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Abstract

A new concept of rth order strong mixing for sub g-algebras of a probability space is introduced and a bound for
the rth order joint cumulant is obtained under a two-part dependence assumption, which includes the case of rth order
strong mixing, generalizing the work of Bradley [(1996) Statist. Probab. Lett. 30, 287-293] and Rio [(1993) Ann. Inst.
H. Poincare Probab. Statist. 29, 587-597].
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1. Introduction

Let (2,7 .P) be a probability space and .#;, 1<i<r be sub s-algebras on Q contained in % for some
positive integer r=2. Define

WF,....7 )= sup [cum(Zy,,.... 14, ),
(A e A VEF] X X

where, for any random vector (Xp,.... X,) with X; #;-measurable for 1 <;<r,

cum(X..... %) =Y (=1 (p- 1) EHA})... E|[x

JEM JEV,

14 denotes the indicator function of the set 4. The coeflicient «(#,...,#,) measures the association or
dependence between the o-algebras ., 1<i<{r. For the special case r = 2, the coeflicient reduces to the
usual strong-mixing coefficient between two sub g-algebras.

Let {X,, —0o < n < oo} be a stochastic process defined on a probability space (2, %, P) and %, denote the
g-algebra generated by the random variables {X;, k€J} for any subset J in the set —oo < n < oo, Consider

and (vi....,v,) denotes a partition of the set {I ..... r} for p=1,..., r (cf. Block and Fang, 1988). Here
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any family of sets {J;,, 1 <i<r, n>1} having the property that (;_, J;y — ¢, the empty set as n — co. The
process {X,, —0co <n < oo} is said to be r-strong mixing if

o FsenFy,) — 0 asn— o0

for every such collection of sets {J;,, 1 <i<r}.

If »=2, the definition reduces to the classical case of strong-mixing for a sequence of random variables. It is
easy to see that if a process is r-strong mixing, then it is strong-mixing in the usual sense. Furthermore, every
m-dependent process is r-strong mixing. However, there are processes which are strong-mixing but possibly
not r-strong mixing. This can be checked from the observation that one can construct random variables
X1,X5, X5 such that they are pairwise independent but not mutually independent.

We now obtain a bound on the cum(Xj,...,X,) for any random vector (Xi,...,X,) with X; #;-measurable
for 1<j<r based on the r-strong-mixing coefficient introduced above.

For any nonnegative random variable ' defined on the probability space (2, %, P), define

Ow(z)=inf{t=0: P(W > 1)<z}, 0<z<l.

Theorem 1.1. Suppose (2, % ,P) is a probability space and F;, 1 <i<r are sub g-algebras of F. Further
suppose that there exists positive real numbers p;, 1 <i<r, o, and J. such that ZL] i =1, 0<4a<l and

leum(Ly,,.... 1y, )| <o+ 2] [ [P(4]"7
i=1

for all 4; € F;, 1<i<r. If X; is F-measurable for 1 <i<r, then
o T r
|cum(X1,...,X,,)|<cl/ [[oxi@dz+ ] I1X,
0 = i=1

where Cy is a constant depending only on r and C, depends on r, 2, p;, 1<i<r. Here || X;|, denotes
[E(|X;|P)]Y7 for 1<i<r.

Since
cum(X; + Y1,X3,...,X,) = cum(X;, X5, ..., X,) + cum(Y1, X, ..., X)),

it is sufficient to prove the theorem for nonnegative random variables JX;, 1<i<r. Furthermore, Qx+(z)
< Qx|(2). Hence it is sufficient to prove the following theorem.

Theorem 1.2. Suppose the conditions in the previous theorem hold and X;, 1 <i<r are nonnegative random
variables such that X; is F;-measurable for 1 <i<r. Then

0 T r
aun(ti..... )< [ [Jev@dz + ] 1,
0 =1 i=1

where Cy is a constant depending only on r and C, depends on v, 1, and p;, 1 <i<r.

Proof. Following Theorem 1 of Block and Fang (1988), it follows that

cum(Xl,...,Xr):/ / cum( Ly, (x1),...,14,(x))dxy ... dx,
0 0
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where 4; = [X; > x;], 1 <i<k. Hence

(o] o0
|cum(X1,...,X,)|</ / [cum(Zy, (x1), ..., Ly, (%)) dxy ... dx,.
0 0

It is easy to check that, for any x; > 0, 1 <i<r,
leum(Zy, (1), -, L, (x,))| <min {ﬁrP(X,» >x), 1<i<r; o+ A[[ [P > x»]”Pf}
i=1
where
pr=1+24---+(r—2) if riseven,
and
Br=14214---4+(—1) if ris odd.

Therefore

oo o0
|cum(Xy,..., X)) </ / min{f,P(X; > x;), 1 <i<r; a}dx...dx,
0 0

+/OOO /Ooo min {BVP(Xi > X;), 1<i<r;ﬂhﬁ[P(Xi >x,~)]1/Pf} dx; ...dx,.
i=1
We will now get upper bounds on the two integrals given above following the techniques of Rio (1993) and
Bradley (1996). Let
S ={(x1,...»%2) ERT 1 z <min{B,P(X; > x;), 1<i<r;a}}.
Then
S={(x1,...»x,2) ERT 1z <ax; < Ox(z/B), 1<i<r}.

Therefore

,,,,,,

o Ox, (z/Br) Ox,(z/Br)
:/ / / dx;...dx,
z=0 Jx=0 x,=0

=

:/ OHQX[ (;) dz. (1.1)
=0 =1 !

Let

H(xy,...,x,) =min {ﬁ,.P(X,- >x;), 1 <i<r;iH [P(X; > x,-)]l/”'} .
i=1
We now obtain a bound on H(xy,...,x,) following the techniques of Bradley (1996). If 1 = 0, then
Theorem 1.2 clearly is a consequence of Eq. (1.1). Suppose 0 < A<1. Define a;, = Ox,(27"), n=1 and
Jeon = (ks Akns1], n=0. If a, = ag py1, then define Ji , = ¢. Let Ji oo = [ar, 00) if lim,_,o0 ar.n = ar < 0.
It is easy to see that

27" < P(X > x0) <27, n=0, x4 € Jpns
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and
PXy >x)=0, x¢ € Jkoo-

Define

Gila--~>ir:/"'/ H(xy,...,x;)dx;...dx,.
(X130 X YES 1 iy X200 Xy

It can be checked that
Gi..., =0
if iy = oo for some 1 <k <r.

Let jr, be the length of the interval Ji,. Following the estimates derived in Bradley (1996), it can be
shown that

H(xr,. o) <min{f,270, ..., 27", 127 2ut WP}

and hence
Gy < {ij,ik } min{$,27",..., {27, 127 2kt WPY
k=1

For nonnegative integers i#,,...,i,, we can obtain the following estimates:

o0 o0 r
Z Giyivbingin+iy S )»Z [jl,ilz_(il/pl) {ij,ilﬂkz_(hﬂk)/pk}]

i1=0 i1=0 k=2
00 Upr 00 1/ pk
<4 [Zjﬁilz_(i‘)] II [Zjﬁ§l+ik2_(i'+i*)]
i1=0 k=2 Lii=0
r
<22 [ IXll -
k=1
Similarly
) r
Z Giy g,y i i, <24 H (X || -
i1=0 k=1

Another bound for

o0
§ Gil,i1+i2,-»-,i1+ir

i1=0

is

, 1T
_ (11— —
pr22” 2 O T Xl e
k=1
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by Holder’s inequality. Similarly, another bound for

o0
§ Gl‘]—‘—l‘z,l‘],.“,l’l +i,

i1=0

is
v 1.
pr2.2” 2 MO T 1%l e
k=1

The above bounds involve sums of G, __;
ij, 1<j<r. Note that

/OO.../OOH(xl,...,x,)dxl... dx,zi...iGib_,,,;.
0 0

i1=0 i,=0

with i; varying over 0 to co. Similar bounds hold for other indices

M

By the arguments similar to those given in Bradley (1996) and using the bounds given above, it follows that
there exists a constant C, depending on 4, r, p;, 1<i<r such that

/ / H(xl,...,xr)dxl...dx,<C2H||Xkak.
0 0 k=1

Combining this bound with the earlier bound obtained in Eq. (1.1), we have

o T r
|cum(X1,...,Xr)|<C1/ [[ox@dz+ G ] 11Xl -
0 =1 k=1

Remarks. More explicit bounds involving 4, r, p;, 1<i<r for C; and C, can be obtained as in the case
when r =2 (cf. Bradley, 1996). It is however clear from the proof of the result that C; can be chosen to be
zero in case A =0.
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