add the constraint that
the blocks that will be merged to form a node such that the
number of common keys between two blocks of the same
node is minimized (the best case is if the number is zero).
For this we present the following heuristic.

Heuristic 1

1. f lag = true; count = 0; all the blocks are marked as
unused;

2. an array node[. . .] is available, where each element of
the array can store z many blocks;

3. while(f lag){
(a) choose a random block, mark it as used and put it in

node[count];
(b) for (i = 1; i < z; i + +){

i. search all the unused blocks in random fashion
and put the first available one in node[count]
which has no common key with the existing
blocks already in node[count];

ii. mark this block as used;
iii. if such a block is not available then break the for

loop and assign f lag = f alse;
(c) } (end for)
(d) if f lag = true then count = count + 1;

4. } (end while)
5. report that count many nodes are formed such that there

is no intra node connectivity.

112 D. Chakrabarti et al.

6. for rest of the (r2−count ·z) many blocks, merge z blocks
randomly to form a node (they may have intra node con-

nectivity) to get (� r2

z
� − count) many extra nodes; this

constitutes the initial configuration.
7. assign the initial configuration to current configuration

and run step 8 for i many iterations.
8. make m many moves (explained below) on the current

configuration and choose the one that gives rise to the
maximum increase in connectivity; update the current
configuration with this chosen one.

We define a move as follows:

1. start move;
2. copy the current configuration in a temporary configura-

tion and work on the temporary configuration;
3. from the list of pairs of nodes sharing more than one

common keys, select one pair of nodes randomly; call
them a and b;

4. from the list of pairs of nodes sharing no common key,
select one pair of nodes randomly; call them c and d .

5. select one block each from a and b (say block α from
node a and block β from node b) and remove them such
that α and β intersect each other and nodes a and b are
still connected after the removal of α, β, respectively; if
this condition is not satisfied then go to step 9;

6. select one block each from nodes c and d and remove
them; let the removed blocks be γ and δ, respectively;

7. put γ in a, δ in b, α in c and β in d;
8. store this temporary configuration in some container;
9. end move.

In Heuristic 1 we use a simple hill climbing technique
and for experimental purposes we took m = 100, i = 100.
It will be encouraging to apply more involved meta heuristic
techniques in step 8 of Heuristic 1. This we recommend for
future research.

Note that in [3], we have considered only up to step 5
of Heuristic 1. It is very clear that given (v, b, r, k) config-
uration with b = r2, if one merges z many blocks to get
each node then the maximum possible nodes that are avail-

able could be N ≤ � b
z
�. However, it is not guaranteed that

given any configuration one can really achieve the upper

bound � b
z
� with the constraint that the blocks constituting a

node cannot have any common key among themselves. Us-
ing Heuristic 1 up to step 5, one can use all the blocks in
some cases, but sometimes it may not be possible also (see
details in [3]). That is the reason we go for step 6 for merg-
ing the rest of the blocks where we remove the constraints
that no two blocks of a node can have a common key.

The following example illustrates the experimental re-
sults and we show that using this technique we get better
(lower) Fail(s) value than Sect. 3 as evident from the last
row of Table 2. Consider a (v = 101 · 7, b = 1012, r =
101, k = 7) configuration and merging of z = 4 blocks to
get a node. Thus, there will be 2, 550 many nodes. In such
a situation we present the proportion of links disturbed if s
many (1 ≤ s ≤ 10) nodes are compromised, i.e. this can

also be seen as the probability that two nodes get discon-
nected which were connected earlier (by one or more links).

4.1 Experimental results with this heuristic

Let us refer to Table 3 for the comparison. As usual, we con-
sider the (v = 101 · 7 = 707, b = 1012 = 10201, r =
101, k = 7) configuration to attain a comparable design af-

ter merging. Note that in this case p1 = k
r+1

= 7
102

. We

take z = 4. Thus, N = � 10201
4

� = 2550. Considering the
binomial distribution presented in Theorem 1(3), the theo-
retical probability that two nodes will not have a common

key is (1 − 7
102

)16 = 0.32061. Experimentally with 100
runs we find the average value as 0.30941 which is less
(better) than the theoretically estimated value and also the
experimental value 0.320555 as explained in Sect. 3 un-
der the same experimental set up. Note that this is consid-
erably lesser than the value 0.4 presented in [11]. The av-
erage number of common keys between any two nodes is

z2 p1 = z2 k
r+1

= 16.7/102 = 1.098039. Experimentally
with 100 runs we get it as 1.098362 on an average which
is a higher (improved) value than the theoretical estimate
and also the experimental value 1.098039 as given in Sect. 3
under the same experimental set up. Further, note that the
last row of the Table 2 provides better (lesser) Fail(s) values
available from the heuristic than the random search.

4.2 More keys shared between two nodes

As in Sect. 3.4, consider a (v = rk, b = r2, r = 101, k =
32) configuration. If one merges z = 4 blocks to construct a
node according to Heuristic 1, the following scheme is ob-
tained.

1. There are � 10201
4

� = 2550 many sensor nodes.
2. The probability that two nodes do not share a common

key is approximately (1− 32
102

)16 = 0.002421. The exper-
imental value on an average is 0.002094 with 100 runs
which is lesser (better) than the theoretically estimated
value.

3. Expected number of keys shared between two nodes

= 16·32
102

≥ 5.019608. The experimental value with 100
runs is 5.021088 on an average, little better than the the-
oretically estimated value.

In Table 4 we present the experimental value for Fail(s),
where we take the average over 100 runs for each s.

5 Key exchange

In this section, we present the key exchange protocol be-
tween any two nodes. First we present the key exchange
protocol (as given in [11]) between two blocks Na, Nb hav-
ing identifiers (a1, a2) and (b1, b2), respectively. We take a
(v = kr, b = r2, r, k) configuration. Thus, the identifier of

Key pre-distribution 113

Table 4 Experimental Fail(s) values

s 1 2 3 4 5 6 7 8 9 10

Fail(s) 0.000724 0.001713 0.002750 0.004243 0.005912 0.008095 0.010394 0.013063 0.016221 0.019339

a block is a tuple (a1, a2) where a1, a2 ∈ {0, . . . , r − 1}
and the identifier of a key is a tuple (k1, k2) where k1 ∈
{0, . . . , k − 1}, k2 ∈ {0, . . . , r − 1}.

Algorithm 1

1. Consider two blocks Na, Nb having identifiers (a1, a2)

and (b1, b2), respectively.
2. if a1 = b1 (and hence a2 �= b2), then Na and Nb do not

share a common key.
3. else x = (b2 − a2)(a1 − b1)

−1 mod r . If 0 ≤ x ≤ k − 1,
then Na and Nb share the common key having identifier
(x, a1x + a2). If x ≥ k, then Na and Nb do not share a
common key.

They can independently decide whether they share a

common key in O(log2
2 r) time as inverse calculation is

used [13, Chapter 5].
In the proposed system, a node comprises of z number

of blocks. Since each block has an identifier (which is an
ordered pair (x, y) ∈ Zr × Zr), a node in the merged system
has z number of such identifiers which is maintained in a
list.

Algorithm 2

1. for the tth block in the node Na , t = 1, . . . , z
(a) send the identifier corresponding to the tth block to

the other node Nb;
(b) receive an identifier corresponding to a block in Nb;
(c) compare the received identifier from Nb with each of

the z identifiers in it (i.e. Na) using Algorithm 1;
(d) if a shared key is discovered acknowledge Nb and

terminate;
(e) if an acknowledgment is received from Nb that a

shared key is discovered then terminate;
2. report that there is no shared key;

Since Na and Nb participate in the protocol at the same
time, the above algorithm is executed by Na and Nb in paral-
lel. There will be O(z) amount of communications between
Na and Nb for identifier exchange and the decision whether
they share a common key. At each node at most z2 many in-
verse calculations are done (each identifier of the other node
with each identifier of the node), which gives O(z2 log2

2 r)

time complexity.

6 Conclusion and future research

In this paper, we first present a randomized block merg-
ing strategy in proposing a key pre-distribution scheme for
secure communication among the sensor nodes. Our idea

presents a departure from the usual combinatorial design
in the sense that the designs are readily available accord-
ing to user requirements. Our merging strategy results into
schemes that are not directly available from combinatorial
designs.

Our main target is to get more than one common keys
among any pair of nodes that provides a robust network in
terms of security under adversarial conditions where some
nodes may get compromised. We present detailed mathemat-
ical analysis in presenting our results with supporting exper-
imental data.

Next we present a heuristic improvement of the basic
randomized block merging strategy. In this case we present
a strategy for merging blocks in a (v, b, r, k) configuration
in such a manner that the blocks constituting a node should
not share any common key among themselves (may be there
is a departure in a few cases where the blocks in a node
may intersect, but we like to minimize it). This provides bet-
ter parameters than our basic random merging strategy. The
heuristic we have attempted is at a very basic level which
is nothing but simple hill climbing kind of strategy and we
got certain improvement with this only. Thus, it seems en-
couraging to attempt more advanced meta heuristic searches
like simulated annealing or genetic algorithm for further im-
provement. We recommend this for future research.

It will be interesting to regularize the key pre-distribution
after random merging. In the strategy presented in this paper,
the number of common keys between any two nodes follow
binomial distribution. Thus, there is a probability (though
very low) that there may be no common key between two
nodes (for the time being, to get around this difficulty, two
nodes can always communicate via an intermediate node
with almost certainty). It looks promising to apply more
sophisticated heuristic re-arrangement of blocks among the
nodes available after the merging so that the number of com-
mon keys between any two nodes becomes more or less con-
stant and always ≥ 1.

References

1. Blom, R.: An optimal class of symmetric key generation systems.
Eurocrypt, LNCS 209 84, 335–338 (1985)

2. Camtepe, S.A., Yener, B.: Combinatorial design of key distribu-
tion mechanisms for wireless sensor networks. Eurosics (2004)

3. Chakrabarti, D., Maitra, S., Roy, B.: A hybrid design of key pre-
distribution scheme for wireless sensor networks. In: The 1st In-
ternational Conference on Information Systems Security, ICISS
2005, vol. 3803, Lecture Notes in Computer Science, pp. 228–
238. Springer Verlag (2005)

4. Chan, H., Perrig, A., Song, D.: Random key predistribution
schemes for sensor networks. In: IEEE Symposium on Research
in Security and Privacy, pp. 197–213 (2003)

114 D. Chakrabarti et al.

5. Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinato-
rial Designs. CRC Press, Boca Raton, Florida (1996)

6. Du, W., Ding, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-
distribution scheme for wireles sensor networks. In: Proceedings
of the 10th ACM Conference on Computer and Communications
Security, pp. 42–51. ACM CCS (2003)

7. Eschenauer, L., Gligor, V.B.: A key-management scheme for dis-
tributed sensor networks. In: Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, pp. 41–47.
ACM CCS (2002)

8. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Compar-
ing elliptic curve cryptography and RSA on 8-bit CPUs. CHES,
LNCS 3156, pp. 119–132 (2004)

9. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges:
mobile networking for smart dust. In: Proceedings of the 5th An-
nual ACM/IEEE International Conference on Mobile Computing
and Networking, pp. 483–492 (1999)

10. Lee, J., Stinson, D.: Deterministic key predistribution schemes
for distributed sensor networks. SAC, LNCS 3357, pp. 294–307
(2004)

11. Lee, J., Stinson, D.: A combinatorial approach to key predistri-
bution for distributed sensor networks. In: IEEE Wireless Com-
puting and Networking Conference (WCNC 2005). New Orleans,
LA, USA (2005)

12. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor
networks. In: Proceedings of the 10th ACM Conference on Com-
puter and Communications Security. ACM CCS (2003)

13. Stinson, D.: Cryptography: Theory and Practice, 2nd edn. Chap-
man & Hall, CRC Press, Boca Raton, Florida (2002)

14. Stinson, D.R.: Combinatorial Designs: Constructions and Analy-
sis. Springer, New York (2003)

15. Street, A.P., Street, D.J.: Combinatorics of Experimental Design.
Clarendon Press, Oxford (1987)

Dibyendu Chakrabarti received
his Master of Technology in Com-
puter Science in the year 1998
from the Indian Statistical Institute,
Kolkata. Currently he is pursuing
his Ph.D. from the Indian Statistical
Institute, Kolkata. He is working in
the area of Sensor Networks.

Subhamoy Maitra received
his Bachelor of Electronics and
Telecommunication Engineering
degree in the year 1992 from
Jadavpur University, Kolkata and
Master of Technology in Computer
Science in the year 1996 from the
Indian Statistical Institute, Kolkata.
He has completed Ph.D. from
the Indian Statistical Institute in
2001. Currently he is an Associate
Professor at the Indian Statistical
Institute. His research interest is in
Cryptology, Digital Watermarking,
and Sensor Networks.

Prof. Bimal Roy obtained his
Master’s degree from the Indian
Statistical Institute, Calcutta, India
in 1979 and Ph.D. from Univer-
sity of Waterloo, Canada in 1982.
He is currently a professor at the
Indian Statistical Institute, Kolkata.
His research area includes Cryptog-
raphy, Security, Combinatorics etc.
His special topics of interest are:
Sensor Networks, Visual Cryptog-
raphy, Hash Functions and Stream
Ciphers.

	1 copy.pdf
	2.pdf

