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SOME RESULTS ON THE DISTRIBUTION OF ADDITIVE
ARITHMETIC FUNCTIONS 1

By G. JOGESH BABU
Indian Statistical Institule

SUMMARY. It has boon conjocturod by P. Erdss that if f is an additive arithmolio
function and I is a boundod intorval such that f-3(7) has positivo natural donsity, thon fhas a
distribution. This i wos solved partiolly by E.MM. Paul in 1967, Our objoct of this
papor is an attompt to anawor tho following queation. Suppose {m : f(F(m))« 1) has positive
donsity. Thon is it trus that f(F(m) ) has a distribution (whoro, I is a boundad intorval and
F is an integral polynomial)?

1. INTRODUCTION

It has beon conjectured long ago by P. Ecdés if fis an additive arithmetio
function such that f-(I) has positive natural density for some bounded interval
1, then f has a distribution. Partial solution to this conjecture was given by
E. M. Paul (1967). In this paper some more necessary and sufficient condi-
tions for f to have a distribution are given. Let F(m) be an integral valued
polynomial such that F(m) > 0 for m = 1,2, ... and F(m) is not divisible
by square of any irreducibloe polynomial. Suppose density.of {m : f(F(m))el}
exists and is positive for some bounded interval I. Then is it true the f(F(m))
has a distribution  Partial answer to this question is given in the positive
direction. It is also shown, under very general conditions, that f(F(m))
has a distribution, then the spectrum of the distribution is the closure
{f(F(m)) : m > 1}.

2. NOTATIONS AND DEFINITIONS

Lot F(m) = axm¥+...+a, be a polynomial which is not divisible by
square of any irreducible polynomial, where ay, a,, ..., ax are integers and
ay #£0. Let F(m)> 0, for m=1,2,... . Let f be a real-valued additive
arithmetic function. Lot r(d) denoto tho number of incongruent solutions
of the congruence relation F(m) = 0(mod d). Let p, p,, p,, ... denote prime
numbers.

Throughout this paper, if k¥ > 2, wo assume that f satisfies the condition
Jp)r(pt)—> 0 a8 p s o0 for t=1,...,k—1. If k=1 wo do not put any
such rostrictions on f.

Lot N, {---} donote tho numbor of positive integers m < n satisfying tho
conditions {---}. A real-valuod arithmetic function g is 8aid to havo o
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distribution if there is & distribution function @ on the real line such that,

lim 2-1N_ {g(m) < ¢} exists and equals Q(c) for nll continuity points ¢ of Q.
b
We write
Jiphy il <1
S = .
! il > 1.

dmm= % % Joyp)

men =[x L)
v<pin P
A(n) = £1(0, n)
B(n) = B0, »).

Main results.

Theovem | If lim sup }N“{j(l"(m)) = a} > 0 for some real nuwmber
"—pe
a, then f(F(m)) has a distribution.

Theorem 2:  [f f(F(m)) has « distribution on a bounded non degenerate
inderved I and if this distribution is not uniform, then f{F(m)) has a distribution.

Hero, by a distribution on o bounded interval we mean a finite countably
additive measuro g on I such that whenever a and b are interior points of [
and (@) = p(l) = 0, then

lim 'l—' N {f(F(m)) € (a. b)} exists and equals su(a, b).
N—p o

Thoorem 3 :  If f(F(m)) has « distribution, then f(F(1)), f(F(2)), ... all
belong ta the spectrum of the distribution.

Theorem 4: If 'h_:’un -'lT N {f(Pm))el} = 1 for some bounded interval then
J(F(m)) has a distribution.

Proof of this thcorem, whon £(m) = m, was supplied by DProfessor
E. M. Puaul during one of our discussions.

Let M1(S) and My(S) denote the lower and the upper magnifications of
8, where S is any not of positive intogers. For theso notations and definitions
soo Paul (1962). Lot A(S) denoto the logarithmic donsity of S. whonover
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it exists. Let P denote the P-mensure on Paul’s space introduced in Tanl
(1962).

Theorem 5: The following are equivalent.

(i) There i a real number a such that for all € > 0

—IS(M,,(m:j(m) e{a—¢, a+e))} > 0.

@) Forall e>0. F{U Aduc)>o0,
n=l

where .~l,,.,={x:i X f(p;‘)|<e, for all r.l)n}
r<is

(iii) f has a distribwtion.
Preliminary reanlta.  Wo need the following lemmas.
Lemma 1: If B(n) = o and f(p)r(p) = o(B(p)). then

lim L N {J(Fom)— A(n) < 2B(n)) = O(z)
A=pr N
where Glx) = L } ey,
Vo Za ’
This lemma follows from Halberstam’s theorem (Halberstam. 1056).

Let & bo the ring of all polyadic numbers containing the ring of integers
as a denso subspace. Sco Novosclov (1066) for a deseription of G. let P
bo tho completion of the normalised Haar measure on S. Let F(x) be the
extension of F(m) to &, that is

F(x) = aga* ... Fa,.
Let

fpa)= £ feWipt, 2

Lif pHIF(a),
where Wipt, r) =
0 otherwise.

Note that thero exists a p, such that the sequence {f(p, I»P>Po is indo-
pendent. (Sco proof of Theorem 1 of Jogesh Bobu, 1972).
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Lemma 2: Suppose k > 2. Then for each € > 0 there exists v, = vg(e)
such that for all n

b (= f{p. m)— A(v, n))* £ CaB¥v, n)4en
mel p>e

Jor all v > v, where C is a constant and
. J&) i t<k—1
fir) = .
0 otherwise,

The proof of this lemma is similar to that of Turan-Kubilius inequality
(Lemma 3.1 of Kubilius, 1964, p. 31).

Lemma 3: Suppose sup B(n) is finite. Then there exists a distribulion
Junction Q(c) suck that

lim = N {f(Fm)—An) < & = Q)
A=y N

Jor all continuily points ¢ of Q.

Further, if the soquence {A(n)} is bounded, then for any 6 ¢(4,, 6,],
{f(F(m))+0 : m > 1} is contained in the spectrum of @, where

0, = lim inf A(n) and 0, = lim sup A(n).
A=)« L X

Proof : Since {B(r)} is n convergent, sequence, by Kolmogorov’s three-
series theorem applied to the scquence of random variables

{102 v}

P>

we have convorgence of

S (Moo= Sovtn))  welP)

Tet

z (f(p, :c)—Lf'(p)r(p) ) if this converges,
? V4

y(x) = ()

1} otherwiso.
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Lot Q(c) = P{z:p(x) <c}. Let é and € > 0 and let r bo a sufficiontly largo
number such that

i { o '»E (ﬂp' ’)—%f'(p)r(p) )I > 3} <

Applying Lemma 2 or Turan-Kuiblius inequality for cases k> 2 and & =1,
we have for sufficiently large =,

N {f(F(m))—A(n) <c} € N { f f(p, m)—A(r) < c+8}
» r
+N{l [T S, m—Am)+A0)] > )
€ nP{z: I f(p, 2)—A(r) <c+6}+¢en
F X 14

< nPfx : g(z) < c+08}+2¢n=nQc+8)+2¢n.... (2)
Similarly we ean show that, for sufficiently large n
nQ(e—8)—2en < N {f(F(m))—A(n) < ¢}. . (3

From (2) and (3) we have
& N {JFm)—A(m) < ) - Q)

as n—» co, for all continuity points ¢ of Q. This proves the first part of the
lemma. Another proof of this part of the lemma ean be found in Katai, 1969.
To prove the sccond part of tho lomma, sinco %f’(p)r(p) ~0 as p —> o0,

0¢(0,, 0,) implies that 0 is a limit point of the sequence {A(n)}. Let 8€(8,, 0,].
Let {a,} be a subsoquenco such that A(n,)— 0 as r— 0. Hence we have,
from (2) and (3), that

lim 7N, {f(F(m)) < ¢} = Qle+6).
Now fix £ >0 and m > 1. Let F(m) =p:l ...p:", where 2, 24 ..es Pa

aro prime numboers. By Egoroff's thcorem applied to the sequenco
{9z)—0— X f(p, z)}, we can find, for any & > 0, a mcasurablo set /{ and a
p<ne

rosuch that P(II) > 1—48 and JI C {x: Jglx)—0— .‘i f(p,2)| <& for all
p<
r>



f 0. JOQESH BABY
Now lot 7, > MaxX (Pg Py veos P Myy) and lot
R = {zell 1= F(m)y and p < ny, == p docs not divide y},
Hence P{x : g(x) € (f(F(m))+0—¢, fIF(m))+0+¢)}

> PlaeR :I"’(I)——”—,‘E.. f(p.7)| < €}
"

- “ (41
> -9 fi (TOHBED) 5,
R S
whore == n (1_'1?;)_)_

PFEPL e Pu
s,

So f(F(m))+0isin the speetrum of Q(c). This completes the proof of the lemma

Lemma 4 (P. Levy): FLet X, XN, ... be a sequence of independent,
purely discrete random variables such that X Xy converges almost everywhere.

Then the distribution of 5 Xy iy purely discrete, purely conlinuons singular or

i
purely absolutely continuous. Moreover, if
dy = sup P{X; =1},
b
then the distribution of & Xy is continuous if and only if
1
Md =0
|

Proofs of the main yesults.

Proofs of Theorems Y and 2 : From the hypotheses it follows, as in (Winter
and BErdis (1939, pp. 717-718), that X p~! < 0. Now by Lemma 1 and the
2

hypotheses it follows, in either ease. that sup B(n) < 0. From the proof of
»
Lemma 3, it follows that

~li_l:1 'ITN,,U(F(m)) < d(n)+c} = Pz : g(2) < ¢} = Q(c).

In case of Theorem 1, since lim sup %N,,{j(l"(m)) = a}> 0, wecanfind
A=—p o

u sequence (n;} of positive integers such that A(n,) tends to n limit 2 as r—>
and

0 < lim sup L N {f(F(m)) = a) =Yim a7 N, (f(Fm)) =a}. ... (J)
Ao e N r—a« ’
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So, for every positive ¢ for which «—0—¢ and a—0+¢ are continuity points
of @, tho right hand side of (4) is not lexs than

,li_':].- "v_"\'n, {fIF))— A(ny)e(la—0—¢. a—0+¢)}) = Plz :|g(x)+0—a]| < ¢}

Hence P{z:g{z)+0 = a} > 0. By Lemma 4, the distribution of y(z) is discreto
and henee

1
I —rp)<co
fipnpry#a P

Thus {A(nr)} converges. Now Theorem 1 follows from Theorem 1 of Jogesh
Babu (1972).

In caso of Theorem 2, we have li:l;i:\f%- N {f(F(m))e J} > 0, for some
bounded interval J. It follows that {4(n)} is a bounded scquence. Let 0,
and 0, be as in Lemma 3. If 0, = 0,. then there is nothing to prove. If
0, < 0,. from the proof of Lemma 3, it follows that every 0¢[0,, 0,] is a limit
point of {d(n)}. If @ and b are in tho interior of f and are continuity points of
the distribution of f(F(m)) on I, then for all O¢[0,. 0,), wo have

lim % N {f(F(m))e(a, b)} = Pz : y(z)+0¢(a, b)}.
n—pa

By changing 0 continuously wo get uniform distribution on I, which contradicts
the hypothesis. Henco {A(2)} converges. So, ngain by Theorem 1 of Jogesh
Babu (1972) it follows that f(F(n)) has o distribution. Thiza completes the
proofs of Thecorcms 1 and 2.

Theorem 3 follows from Lemma 3.

Proof of Theorem 4 :  As in the proofs of Theorems | and 2, wo have
sup B(n) < 0 and {4(n)} is bounded. From Lomma 3, it follows that
[

{f(F(m)): m > 1} is contained in the closure of the bounded interval I, i.e, for
allm > 1, |f(F(m))| < M, for some 3 > 0. Now we dofinc a new additive
arithmetic function g by

y {If(p‘)l if rph) #0

0 othorwise.
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Note that g(F(m)) is non-negative for all m > 1 and g(F(m)) < 2M for all
m » 1. Hence by Theorcm 3 of Jogesh Babu (1972), we have

I 2 g(pip) < oo,
p P

which implies convergence of ¥ %f’(p)r(p). Now the result follows from
»
Theorom 1 of Jogesh Babu (1972).

Proof of Theorem 5 : Supposo f has a distribution. Then from Theorem
2 of Paul (1963) and from the proof of Theorem 1 Paul (1963), it follows
that

Alm : f(m)e(c, )} = P(My(m : f(m)e(c, d))}.
By Theorem 1 of Paul (1967) we have for every ¢ > 0

D{m: f(m)| <€} > 0.
Hence,

P(Mym: | fim)| <e)>0 for all ¢> 0.

This proves the implication (iii) == (i). (i) == (ii) is clear because
My :fim) ¢ @—&, a+0) C J A ne

To prove (i) == (iii), assume (ii), then there exists an ¥ such that F_’(AN.‘) >0.
Hence,

Piz:] S fip"] < for all ¢> N}> o0,
Ncigt
So,
lim sup P{z:| X fipi'}] < €} > 0.
e Nciat
Hence thero exists a sequence {dy}, such that
‘E, (j(p:')+d,) converges a.e. [P]
(see Doob, 1053; p. 121). Let & > 0. Find an n, such that

P(An,_m) =2>0.
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By LEgoroll's theorem choose a meusurablo sct 11 such that P(ll) > 1—y)2
and ‘i. (j(p:‘)+d;) converges uniformly on /I, Henco there exists n > n,
such ;llmt

.l_’(x cfornllt, r >, |’ <l".‘ '(f(p;')+d,)| <8} > 1—yf2.
1lenco thero exists an x such that for all r, ¢ > 2, wo have
- 7 é - 5 8
<~‘-s‘f(})¢ ) < and V<t (J(p)+di} < 5

Consequently forall r, 0 > 2, | X di|<é.
rSigt
- - 7y
So Xd; converges, henco X f(p;') converges almost everywhere. Henee
(=1

[ has a distribution (sece Paul, 1963). This completes the proof of Theorem 5.

Theorem 2, for F(m) = m, together with the following remarks, supports
¥rdss conjecture, stated in the introduction.

Remarks : Suppose f has a distribution with characteristic function .
Then for some u, A(u) = 0 if and only if ;—‘j(‘z‘) is an odd integer for all posi-
tivo integers . This can bo provc& a3 follows. It is well known (Kubilius,
1064) that for all real u

M) = 2(1—%) (l:i-‘}::l pte ‘ul(r'))'
Noto that

- (“%) (14 5 p=texp i fipty) # 0

for all real u, sinco, if p > 3
1

J‘)'::l P cxp(itt.f(P'))} <,§ Pt = =1 <

e =

-
Now X 2-sexp (f u f (p*)) =—1 if and only if %f('“) isan odd integor for all
-l
8 > 1. This proves our assertion.
From this remark it is casy to prove that an additive arithmetic function
canmot have uniform distribution.  This result was stated without proof by
Lrdés (1956).
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Suppose on tho contrary, tho distribution of f is uniform, then there
cxists a non-zero real number a such that (2mnfa) = 0 for all integers n,
whero & is the characteristic function of the distribution of f. From this it

2
follows that ij(Z‘) is an odd integer for every s > 1. Hence

2 exp (i 2n ‘2!f(2')) =1

a=1
So M2n.2ja) # 0, which is a contradiction. This proves our assertion.
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