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ABSTRACT. Symmetric balanced squares for different sizes of 

array and for different numbers of treatments have been con

structed. An algorithm, easily implementable on computers, 

has been developed for construction of such squares whenever 

the parameters satisfy the necessary conditions for existence of 

the square. The method of construction employs 1-factorizations 

of a complete gTaph or near 1-factorizations of a complete graph, 

depending on whether the size of the array is even or odd, re

spectively. For odd sized squares the method provides a solution 

directly based on the near 1-factorization. In the case of the

squares being of even size, we use Hall’s matching theorem along 
2

with a 1-factorization if f1̂-] is even, otherwise, Hall's matching 

theorem together with I^ilkerson’s [4] theorem, on the existence 

of a feasible flow in a network with bounds on flow leaving the 

sources and entering the sinks, lead to the required solution.

1 Introduction

Latin squares and symmetric latin squares are used in designing experi

ments, requiring two way elimination of heterogeneity in the absence of 

interaction in the model. The book by Denes and Keedwell [2] contains an 

excellent presentation of the subject. The combinatorial and algebraic fea

tures of the subject are covered, and also the applications to statistics and 

information theory are emphasized in it. For examples on the use of latin 

squares in agricultural research one may refer to Gomez and Gomez [5]. 

Here they have pointed out the limitations of such designs. The require

ment that all treatments appear in each row-block and in each column-block 

is too stringent. As a result, when the number of treatments is large, the 

design becomes impractical. A more general class of squares, where such
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restriction is removed, is the class of balanced squares (BS’s). A BS of 

size a in v dements is an n  x n  array, D  =  ((d^-)), where denotes the 

dement assigned to the j lh column in i th row, i , j ,  =  1, 2, ■ ■ • ,n, satisfying 

the following conditions:

i) each element occurs r o r r +1 times in every row and column (viz., 

rows and columns are balanced),

ii) each element occurs /  or /  + 1 times in the array (viz., array is 

balanced).

A balanced square of size n  in v dements will be abbreviated as BS (n,v). 

Construction of such a square is quite simple. The elements are to be 

written sequentially over a row. A new row will start with the element that 

follows the last dement of the previous row. If the element already appears 

in the first position of one of the previous rows, and if not all the elements 

have appeared in the first column, then take an element which does not 

appear and repeat the process. Here is an example of BS (6,4). Note r =  1 

and /  =  9.

1 2 3 4 1 2

3 4 1 2 3 4

2 3 4 1 2 3

4 1 2 3 4 1

2 3 4 1 2 3

4 1 2 3 4 1

Table 1.1. BS(6,4)

A BS (n, v) is said to be symmetric if dij =  dji, i , j  =  1,2, ,n . A 

symmetric BS (n ,v ) is abbreviated as SBS (n,v).

If the number of elements (v) is the same as that of the size of the array 

(n), then an SBS (n, n ) is a symmetric latin square of order n. The addition 

table of Zn modulo n  is such an example.

A method of construction for SBS (n, v) is discussed by P.J. Schellenberg 

(private communication). In our paper we propose an alternate method 

of construction. It uses 1-factorization/near 1-factorization of a complete 

graph, Hall’s matching theorem and Fulkerson’s feasibility theorem on net

work flow with bounds on flow leaving each source and entering each sink.

2 Definitions and some observations

Let r — [**], the integral part of n/v, and let /  =  [~], the integral part 

of n 2/v. It can be easily seen that

n =  (n~  rv)(r + 1) -f (r + lv — n)r (2.1)



n2 =  {n2 - + 1 M- (/  + lv - n 2) f  (2.2)

Thus an SBS (n,v)  has (r -f hi — rt) elements in r cells each and (n - rv) 

elements in r+  1 cells each in any row or column. Also, there are ( /  4- h; — 

n2) elements in /  cells each and (rv2 — fv) elements in /  + 1 cells each in 

the square.

An SBS being symmetric, any element with odd frequency must occupy 

a position on the main diagonal. So a necessary condition for the arrav to 

exist is that the number of elements with odd frequency must, riot exceed ihe 

size of the square, n. It is also e;isy to note that the maximum number of 

distinct elements that a symmetric square can accommodate is n(n + l ) / 2. 

The existence of SBS (1, ) is a triviality. These observations imply the 

following lemma.

Lemma 2.1. The necessary conditions for existence of an SBS (n, v ), n  > 1 

are (i) v < n(n + l )/2 and (ii) the number of dements of odd frequency in 

the square should not exceed the size of the array, n.

It can be seen that if SBS (n, v) exist for v < n  < 2v then SBS (n, v) exist 

for all n > 2v. Let n =  rv + .s, 0 < .s < v — 1, r > 2. An SBS (n, v ) , n  > 2v, 

can then be generated a.s

A A A A B

A A A A B

A A A A B

A A A C

B 1 B 1 B '1

where A is any symmetric latin square of order v, B is the first .s columns 

of A and C is an SBS (v + s,v).

Lemma 2.2. I f  SBS (n,v) exist for v < n < 2v then SBS (n,v) exist for 

all n > 2 v.

In view of the preceeding lemma, we will restrict our construction al

gorithm to n  and v such that n <  2v. The proposed construction algo

rithm depends on 1-factorization/near 1-factorization of K n depending on 

whether the value of n  is even or odd, respectively. So we define and discuss 

it in subsequent sections.

Definition 2.1: Let n be even. A spanning subgraph of Kn consisting of 

ft/2 vertex-disjoint edges is called a 1-factor of Kn. A decomposition of K n 

into (n — 1) disjoint 1-factors is called a 1-factorization of Kn.

Definition 2.2: Let n  be odd. A spanning subgraph of K n consisting of 

an isolated vertex and (n —1)/2 vertex-disjoint edges is defined as a near 1-



factor of Kn. A decomposition of Kn into n disjoint near 1-factors is called 

a near 1 -factorization of K n.

These factorizat ions exist for all n. Now we proceed to provide one such 

construction which will he used in subsequent sections for construction of 

SHS’s.

Let. the vertices of A'2n be denoted by 0,1,--- ,2n — 2,oo. Define for

i — 1, 2,--- , 2n — 1, the ordered set of edges

•S’. =  {(oc,i - l)}£/{(i - 1 + j, i - 1 - j) ,  j  =  1,2,--- , n -  1}

where each of the vertices i — 1 + j  and i — 1 — j  is expressed as one 

of the numbers 0,1, 2, • ■ • , 2n — 2 modulo 2n - 1. Clearly, the collection 

{Si, i =  1, 2, ■ ■ • , 2 n — 1} is a 1-factorization of

If the number of vertices is odd, say 2n — 1, then we use a near 1- 

factorization. This is obtained by just replacing the edge (oo i — 1) in 

the ith factor of A^n, as defined above, by the vertex {i — 1} to obtain a 

near 1-factor of K 2n-i-

The above edge-decomposition of K n will be termed as an array of edges 

associated with the corresponding 1-factorization or near 1-factorization, 

Let, there be an n  x n  array D n =  ((dij)) associated with this array of 

edges, whose row and column are labelled with the vertices of K n. The 

edge ( i , j )  represents cells ( i , j )  and ( j ,i)  of D. We say an element x is 

placed in the edge ( i , j ) ,  if and only if, =  dj{ =  x; furthermore, we say 

that x is placed in vertex i of the near 1-factor Si+1 if and only if da = x.

We say m  edges are consecutive if cither they are consecutive edges in the 

same row of the array of edges, or are divided between rows as consecutive 

edges at the left most end of a row and the right most end of the subsequent 

row. To be more precise, the factors are considered in the order

S 2 n - l S 2 n - 2  ' ' ' S 2 S 1

and the edges are scanned from right to left. The consecutiveness of 

edges discussed above implies these edges are consecutive edges in this 

ordered arrangement of factors. For example let us consider the following 

1-factorization of K&.

(00 0) (16) (2 5) (34)

(001) (2 0) (36) (4 5)

(0 0  2) (31) (4 0) (56)

(006) (0 5) (14) (23)

Here edges (2 5) and (3 4) are consecutive edges, so are the edges (oo 0) 

and (4 5).



It is easy to note that any set of n -- 1 consecutive edges, either in the 1 

factorization of K 2n <>r in the near 1-factorization of K 2n. i, contains 2(n- 1 ) 

distinct vertices of the corresponding complete' graph. Any complete row 

contains all the vertices. This observation is instrument.al in providing an 

algorithm for the construction of SBS's.

3 Case n < v and  n  odd

Let n  and v satisfy the two necessary conditions for existence of an SliSiri, v.-j. 

Let r and /  satisfy the equations 2.1 and 2.2 respectively.

If /  is odd then / +  I d — n2 elements are to he placed in the array of 

edges using | (/  — 1) edges each and n2 — fv  elements using \ {f + \ ) edges 

each, provided all can be accommodated in the array without using the 

isolated vertices. Total number of edges required will be n 2 — v{f + l) /2 

while there are n(n — l)/2  edges in the array. Thus, there will be a shortfall 

of [n- (7r+Tv - n 2)]/2 edges, which arc to be obtained from the diagonal 

cells, replacing each edge by two vertices, viz., two diagonal cells. The 

number of cells left on the diagonal after this allocation will be /  + \v — n2, 

meant for allocating elements with odd frequency.

If /  is even then all v elements are to be placed in the array of edges 

allocating / /2  edges each for every element. Thus we fall short by [n - 

(n2 - fv)\/2 edges. These are obtained again from the main diagonal in 

the same way as before. The remaining n 2 — fv  positions left on the diagonal 

accommodate the elements with odd frequency.

In view of the above observations we propose a simple algorithm to con

struct an SBS (n, v) when n  is odd. Before we proceed with the general al

gorithm, let us deal with two special cases, namely, /  =  n — 1 and /  =  n — 2. 

Case f  =  n — 1. Let v =  n  4- A, where A > 1 as n < v. Note, n 2 — 

[n— l)(n+  A)+ [A — (A — l)n]. Now /  — n — 1 implies 0 < A  —(A — \)n < v, 

viz., 0 < A  < 1 + \/{n — 1). A  being integer, we have A  =  1.

So, an SBS (n, n +  1) has to be constructed. This is easily achieved by 

considering a symmetric latin square of order n + 1, and then dropping any 

of the 7i+  1 rows and the same column from the square, viz., if we drop ith 

row then ith column has to be dropped to get an SBS (n, n  -f 1).

Case /  =  n — 2. Note n2 =  (n — 2)(n + A) -f[2A — (A  — 2)n\, where 

v =  n+  A, A  > 1. Now, f  — n  — 2 implies 2 <  A  <  2 + y  So for n >  6, 

we have A  =  2, and for n =  5, A  =  2 or 3. But, if A  =  3, viz., v =  8, 

the necessary condition for existence of SBS is violated since the number 

of odd frequency elements is greater than the array size. So if n =  5 then 

A  =  2. The only other case to be looked into is that for n =  3.

If n — 3 then 2 <  A  <  6. For SBS to exist it is required that v < 

n(n  + 1)/2 =  6, this implies 2 <  A  <  3. Let us deal with the case A  =  3



1 4 5

4 2 6

5 6 3

Tabic 3.1. SBS (3,6)

Now the remaining case, viz., construction of SBS (n, n + 2) is discussed. 

Since n  is odd, consider the near 1-factorization of K„. Allocate n + 2 

elements in the array of edges, each placed in (n — l )/2 consecutive edges 

or vertices, starting with the right most edge in the first row. The isolated 

vertex, {n — 1}, remains unallocated. During this allocation process, 3 

elements are placed in (n — l )/2 consecutive edges only; n  — 1 elements are 

placed in (n — 3)/2 consecutive edges and a vertex. Three of these latter 

n  — 1 elements do not contain the vertex {n — 1}. So, attach to any of 

these three elements the vertex {n — 1}. Thus an SBS (n ,n  + 2) has been 

constructed.

Exam ple 3.1: n  =  7 and v =  9. Thus r =  0 and /  =  5. This implies 4 

elements occur with frequency f + l  =  6  and the remaining 5 with frequency 

/  =  5. Consider the near 1-factorization of K 7 .

_0 (1 6) (2 5) (3 4) 0

1 (2 0) (3 6) (4 5) 1

2 (3 1) (4 0) (5~~6) 2

3 (42) ( 5 l )  (60) 3

4 (5 3) (6 2) (0 1) 5

5 (6 4) (0 3) (1 2) 6

i  (° 5) (! 4) ( 2 3)

The above is an example of an SBS (7, 9) with frequency of elements 1,4,5 

and 9 being 6 and the frequency of the remaining elements being 5. 

A lgorithm  3.1. (Case n <  v ,n  odd and f  < n — 2)

Step 1. Consider the near 1-factorization of K n . Calculate the number of 

positions to be filled on the diagonal to account for the even parts. 

[An even part of an element with frequency /  is /  — 1 if /  is odd and 

is /  if /  is even.] This is n  — ( /  + Iv  — n2) or n  — (n2 — fv )  depending 

on whether /  is odd or even respectively.

Occupy these vertices by placing elements necessarily with even fre

quency, so that no vertex is repeated for the element placed using

0 1 2 3 4 5 6

2 6 3 8 4 9 5

3 7 4 9 5 1

4 9 5 1 6

6 1 7 2

7 2 8

8 3

4

Table 3.2. SBS (7,9)



the diagonals and the left, most consecutive edges of the last row in 

the array of edges. A simple algebraic manipulation will give that 

number of elements of even frequency that, occupy vertices of Kn is 

r, and p vertices of K n are occupied by an element of even frequency 

where

p =  n  -  ( /  + 1 v -

=  n — (n2 — fv)

r =

=  F A 1>

if / odd,

if I even, an r

if I even,

if f odd.

Step 2. Place elements, one by one, starting from right most end of first 

row, in the required number of consecutive edgo-s and vertices of the 

near 1-factorization of K n. During this allocation of elements, when

ever an occupied vertex of K n (that is, a vertex which already ha_s 

an element placed in it) is encountered, it is simply passed over and 

the next edge in the sequence is considered. The elements placed in 

a vertex of the array of edges are the ones having odd frequency.

One can easily note that the construction has proceeded by maint aining 

the requirement on frequency of the elements, and as /  < n — 2, so the 

vertices occupied by each element are distinct. Thus the following lemma 

follows.

Lemma 3.1. The algorithm 3.1 produces an SBS (n,v), when n < v, n is 

odd and f  < n — 2.

Example 3.2: n  =  7 and v =  11. Thus r =  0 and f  — 4. So, there will 

be 5 elements with frequency 5 and 6 elements with frequency 4. Now' 

consider the near 1-factorization of K j. Total number of edges required to 

accommodate the even parts i s 5 x 2  + 6 x 2  =  22. The total number of 

available edges is 3 x 7 =  21. So we fall short by 1 edge, which is accounted 

for by 2 diagonal positions, viz., 11th element contains the last edge (0, 5) 

and two diagonal cells from amongst 1,2,3,4 and 6.

0 (16) (2 5) (3 4)

1 (2 0) (3 6) (4 5)

2 (3 1) (4 0) (5 6)

3 (4 2) (5 1) (6 0)

0 (5 3) (6 2) (0 1)

5 (6 4) (0 3) (1 2)

0 (0 5) (1 4) (2  3)

0 1

2 7 3 9 4 11 5

3 8 5 10 6 2

5 10 6 1 7

6 1 8 3

11 2 9

9 4

11

Table 3.3. SBS (7,11)



Wo allocated vertices 6 and 4 to the 11th element along with the edge 

(0 5). For the rest we start from (3 4), allocate 2 edges for elements not 

occupying a vertex and two edges plus a vertex for those occupying one. 

Thus the above is an SBS (7,11) where elements 1,4,7,8,10 and 11 appear

4 times and 2,3,T>,6 and 9 appear 5 times in the array. No element appears 

twice in a row or column.

4 4. Case n < v and n even

Let n and v satisfy the necessary conditions for existence, and let r and / 

satisfy equations 2.1 and 2.2.

Case /  even. Since /  + 1 is odd, any feasible solution must contain 

n 2 — fv  elements, those with frequency /  + 1 in the array, appearing on the 

main diagonal an odd number of times, and the remaining elements either 

do not appear, or appear even number of times, on the main diagonal. 

A lg o r ith m  4.1. (Case n  < v, n even and /  even)

Step 1. Consider the 1-factorization of K n. Starting from the right hand 

end of the first row of the factorization, place elements one by one, 

in / /2 consecutive edges, until all the edges are exhausted or the left 

over edges are fewer than / / 2.

S top 2. Ivet X  be the set of vertices of K n, Y  be the set of elements 

allocated in step 1, and let E  be the edges (x,y) such that the vertex 

x is not allocated to the element y. Consider the bipartite graph 

G (X , Y, E ). Get a matching of X  into Y . Place the matched elements 

of Y  in the corresponding main diagonal cells as represented by the 

matched vertices.

S tep 3. Consider the next element not allocated in step 1, if any. If there 

are unallocated edges in the last row, allot them to this element. 

Continue the allocation on diagonal cells, counting two diagonal cells 

as one edge equivalent, so that no vertex is repeated.

Step 4. If there are unallocated elements, then allocate them on diagonals, 

at /  positions each, replacing the matched elements of step 2. The 

positions occupied by the element placed in step 3 should not be 

disturbed. Continue this until all v elements are placed.

Rem ark 4.1. At least n+  1 elements will be allocated / / 2 edges each, in 

step 1.

Rem ark 4.2. The matching, discussed in step 2, exists.

Proof: \X\ =  n  <  n  + 1 <  |y|, by remark 4.1. deg (y) =  n — f  for all 

y e Y .



Note any vertex x will be contained in either n -  1 or n —2 of the elements 

depending on whether or not the vertex stands allocated in the hist factor 

Sn-1, viz., last row.

So, deg(x) =  u or u + 1, where =  |K| - (n - 1).

Therefore, mindeg(x) =  u > n  — f  — maxdeg(y). Thus it follows from 
xeX yC-Y

Hall’s theorem on matching that X  can be matched into V.

Lemma 4.1. The algorithm 4.1 constructs an SBS(n, v) when n < v and, 

both n and f  are even.

Proof: Let t =  [n-’y~ - ], then in step 1 yi, y2, ■ • • , 2h elements are allocated 

to //2  edges. Consequently, they have a frequency of /  in the array. At 

step 2, for n  of these t elements, the frequency in the array is increased to 

(/ + !)•

At step 3 and 4, remaining elements are entered on the diagonal and/ or 

left over edges with an individual frequency of /  in the array. Some of the 

n elements placed on the diagonal at step 2 are reduced to frequency /  in 

the array.

Observe that the frequency of the elements in the array is /  or /  + 1. 

The algorithm allocates elements in such a way that no vertex is repeated 

for any element. Thus the frequency of an element in any row or column is 

at most 1. Therefore, the algorithm yields an SBS(n, v).

Example 4.1. n =  8 and v =  10. Thus r =  0 and /  =  6 and there 

are 4 elements in 7 cells each and 6 elements in 6 cells each in the array. 

An element appears at most once in any row or column. Consider the 

1-factorization of K&.

(ooO) (1 6) (2 5) (3 4)

(ool) (2 0) (3 6) (4 5)

(oo2) (3 1) (4 0) (5 6)

(oo3) (4 2) (5 1) (6 0)

(oo4) (5 3) (6 2) (0 1)

(oo5) (6 4) (0 3) (1 2)

(006) (0 5) (14) (2  3)

57



oo 0 1 2 3 4 5 6

oo 9 2 3 4 6 7 8 10

0 1 6 3 8 4 9 5

1 2 7 4 9 5 1

2 ^10 9 5 1 6

3 /2>10 1 7 2

4 /8io 2 8

5 /6io 3

6 7

Table 4.1: SBS (8,10)

X oo 0 1 2 3 4 5 6

Y 1 CD © 2 3 4 4

5 7 8 ® © 6 ® (D
® 9

Table 4.2: A matching of the diagonals.

The 10th element is placed in the edge (oo 6) and 4 diagonal positions 

2,3,4 and 5. Thus an SBS(8, 10) with 4 elements 1,2,7, and 9 appearing in 

7 cells each and the remaining 6 elements in 6 cells each in the array. No 

element occurs more than once in any row or column.

Case /  odd. For any feasible SBS, the f  + lv - n2 elements that occur 

with frequency /  in the array, must appear an odd number of times in cells 

of the main diagonal, the remaining n2 — fv  elements either do not appear 

or appear even number of times on the main diagonal.

A lgorithm  4.2. (Case n < v , n  even and /  odd).

Step 1. Set t =  ( f  + l)v — n2. As n and v satisfies the necessary conditions 

for existence, so n  — t >  0 and 2|(n — t).

Let I =  t-h (n — t ) / 2  =  (n + t) / 2 . Consider the 1-factorization of Kn-

Step 2. Place I elements in ( /  — l)/2  consecutive edges as before.

Step 3. Place the remaining v - 1 elements in (/  + 1)/2 consecutive edges, 

starting from the unoccupied edge consecutive to the last edge of the 

Ith element.

Step 4. Let X  be the set of vertices of K n,Y  be the set of first I elements 

allocated in step 2, and let E  be the set of edges (y, x) such that the 

vertex x is not allocated to the element y. Consider the bipartite 

graph G(Y, X , E). Get a minimal vertex covering, C, of G, viz., t of 

the elements of Y  have degree 1 in C  and the remaining I — t elements



of Y  have degree 2 in C, and each vertex of X  has degree 1 in C. 

Place the incident elements of Y in the corresponding diagonals as 

represented by the matched vertices.

Remark 4.3. All edges of the 1-factorization of Kn are occupied after the 

allocation of elements in step 3.

Remark 4.4. The minimal vertex covering, discussed in step 4, exists.

Proof: Let X  and Y  be as defined in step 4 and let E  be the set of edges 

(y, x) such that the vertex x is not allocated to the element y. Consider 

the network [Y U X , E] with the capacity ftinction c defined as c{y,x) =  1 

for all (y,x) € E, where Y  is the set of sources and X  is the set of sinks.

Let there be associated with cach y £  Y, two non-negative numbers a(y) 

and a'(y), and with each x £ X , a non-negative number b(x), defined by 

a(y) =  1, a'(y) =  2 for all y £ Y  and b(x) =  1 for all x £  X .

Finding a minimal vertex covering in step 4 is equivalent to finding a 

feasible flow /  satisfying

a(y) < f ( y ,Y U X ) - f ( Y U X ,y ) < a ’{y), y & Y  

f (Y U X ,x )  — J (x ,Y U X ) =  b(x), x £ X  (4.1) 

0 < f(y ,x ) < c (y ,x ), ( y ,x )e E .

Fulkerson [4] had shown that the constraint set (4.1) is feasible if and 

only if each of the constraint sets

a(y) < f ( y ,Y U X )- f (Y U X ,y ) ,  y £ Y  

J (Y U X ,x )- J ( x ,Y U X )< b (x ) ,  x £ X  (4.2) 

0 < f(y ,x ) <  c(y,x), (y,x) e E.

and

fiV i YU  X ) — f (Y U X , y) < a'(y), y £ Y

b(x) < f (Y U X ,x )  — f(x ,Y U X ) , x £ X  (4.3)

0 < f(y , x) < c(y, x), (y, x ) € E.

is feasible. So we proceed to show that the constraint sets (4.2) and (4.3) 

are feasible.

Note |Y| =  I < n =  |A'|.deg(y) =  n — ( /  — 1) for all y £  Y. Let 

t =  Note r 1-factors are needed to accomodate I elements, as

discussed in step 2. Any vertex x appears r times in these r 1-factors. So, 

either r  of them or r — 1 of them stand allocated, depending on whether it 

stands allocated in Sr . This implies, either I — r or I — r + 1 elements of



Y  are not allocated to vertex x. So deg(x) =  u or u + 1 where u =  I —r. 

Therefore, max deg(x) =  u  + 1 <  n  — ( /  — 1) =  min deg(y).
i C X  y e Y

By Hall’s matching theorem a matching of Y  into X  exists. Take any such 

matching M C E  and define f(y,x) =  1 if (y,x) € M  and zero otherwise. 

Clearly /  satisfies (4.2).

Now, Y', a set of 21 elements, is defined from Y  as

y'i =  Vi, I <  i  <  I,

y'i =  y i - e ,  ( l +  1) <  * <  2Z.

Extend E  to E ' by adding \E\ edges by connecting y'i+l to all those x ’s to 

which yi is connected, i — 1, 2, ■ • ■ , 1.

Note \Y'\ =  21 >  n =  |X|. deg(j^') =  n  — ( /  — 1) for all y' G Y ', and 

deg(x) =  2u or 2(u + 1) for all x € X . It can easily be shown that 2u > 

n  — ( /  — 1). Thus, maxdeg(y') =  n — ( /  — 1) <  2u =  mindeg(x). Again,
y ' e Y  x e X

by Hall’s theorem a matching of X  into Y ' exists. Take any such matching 

M ' C E ' and define / '  from Y  to X  by

f i v i i x ) =  2 if (y i,x ) and {yi+e,x) e M '

=  1 if (y i,x ) or else (yi+t,x ) € M'

-- 0 otherwise.

Clearly / '  satisfies the constraint set (4.3).

Thus, there exists a feasible flow /  satisfying the constraint set (4.1) 

which provides a minimal vertex covering as discussed in step 4.

Lemma 4.2. The algorithm 4.2 produces an SBS(n,v) when n < v,n is 

even and f  is odd.

The proof is simple and follows in the same way as that of lemma 4.1, 

and thus is omitted.

Example 4.2: n =  8 and v =  11. Thus /  =  5, t =  2 and I =  5. So, there 

will be 9 elements in 6 cells each and 2 elements in 5 cells each in the array 

SBS(8, 11). Consider the 1-factorization of Ks- As suggested in step 2 ,1=5 

elements, 1, 2, ■ ■ ■ ,5, say, are first placed in the array, each in 2 consecutive 

edges. Following step 3, elements 6, ■ • • , 11 are placed in the array, each 

in 3 consecutive edges.



(000)

(001)

( 0 0 2 )

(003)

(004)

(005)

(006)

1 6) (2 5) 

2~0) (3 6) 

?T ) (40)

(3_ 4) 

(5_«)

4 2) (5 1) (6 0)

5 3) (6 2) (0 1)

6 4) (0 3) (1 2)

0 5) (1 4) ( 2 3)

cx; 0 1 2 3 4 0 ti

X! 3 2 4 6 7 9 10 1 1

0 1 8 4 !) 5 1 1 (i

1 0 9 6 11 1 2

2 3 10 7 1 8

3 D 1 8 3

4 4 3 10

5 9

6 4

Table 4.3: SBS (8,11)

X oc 0 1 2 3 4 5 6

Y 1 ®  1 2 2 2 ®  1
© 3 3 4 © 4 @

5 © 5

Table 4.4: A covering of the diagonals.

So, an SBS(8, 11) is constructed, where 2 elements, 1 and 2, appear ir,

5 cells each, while the remaining elements appear in 6 cells each. l 'a< h 

element occurs at most once in any row or column.

5 Case v < n < 2v

Here, the necessary conditions for existence of an SBS(n, v) are satisfied for 

all v and n. If an SBS (n —  v,v) exists, then SBS(n, v) can be generate!i ; l s

' A  | B~

B r  j C

where A is any symmetric latin square of order v, B is the first n — v 

columns of A, BT is the transpose of B, and C  is an SBS(n — v,v).

If an SBS(n — v, v) does not exist then it implies a violation of either 

of the necessary conditions for existence. If the condition on the feasible 

number of elements is violated, viz., if v > ^(ra — v)(n — v + 1), then n — v of 

the v elements occupying the main diagonal occur with frequency 1. Of the 

remaining elements, (n — v) (n — v — \)/2 occur in the off-diagonal positions, 

each twice and the rest do not appear. So the array will not be balanced. 

An extended concept is defined in such situations. A symmetric square of 

size m  is said to be near balanced if the rows and columns are balanced, and 

<  2, i , j  =  1, 2, ■ • • ,v, where f i and f j  are frequencies of ith  and 

jth  elements respectively in the array. Such an array will be abbreviated 

as NSBS(m, v). The above array is thus an NSBS (n — v,v).



The other case of non-existence of an SBS(n — v, v) occurs when the num

ber of elements with odd frequency is more than n — v. In such situations 

too, a near balance is attempted.

One can easily check that m 2 can be expressed as m 2 =  X y (f  — 1) + 

rn f' + X2 ( / ' + 1) where xi + x2 = v  — m  and / '  is odd. So, to achieve near 

balance x\,n and x 2 elements are to be placed in / '  — 1, / '  and / '  + 1 cells 

each respectively. This can easily be done by placing elements one by one, 

in the 1-factorization or near 1-factorization of K m depending on m. The 

procedure is similar to the ones discussed in algorithms 3.1 and 4.1, and 

then finding a matching of the elements to the diagonal if m  is even.

Exam p le  5.1: m =  7 and v =  10. Thus /  =  4 and this implies there has 

to be 1 element with frequency 4 and 9 elements with frequency 5 in a 7 

x 7 symmetric array, which is infeasible. But 72 =  2.4 + 7.5 + 1.6, viz.,

r =  5, x i =  2 and x 2 =  1. S

0 (1 6) (2 5) (3 4)

I (2 0) (3 6) (4 5)

2 (3 1) (4 0) (5 6)

3 (4 2) (5 1) (6 0)

4 (5 3) (6 2) (0 1)

5 (6 4) (0 3) (1 2)

6 (0 5) (1 4) (2 3)

2 6 3 8 4 10 5

3 8 4 10 5 1

4 9 6 1 7

6 1 7 2

7 2 9

9 3

10

Table 5.1: An NSBS (7, 10)

L em m a 5.1. An SBS(n,v) exists for v <  n  <  2v.

Proof: Let B  be a. v x n — v matrix whose first column is bi where b j = 

(0,2,4, ■ • • , 2[i^ ] ,  1,3, 5, • • ■ , 2[|] — 1). Generate the i + 1 th column of B 

from the ith column by moving the elements of the column up one position 

and placing the first element in the last position. In B, do not allow the 

column with 1 in the first position. In such a situation generate n  — v + 1 

columns and discard the offending one.

Let C  be an NSBS(n — v, v) where x i, n — v, x2 elements have frequency 

/ '  - 1, / '  and / '  +1 respectively. Let x — m in(xi, X2) . W ithout loss of gen

erality, elements 1,3,5, ■ • • , 2x — 1 occur with frequency / '  — 1 and elements 

0,2,4, ■ • ■ , 2x — 2 occur with frequency / '  +1. Consider the n x  n  array D ,

A B _
vXv v x n —v

B  T ___ C___
n —vXv n —vxr i—v

where A  is the symmetric latin square generated as the addition table of 

Zv. Note ith  row of D  contain 2(i — 1) twice and 2(i — 1) + 1 only once,

i =  1,2, ■ ■ ■ , [|]. So by dropping the elements 0,2,4, ■ • ■ , from the diagonal



of A and replacing them by elements 1, 3, 5, • • • , the balance in I) is restored. 

So D  is an SBS(n, v) for v < n < 2 v after the modification.

Exam ple  5.2: n =  17, v =  10.

Solution: Consider the NSRS(7, 10) constructed in the example 5.1. Let 

us renumber the elements in it as 1 —» 0,2 —> 2,3 —> 4,4 —> 5,5 —> 1,6 —» 

6, 7 —> 7,8 —> 3, 9 —> 8 and 10 -> 9.

■ A = B =

m - 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 3 5

i 2 3 4 5 6 7 8 9 0 2 4 6 8 1 5 7

2 3 4 5 6 7 8 9 0 1 4 6 8 1 3 7 9

3 4 5 6 7 8 9 0 1 2 6 8 1 3 5 9 0

4 5 6 7 8 9 0 1 2 3 8 1 3 5 7 0 2

5 6 7 8 9 0 1 2 3 4 1 3 5 7 9 2 4

6 7 8 9 0 1 2 3 4 5 3 5 7 9 0 4 6

7 8 9 0 1 2 3 4 5 6 5 7 9 0 2 6 8

8 9 0 1 2 3 4 5 6 7 7 9 0 2 4 8 1

9 0 1 2 3 4 5 6 7 8 9 0 2 4 6 1 3

2 6 4 3 5 9 1

6 4 3 5 9 1 0

4 3 5 8 6 0 7

B T 3 5 8 6 0 7 2

5 9 6 0 7 2 8

9 1 0 7 2 8 4

1 0 7 2 8 4 9

= C -

Tabic 5.2. An SBS(17,10)

Note, frequency of 0 in the NSBS(7, 10) is 6 while that of 1 and 3 are 4. 

So, from the diagonal of the first row of the 17 x 17 matrix, 0 is removed 

and 1 is introduced. The modified array is then an SBS(17, 10).

Thus, based on the previous discussions, the following lemma follows. 

L em m a 6 . An SBS(n,v) exists if  and only if

i) v <  n(n  + l ) / 2, and

ii) the number of elements with odd frequency is at most n.
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	p =	n - (/ + 1 v -

	=	FA1>

	a(y) < f(y,YUX)-f(YUX,y)<a’{y), y&Y f(YUX,x) — J(x,YUX) = b(x), x£X	(4.1) 0 < f(y,x) <c(y,x),	(y,x)eE.

	a(y) < f(y,YUX)-f(YUX,y),	y£Y J(YUX,x)-J(x,YUX)<b(x),	x£X	(4.2) 0 < f(y,x) < c(y,x),	(y,x) e E.

	fiVi YU X) — f(YUX, y) < a'(y),	y£Y

	0 < f(y, x) < c(y, x),	(y, x) € E.



